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Abstract
A generalization, namely the K-comparison function, of a comparison function is
introduced. Using K-comparison functions we introduce KG-contractive mappings.
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spaces endowed with a graph. We also construct examples in support of our results.
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1 Introduction
Development in metric fixed point theory is based on two things: the first is to modify con-
traction condition and the second is to modify the structure of a metric space. Matthews
[] introduced the notion of a partial metric space and extended Banach contraction prin-
ciple in the setting of partial metric space. The work of Matthews [] has been extended by
many authors; see for example [–]. Using the notion of a partial metric on a set X, Aydi
et al. [] defined a partial Hausdorff metric on the set of closed and bounded subsets of the
set X. Moreover, they [] extended Nadler’s fixed point theorem in the setting of a partial
Hausdorff metric spaces. Jachymaski [] generalized the Banach fixed point theorem for
mappings of a complete metric space endowed with a graph. He introduced the notion of
Banach G-contractions. Here G stands for a directed graph in a metric space whose vertex
set coincides with the metric space. Many authors extended the Banach G-contraction in
different ways; see, for example, [–].

In this paper, we introduce the notions of a K-comparison function and a KG-contractive
mapping. We establish a fixed point theorem for KG-contractive mappings, in the setting
of partial Hausdorff metric spaces endowed with a graph.

2 Preliminaries
In this section we recollect some definitions from partial (Hausdorff) metric spaces and
comparison functions. We also present some results from partial (Hausdorff) metric
spaces for ready reference. Throughout this paper, R+ = [,∞).
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Definition . [] Let X be a nonempty set. A mapping p : X × X →R
+ is a partial metric

on X, if for all x, y, z ∈ X. We have
(P) p(x, x) = p(y, y) = p(x, y) if and only if x = y;
(P) p(x, x) ≤ p(x, y);
(P) p(x, y) = p(y, x);
(P) p(x, z) ≤ p(x, y) + p(y, z) – p(y, y).

Remark . [] If p(x, y) = , then (P) and (P) implies x = y but the converse is not true
in general.

Example . [] Let X be the set of all closed intervals of real line R, that is, X = {[a, b] :
a, b ∈ R, a ≤ b} and define a function p : X × X → R

+ by p([a, b], [c, d]) = max{b, d} –
min{a, c}, then (X, p) is a partial metric space.

Lemma . [] Every metric space is a partial metric space.

Remark . [] Every partial metric p on X generates a T topology τp on X with as a base
the family of the open balls (p balls) {Bp(x, ε) : x ∈ X, ε > }, where

Bp(x, ε) =
{

y ∈ X : p(x, y) < p(x, x) + ε
}

.

Definition . [] Let (X, p) be a partial metric space. Then:
(a) A sequence {xn} in (X, p) is said to be convergent to a point x ∈ X with respect to τp

if and only if p(x, x) = limn→∞ p(x, xn).
(b) A sequence {xn} in X will be a Cauchy sequence if and only if limn,m→∞ p(xn, xm)

exists and is finite.
(c) A partial metric space (X, p) is called a complete partial metric space if every

Cauchy sequence {xn} in X converges with respect to τp to a point x ∈ X .

Remark . [] Let (X, p) be a partial metric space, then the function dp : X × X → [,∞)
defined by

dp(x, y) = p(x, y) – p(x, x) – p(y, y)

is a metric on X.

Lemma . [] Let (X, p) be a partial metric space, a sequence {xn} in (X, dp) is said to be
convergent to a point x ∈ X if and only if

p(x, x) = lim
n→∞ p(x, xn) = lim

n,m→∞ p(xn, xm).

Lemma . [] Let (X, p) be a partial metric space. Then:
(a) A sequence {xn} in X is Cauchy with respect to p if and only if it is Cauchy with

respect to dp.
(b) A partial metric space (X, p) is complete if and only if the metric space (X, dp) is

complete.
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A subset A of a partial metric space (X, p) is a bounded [], if there exists x ∈ A such
that p(x, a) < p(x, x) + M. A subset A of a partial metric space is closed if it is closed
with respect to the topology τp on X. Let CBp(X) be the family of all nonempty closed
and bounded subsets of a partial metric space (X, p). We use the following notions and
terminologies []. For A, B ∈ CBp(X), p(x, A) = inf{p(x, a) : a ∈ A}, p(A, B) = inf{p(x, y) :
x ∈ A, y ∈ B}. The functions δp : CBp(X) × CBp(X) →R

+ and Hp : CBp(X) × CBp(X) →R
+

are defined by δp(A, B) = sup{p(a, B) : a ∈ A} and Hp(A, B) = max{δp(A, B), δp(B, A)}, respec-
tively.

Remark . [] If dp(x, A) = inf{dp(x, a) : a ∈ A}, then it is easy to prove that p(x, A) = 
implies that dp(x, A) = .

Lemma . [] Let (X, p) be a partial metric space and A be any nonempty subset of X,
then a ∈ A if and only if p(a, A) = p(a, a).

Lemma . [] Let (X, p) be a partial metric space and A be any nonempty subset of X.
If A is closed in (X, p), then A is closed in (X, dp).

Proposition . [] Let (X, p) be a partial metric space. For A, B ∈ CBp(X), the following
properties hold:

() Hp(A, A) ≤ Hp(A, B);
() Hp(A, B) = Hp(B, A);
() Hp(A, C) ≤ Hp(A, B) + Hp(B, C) – infc∈C p(c, c);
() Hp(A, B) =  implies that A = B.

Lemma . [] Let (X, p) be a partial metric space, let A, B ∈ CBp(X) and h > . For any
a ∈ A, there exists b ∈ B such that p(a, b) ≤ hHp(A, B).

Let ξ : [,∞) → [,∞) be a function. Consider the following conditions:
(i) ξ is an increasing function;

(ii) ξ (t) < t for each t > ;
(iii) ξ () = ;
(iv) {ξn(t)} converges to  for each t ≥ ;
(v)

∑∞
n= ξn(t) converges for each t > .

The function ξ satisfying (i) and (iv) is said to be a comparison function []. The function
ξ satisfying (i) and (v) is known as a (c)-comparison function []. It is easily seen that (i)
and (iv) imply (ii); and (i) and (ii) imply (iii) [].

Property (A): ([], Remark .) For any sequence {xn}n∈N in X, if xn → x and (xn, xn+) ∈
E for n ∈ N, then (xn, x) ∈ E.

3 Main results
We begin this section by introducing the notion of a K-comparison function.

Definition . A mapping ζ : [,∞) → [,∞) is said to be a K-comparison if the follow-
ing conditions hold:

(i) for each t > , we have ζ (t) < t;
(ii) ζ () = .
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Note that any comparison or (c)-comparison function is K-comparison function but
converse is not true in general.

Example . Let ζ : [,∞) → [,∞) be a mapping such that

ζ (t) =

⎧
⎨

⎩

t
 if  ≤ t ≤ ,
√

t otherwise.

Thus, ζ is a K-comparison function but neither a comparison nor a (c)-comparison func-
tion.

We denote the class of K-comparison functions by K. Throughout this section, (X, p)
is a partial metric space, G = (V , E) is a directed graph without parallel edges such that
V = X and � = {(x, x) : x ∈ X} ⊂ E. For basic terminologies of graph theory we refer the
reader to the excellent text by Chartrand et al. [].

Definition . Let (X, p) be a partial metric space. A mapping T : X → CBp(X) is said to
be KG-contractive, if there exists ζ ∈ K with supt>

ζ (t)
t <  such that

(i) for each (x, y) ∈ E with x 
= y, we have

Hp(Tx, Ty) ≤ ζ

(
max

{
p(x, y),

p(x, Tx) + p(y, Ty)


,
p(x, Ty) + p(y, Tx)



})
; (.)

(ii) if s ∈ Tx and t ∈ Ty are such that

p(s, t) < p(x, y), (.)

then we have (s, t) ∈ E, whenever (x, y) ∈ E with x 
= y.

Theorem . Let (X, p) be a complete partial metric space endowed with the graph G and
Property (A). Let T : X → CBp(X) be a KG-contractive mapping. Assume that there exist
x ∈ X and x ∈ Tx such that (x, x) ∈ E. Then T has a fixed point.

Proof By hypothesis, we have x ∈ X and x ∈ Tx such that (x, x) ∈ E. If x = x, then x

is a fixed point. Suppose that x 
= x. Since T is a KG-contractive mapping, from (.), we
have

Hp(Tx, Tx) ≤ ζ

(
max

{
p(x, x),

p(x, Tx) + p(x, Tx)


,
p(x, Tx) + p(x, Tx)



})

< max

{
p(x, x),

p(x, Tx) + p(x, Tx)


,
p(x, Tx) + p(x, Tx)



}
. (.)

Then there exists a ∈ (, l], where l = supt>
ζ (t)

t , and obviously a depends on x and x,
such that

Hp(Tx, Tx)

≤ a max

{
p(x, x),

p(x, Tx) + p(x, Tx)


,
p(x, Tx) + p(x, Tx)



}
. (.)
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Since a < , then /√a > . Thus, by using Lemma ., we have x ∈ Tx such that

p(x, x) ≤ √a
Hp(Tx, Tx). (.)

From (.) and (.), we get

p(x, x) ≤ √
a max

{
p(x, x),

p(x, x) + p(x, x)


,
p(x, x) + p(x, x)



}

≤ √
a max

{
p(x, x), p(x, x)

}
. (.)

If we assume that max{p(x, x), p(x, x)} = p(x, x), then we get a contradiction to (.).
Thus, max{p(x, x), p(x, x)} = p(x, x). From (.), we have

p(x, x) ≤ √
ap(x, x) < p(x, x). (.)

From (.) and (.), we have (x, x) ∈ E. If x = x, then x is a fixed point. Suppose that
x 
= x. Again, from (.), we have

Hp(Tx, Tx) ≤ ζ

(
max

{
p(x, x),

p(x, Tx) + p(x, Tx)


,
p(x, Tx) + p(x, Tx)



})

< max

{
p(x, x),

p(x, Tx) + p(x, Tx)


,
p(x, Tx) + p(x, Tx)



}
.

Then there exists a ∈ (, l], and obviously a depends on x and x, such that

Hp(Tx, Tx)

≤ a max

{
p(x, x),

p(x, Tx) + p(x, Tx)


,
p(x, Tx) + p(x, Tx)



}
. (.)

Since a < , /√a > . Again by using Lemma ., we have x ∈ Tx such that

p(x, x) ≤ √a
Hp(Tx, Tx). (.)

From (.) and (.), we get

p(x, x) ≤ √
a max

{
p(x, x),

p(x, x) + p(x, x)


,
p(x, x) + p(x, x)



}

≤ √
a max

{
p(x, x), p(x, x)

}
. (.)

If we assume that max{p(x, x), p(x, x)} = p(x, x), then we get a contradiction to (.).
Thus, max{p(x, x), p(x, x)} = p(x, x). From (.), we have

p(x, x) ≤ √
ap(x, x) < p(x, x). (.)

Also, we have

p(x, x) ≤ √
ap(x, x) ≤ √

a
√

ap(x, x).
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Continuing the same way we get sequences {an} ⊂ (, l] and {xn} ⊂ X such that xn– ∈ Txn,
xn– 
= xn, and (xn–, xn) ∈ E, with

p(xn, xn+) ≤ √
an

√
an– · · ·√ap(x, x) for each n ∈N.

Let n, m ∈N, by using the triangular inequality, we have

p(xn, xn+m) ≤ p(xn, xn+) + p(xn+, xn+) + · · · + p(xn+m–, xn+m) –
n+m–∑

i=n+

p(xi, xi)

≤ p(xn, xn+) + p(xn+, xn+) + · · · + p(xn+m–, xn+m)

≤ √
an

√
an– · · ·√ap(x, x) +

√
an+

√
an · · ·√ap(x, x)

+ · · · +
√

an+m–
√

an+m– · · ·√ap(x, x). (.)

Let b = sup{√ai : i ∈N}, clearly, b < . Then from (.), we get

p(xn, xn+m) ≤ √
an

√
an– · · ·√ap(x, x) +

√
an+

√
an · · ·√ap(x, x)

+ · · · +
√

an+m–
√

an+m– · · ·√ap(x, x)

≤ [
bn + bn+ + · · · + bn+m–]p(x, x)

<
bn

 – b
p(x, x). (.)

Consequently, we have

dp(xn, xn+m) ≤ p(xn, xn+m) <
bn

 – b
p(x, x).

Thus, we conclude that {xn} is a Cauchy sequence in (X, dp). Since (X, p) is a complete
partial metric space, by Lemma .(b), (X, dp) is a complete metric space. Then there exists
x∗ ∈ X such that xn → x∗ ∈ X with respect to dp, as n → ∞. By Lemma ., we have

p
(
x∗, x∗) = lim

n→∞ p
(
xn, x∗) = lim

n→∞ p(xn, xn+m) = . (.)

By Property (A), we have (xn, x∗) ∈ E for each n ∈N. Now, we claim that p(x∗, Tx∗) = . On
the contrary suppose that p(x∗, Tx∗) > . By using the triangular inequality and (.), we
have

p
(
x∗, Tx∗) ≤ p

(
x∗, xn+

)
+ p

(
xn+, Tx∗) – p(xn+, xn+)

≤ p
(
x∗, xn+

)
+ Hp

(
Txn, Tx∗)

≤ p
(
x∗, xn+

)
+ ζ

(
max

{
p
(
xn, x∗),

p(xn, Txn) + p(x∗, Tx∗)


,

p(xn, Tx∗) + p(x∗, Txn)


})

< p
(
x∗, xn+

)
+ max

{
p
(
xn, x∗),

p(xn, Txn) + p(x∗, Tx∗)


,
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p(xn, Tx∗) + p(x∗, Txn)


}

≤ p
(
x∗, xn+

)
+ max

{
p
(
xn, x∗),

p(xn, xn+) + p(x∗, Tx∗)


,

p(xn, x∗) + p(x∗, Tx∗) – p(x∗, x∗) + p(x∗, xn+)


}
.

Letting n → ∞ in the above inequality,

p
(
x∗, Tx∗) ≤ p(x∗, Tx∗)


,

but this is impossible for p(x∗, Tx∗) > . Thus, p(x∗, Tx∗) = . Therefore, we have

p
(
x∗, Tx∗) =  = p

(
x∗, x∗).

This implies that x∗ ∈ Tx∗. �

Example . Let X = N ∪ {} endowed with the partial metric p(x, y) = max{x, y} and a
graph G = (V , E) be defined as V = X and E = {(x, y) : x, y ∈ {, , , , , , , , }} ∪
{(x, x) : x ∈N}. Let T : X → CBp(X) be defined by

Tx =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{} if x ∈ {, , , , , },
{, } if x = ,

{, } if x = ,

{, } if x = ,

{x + , x + } otherwise,

and ζ : [,∞) → [,∞) by

ζ (t) =

⎧
⎪⎪⎨

⎪⎪⎩

t
 if  ≤ t ≤ ,
t
 if  < t ≤ ,
t
 if t > .

To see that (.) holds it is sufficient to consider the following cases:
(i) If (x, y) ∈ E with x 
= y ∈ {, , , , , }, then (.) trivially holds.

(ii) If (x, y) ∈ E with x ∈ {, , , , , } and y = , then

Hp(Tx, Ty) =  ≤ ζ
(
Mp(x, y)

)
.

(iii) If (x, y) ∈ E with x ∈ {, , , , , } and y = , then

Hp(Tx, Ty) =  ≤ ζ
(
Mp(x, y)

)
.

(iv) If (x, y) ∈ E with x ∈ {, , , , , } and y = , then

Hp(Tx, Ty) =  ≤ ζ
(
Mp(x, y)

)
.
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(v) If (x, y) ∈ E with x =  and y = , then

Hp(Tx, Ty) =  ≤ ζ
(
Mp(x, y)

)
.

(vi) If (x, y) ∈ E with x =  and y = , then

Hp(Tx, Ty) =  ≤ ζ
(
Mp(x, y)

)
.

(vii) If (x, y) ∈ E with x =  and y = , then

Hp(Tx, Ty) =  ≤ ζ
(
Mp(x, y)

)
,

where Mp(x, y) = max{p(x, y), p(x,Tx)+p(y,Ty)
 , p(x,Ty)+p(x,Ty)

 }. Thus, (.) holds. Further it can be
observed that for (x, y) ∈ E with x 
= y, if s ∈ Tx and t ∈ Ty are such that p(s, t) < p(x, y),
then we have (s, t) ∈ E. For x = , we have x =  ∈ Tx such that (, ) ∈ E. Moreover,
Property (A) holds. Therefore, Theorem . guarantees the existence of a fixed point of
T .

Example . Let X = [,∞) × [,∞) be endowed with the partial metric p(x, y) =
p((x, x), (y, y)) = max{x, y} + max{x, y} and a graph G = (V , E) be defined as V = X
and E = {(r, s) : r = (r, ), s = (s, ) with r, s ≥ } ∪ {(x, x) : x ∈ X}. Let T : X → CBp(X) be
defined by

T(b, a) =
{

(, ), (b/, a)
}

for each (b, a) ∈ X

and ζ : [,∞) → [,∞) be defined as

ζ (t) =

⎧
⎨

⎩

t
 if  ≤ t ≤ ,
t
 otherwise.

To see that (.) holds, we consider the following cases:
(i) If ((u, ), (v, )) ∈ E with  ≤ u < v, then

Hp
(
T(u, ), T(v, )

)
=

v


≤ ζ
(
Mp(x, y)

)
.

(ii) If ((u, ), (v, )) ∈ E with  ≤ v < u, then

Hp
(
T(u, ), T(v, )

)
=

u


≤ ζ
(
Mp(x, y)

)
,

where Mp(x, y) = max{p(x, y), p(x,Tx)+p(y,Ty)
 , p(x,Ty)+p(x,Ty)

 }. Thus, (.) holds. Further it can be
observed that for (x, y) ∈ E with x 
= y, if s ∈ Tx and t ∈ Ty are such that p(s, t) < p(x, y), then
we have (s, t) ∈ E. For x = (, ), we have x = (., ) ∈ Tx such that ((, ), (., )) ∈ E.
Moreover, Property (A) holds. Therefore, Theorem . guarantees the existence of a fixed
point of T .

Note that the following results are direct consequences of our result.
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Corollary . Let (X, p) be a complete partial metric space endowed with a graph G and
Property (A). Let T : X → CBp(X) be a mapping such that

(i) for each (x, y) ∈ E with x 
= y, we have

Hp(Tx, Ty) ≤ φ
(
Mp(x, y)

)
Mp(x, y),

where Mp(x, y) = max{p(x, y), p(x,Tx)+p(y,Ty)
 , p(x,Ty)+p(x,Ty)

 }, and φ : [,∞) → [, ) is
such that lim supt→r+ φ(t) <  for each r ∈ [,∞);

(ii) if s ∈ Tx and t ∈ Ty are such that p(s, t) < p(x, y), then we have (s, t) ∈ E, whenever
(x, y) ∈ E with x 
= y.

Further, assume that there exist x ∈ X and x ∈ Tx such that (x, x) ∈ E. Then T has a
fixed point.

This result can be obtained from Theorem ., by considering ζ (t) = φ(t)t for each t ≥ .

Corollary . Let (X, d) be a complete metric space endowed with a graph G and Prop-
erty (A). Let T : X → CB(X) be a mapping such that

(i) for each (x, y) ∈ E with x 
= y, we have

H(Tx, Ty) ≤ ζ

(
max

{
d(x, y),

d(x, Tx) + d(y, Ty)


,
d(x, Ty) + d(x, Ty)



})
,

where ζ is a K -comparison function with supt>
ζ (t)

t < ;
(ii) if s ∈ Tx and t ∈ Ty are such that d(s, t) < d(x, y), then we have (s, t) ∈ E, whenever

(x, y) ∈ E with x 
= y.
Further, assume that there exist x ∈ X and x ∈ Tx such that (x, x) ∈ E. Then T has a
fixed point.

Corollary . Let (X, p) be a complete partial metric space endowed with a graph G and
Property (A). Let T : X → CBp(X) be a mapping such that

(i) for each (x, y) ∈ E with x 
= y, we have

Hp(Tx, Ty) ≤ ζ

(
max

{
p(x, y),

p(x, Tx) + p(y, Ty)


,
p(x, Ty) + p(x, Ty)



})
,

where ζ is comparison function with supt>
ζ (t)

t < ;
(ii) if s ∈ Tx and t ∈ Ty are such that p(s, t) < p(x, y), then we have (s, t) ∈ E, whenever

(x, y) ∈ E with x 
= y.
Further, assume that there exist x ∈ X and x ∈ Tx such that (x, x) ∈ E. Then T has a
fixed point.

Corollary . Let (X, p) be a complete partial metric space endowed with a graph G and
Property (A). Let T : X → CBp(X) be a mapping such that

(i) for each (x, y) ∈ E with x 
= y, we have

Hp(Tx, Ty) ≤ ζ

(
max

{
p(x, y),

p(x, Tx) + p(y, Ty)


,
p(x, Ty) + p(x, Ty)



})
,

where ζ is a (c)-comparison function with supt>
ζ (t)

t < ;
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(ii) if s ∈ Tx and t ∈ Ty are such that p(s, t) < p(x, y), then we have (s, t) ∈ E, whenever
(x, y) ∈ E with x 
= y.

Further, assume that there exist x ∈ X and x ∈ Tx such that (x, x) ∈ E. Then T has a
fixed point.

Corollary . Let (X, p) be a complete partial metric space endowed with a graph G and
Property (A). Let T : X → CBp(X) be a mapping such that

(i) for each (x, y) ∈ E with x 
= y, we have

Hp(Tx, Ty) ≤ a max

{
p(x, y),

p(x, Tx) + p(y, Ty)


,
p(x, Ty) + p(x, Ty)



}
,

where a ∈ [, );
(ii) if s ∈ Tx and t ∈ Ty are such that p(s, t) < p(x, y), then we have (s, t) ∈ E, whenever

(x, y) ∈ E with x 
= y.
Further, assume that there exist x ∈ X and x ∈ Tx such that (x, x) ∈ E. Then T has a
fixed point.
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