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di�erent problems and study the problemof �nding the equilibriumproblem coupledwith
�xed point problem. In this direction, Combettes andHirstoaga [�] introduced an iterative
scheme for �nding the best approximation to the initial data of the equilibrium problem
and proved a strong convergence result. See also [	��	] and the references therein for
more details. It is our purpose in this paper that we introduce an iterative algorithm for
�nding a common element of the set of �xed points of a nonexpansive mapping, the set
of solutions of an equilibrium problem, and the solution set of the variational inequality
problem. We show the proposed algorithm has strong convergence.
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and let C be a

closed convex subset of H . A mapping A of C into H is called monotone if

〈Au � Av,u � v〉 ≥ 
, ∀u, v ∈ C.

A : C → H is called α-inverse-strongly-monotone if there exists a positive real number α

such that

〈Au � Av,u � v〉 ≥ α‖Au � Av‖�, ∀u, v ∈ C

(see Browder and Petryshyn [��]; Liu and Nashed [��]). It is obvious that any α-inverse-
strongly monotone mapping A is monotone and �

α
-Lipschitz continuous. A mapping S :

C → H is said to be nonexpansive if

‖Sx � Sy‖ ≤ ‖x � y‖, ∀x, y ∈ C.

We denote by Fix(S) the set of �xed points of S.
Recall that the classical variational inequality, denoted by VI(A,C), is to �nd x∗ ∈ C such

that

〈
Ax∗, v � x∗〉 ≥ 
 for all v ∈ C.

The variational inequalities have been widely studied in the literature; see, e.g., [�
���]
and the references therein.
For �nding an element of Fix(S) ∩ VI(A,C) under the assumption that a mapping A

of C into H is α-inverse-strongly-monotone, Takahashi and Toyoda [�	] introduced the
following iterative scheme:

xn+� = αnxn + (� � αn)SPC(xn � λnAxn)

for every n = 
, �, �, . . . , where PC is the metric projection of H onto C, x
 = x ∈ C, {αn} is
a sequence in (
, �), and {λn} is a sequence in (
, �α). On the other hand, for solving the
variational inequality problem in the �nite-dimensional Euclidean space Rn, Korpelevich
[��] introduced the following so-called extragradient method:

⎧
⎪⎨

⎪⎩

x
 = x ∈ C,
yn = PC(xn � λAxn),
xn+� = PC(xn � λAyn)
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for every n = 
, �, �, . . . , where λ ∈ (
, �/k). Recently, Nadezhkina and Takahashi [	] in-
troduced another extragradient method for �nding a common element of the set of �xed
points of a nonexpansive mapping and the set of solutions of a variational inequality prob-
lem. They obtained the following result.

Theorem . ([	]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
A : C → H be a monotone, k-Lipschitz continuous mapping, and let S : C → C be a nonex-
pansive mapping such that Fix(S)∩ VI(A,C) �= ∅. Let the sequences {xn}, {yn} be generated
by

⎧
⎪⎨

⎪⎩

x
 = x ∈ H ,
yn = PC(xn � λnAxn),
xn+� = αnxn + (� � αn)SPC(xn � λnAyn), ∀n ≥ 
,

(�.�)

where {λn} ⊂ [a,b] for some a,b ∈ (
, �/k) and {αn} ⊂ [c,d] for some c,d ∈ (
, �). Then the
sequences {xn}, {yn} generated by (�.�) converge weakly to the same point PFix(S)∩VI(A,C)(x
).

The iterative scheme (�.�) in Theorem �.� has only weak convergence. In order to obtain
strong convergence theorem, very recently, Zeng and Yao [��] further introduced a new
extragradient method for �nding a common element of the set of �xed points of a nonex-
pansive mapping and the set of solutions of a variational inequality problem. They proved
the following interesting result.

Theorem . ([��]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
A : C → H be a monotone, k-Lipschitz continuous mapping, and let S : C → C be a nonex-
pansive mapping such that Fix(S)∩ VI(A,C) �= ∅. Let the sequences {xn}, {yn} be generated
by

⎧
⎪⎨

⎪⎩

x
 = x ∈ H ,
yn = PC(xn � λnAxn),
xn+� = αnx
 + (� � αn)SPC(xn � λnAyn), ∀n ≥ 
,

(�.�)

where {λn} and {αn} satisfy the conditions:
(a) {λnk} ⊂ (
, � � δ) for some δ ∈ (
, �);
(b) {αn} ⊂ (
, �),

∑∞
n=
 αn = ∞, limn→∞ αn = 
.

Then the sequences {xn} and {yn} converge strongly to the same point PFix(S)∩VI(A,C)(x
) pro-
vided

lim
n→∞‖xn+� � xn‖ = 
.

Nowwe concern ourselves with the following equilibrium problem: Find x ∈ C such that

EP : F(x, y)≥ 
 for all y ∈ C, (�.�)

where F is an equilibriumbifunction ofC×C intoR. The set of solutions of (�.�) is denoted
by EP(F). Given a mapping T : C → H , let F(x, y) = 〈Tx, y � x〉 for all x, y ∈ C. Then z ∈
EP(F) if and only if 〈Tz, y � z〉 ≥ 
 for all y ∈ C.
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For solving equilibrium problem (�.�), Takahashi and Takahashi [
] introduced an it-
erative scheme by the viscosity approximation method for �nding a common element of
the set of solutions of an equilibrium problem and the set of �xed points of a nonexpan-
sive mapping in a Hilbert space. Let S : C → H be a nonexpansive mapping. Starting with
arbitrary initial x� ∈ H , de�ne sequences {xn} and {un} recursively by

{
F(un, y) + �

rn
〈y � un,un � xn〉 ≥ 
, ∀y ∈ C,

xn+� = αnf (xn) + (� � αn)Sun, ∀n ≥ 
.
(�.�)

They proved that the sequences {xn} and {un} converge strongly to z ∈ Fix(S)∩EP(F) with
the following restrictions on the algorithm parameters {αn} and {rn}:

(i) limn→∞ αn = 
 and
∑∞

n=
 αn = ∞;
(ii) lim infn→∞ rn > 
;

(iii) (A):
∑∞

n=
 |αn+� � αn| <∞; and (R):
∑∞

n=
 |rn+� � rn| < ∞.
Motivated and inspired by the work of Zeng and Yao [��], Takahashi and Takahashi [
],

in this paper, we �rst introduce an iterative algorithm for �nding a common element of the
set of �xed points of a nonexpansive mapping, the set of solutions of an equilibrium prob-
lem, and the solution set of the variational inequality problem for a monotone mapping
in a real Hilbert space. Furthermore, we prove that the proposed iterative algorithm con-
verges strongly to a common element of the above three sets under somemild conditions.
Our result includes the result of Zeng and Yao [��] as a special case.

2 Preliminaries
Let C be a nonempty closed convex subset of a real Hilbert space H . It is well known that,
for any u ∈ H , there exists a unique y
 ∈ C such that

‖u � y
‖ = inf
{‖u � y‖ : y ∈ C

}
.

We denote y
 by PCu, where PC is called the metric projection of H onto C. The metric
projection PC of H onto C is characterized by the following properties:

(i) ‖PCx � PCy‖ ≤ ‖x � y‖ for all x, y ∈ H ,
(ii) 〈x � y,PCx � PCy〉 ≥ ‖PCx � PCy‖� for every x, y ∈ H ,

(iii) 〈x � PCx, y � PCx〉 ≤ 
 for all x ∈ H , y ∈ C,
(iv) ‖x � y‖� ≥ ‖x � PCx‖� + ‖y � PCx‖� for all x ∈ H , y ∈ C.
Let A be a monotone mapping of C into H . In the context of the variational inequality

problem, it is easy to see from (iv) that

u ∈ VI(A,C) ⇔ u = PC(u � λAu), ∀λ > 
.

A set-valuedmappingB : H → �H is calledmonotone if, for all x, y ∈ H , f ∈ Bx and g ∈ By
imply 〈x � y, f � g〉 ≥ 
. A monotone mapping B : H → �H is maximal if its graph G(B) is
not properly contained in the graph of any other monotonemapping. It is well known that
a monotone mapping B is maximal if and only if, for (x, f ) ∈ H × H , 〈x � y, f � g〉 ≥ 
 for
every (y, g) ∈ G(B) implies f ∈ Bx. Let A be a monotone mapping of C into H , and let NCv
be the normal cone to C at v ∈ C; i.e.,

NCv =
{

w ∈ H : 〈v � u,w〉 ≥ 
,∀u ∈ C
}
.
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De�ne

Bv =

{
Av + NCv, if v ∈ C,
∅, if v /∈ C.

Then B is maximal monotone and 
 ∈ Bv if and only if v ∈ VI(A,C).
In this paper, for solving the equilibrium problems for a bifunction F : C × C → R, we

assume that F satis�es the following conditions:
(H) F(x,x) = 
 for all x ∈ C;
(H) F is monotone, i.e., F(x, y) + F(y,x) ≤ 
 for all x, y ∈ C;
(H) for each x, y, z ∈ C, limt↓
 F(tz + (� � t)x, y)≤ F(x, y);
(H) for each x ∈ C, y �→ F(x, y) is convex and lower semi-continuous.
In the sequel, we shall need the following lemmas for proving our main result.

Lemma . ([�]) Let C be a nonempty closed convex subset of H , and let F be a bifunction
of C ×C into R satisfying conditions (H�)-(H�). Let r > 
 and x ∈ C. Then there exists y ∈ C
such that

F(y, z) +
�
r
〈z � y, y � x〉 ≥ 
 for all z ∈ C.

Lemma . ([�]) Assume that F satisfies the same assumptions as in Lemma �.�. For r > 

and x ∈ C, define a mapping Tr : H → C as follows:

Tr(x) =
{

y ∈ C : F(y, z) +
�
r
〈z � y, y � x〉 ≥ 
,∀z ∈ C

}

for all y ∈ H . Then the following hold:
() Tr is single-valued;
() Tr is firmly nonexpansive, i.e., for any x, y ∈ H ,

‖Trx � Try‖� ≤ 〈Trx � Try,x � y〉;

() Fix(Tr) = EP(F);
() EP(F) is closed and convex.

Lemma . ([��]) Assume {an} is a sequence of nonnegative real numbers such that

an+� ≤ (� � γn)an + δn,

where {γn} is a sequence in (
, �) and {δn} is a sequence such that
()

∑∞
n=� γn = ∞;

() lim supn→∞ δn/γn ≤ 
 or
∑∞

n=� |δn| < ∞.
Then limn→∞ an = 
.

3 Main results
In this section, we �rst introduce the following iterative algorithm.
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Algorithm . Let C be a nonempty closed convex subset of a real Hilbert space H . Let F
be a bifunction fromC ×C → R. Let A : C → H be a nonlinearmapping, and let S : C → C
a mapping. For �xed u ∈ C and given x
 ∈ C arbitrarily, suppose the sequences {xn}, {yn},
and {un} are generated iteratively by

⎧
⎪⎨

⎪⎩

F(un, y) + �
rn

〈y � un,un � xn〉 ≥ 
, ∀y ∈ C,
yn = PC(un � λnAun),
xn+� = αnu + βnxn + (� � αn � βn)SPC(un � λnAyn),

(�.�)

where {αn} and {βn} are two sequences in (
, �) and {λn} and {rn} are two sequence in
(
,∞).

Next we prove the strong convergence of Algorithm �.�.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let F be
a bifunction from C × C → R satisfying (H�)-(H�). Let A be a monotone and k-Lipschitz
continuous mapping of C into H , and let S be a nonexpansive mapping of C into itself such
that Fix(S)∩ VI(A,C)∩ EP(F) �= ∅. Assume that:

(a) {λnk} ⊂ (
, � � δ) for some δ ∈ (
, �);
(b) limn→∞ αn = 
 and

∑∞
n=
 αn = ∞;

(c) lim supn→∞ βn < �.
Then the sequences {xn}, {yn}, and {un} generated by (�.�) converge strongly to
PFix(S)∩VI(A,C)∩EP(F)(u) if and only if limn→∞ ‖xn+� � xn‖ = 
.

Proof The necessity is obvious. Next we prove the su�ciency.
Let x∗ ∈ Fix(S) ∩ VI(A,C) ∩ EP(F), and let {Trn} be a sequence of mappings de�ned as

in Lemma �.�. Then we have x∗ = PC(x∗ � λnAx∗) = Trn x∗.
Set zn = PC(un � λnAyn) for all n ≥ 
. From the property (iv) of PC , we have

∥∥zn � x∗∥∥� ≤ ∥∥un � λnAyn � x∗∥∥� � ‖un � λnAyn � zn‖�

=
∥∥un � x∗∥∥� � �λn

〈
Ayn,un � x∗〉 + λ�

n‖Ayn‖�

� ‖un � zn‖� + �λn〈Ayn,un � zn〉 � λ�
n‖Ayn‖�

=
∥∥un � x∗∥∥� � ‖un � zn‖� + �λn

〈
Ayn,x∗ � zn

〉

=
∥∥un � x∗∥∥� � ‖un � zn‖� + �λn

〈
Ayn � Ax∗,x∗ � yn

〉

+ �λn
〈
Ax∗,x∗ � yn

〉
+ �λn〈Ayn, yn � zn〉. (�.�)

Using the fact thatA ismonotonic and x∗ is a solution of the variational inequality problem
VI(A,C), we have

〈
Ayn � Ax∗,x∗ � yn

〉 ≤ 
 and
〈
Ax∗,x∗ � yn

〉 ≤ 
. (�.�)

It follows from (�.�) and (�.�) that

∥∥zn � x∗∥∥� ≤ ∥∥un � x∗∥∥� � ‖un � zn‖� + �λn〈Ayn, yn � zn〉
=

∥∥un � x∗∥∥� � ‖un � yn‖� � �〈un � yn, yn � zn〉
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� ‖yn � zn‖� + �λn〈Ayn, yn � zn〉
=

∥∥un � x∗∥∥� � ‖un � yn‖� + �〈un � λnAyn � yn, zn � yn〉
� ‖yn � zn‖�. (�.�)

By using the property (iii) of PC , we have 〈un � λnAun � yn, zn � yn〉 ≤ 
. Therefore, we get

〈un � λnAyn � yn, zn � yn〉 = 〈un � λnAun � yn, zn � yn〉
+ λn〈Aun � Ayn, zn � yn〉

≤ λn〈Aun � Ayn, zn � yn〉
≤ λn‖Aun � Ayn‖‖zn � yn‖
≤ λnk‖un � yn‖‖zn � yn‖. (�.�)

Combining (�.�) and (�.�), we obtain

∥∥zn � x∗∥∥� ≤ ∥∥un � x∗∥∥� � ‖un � yn‖� � ‖yn � zn‖�

+ �λnk‖un � yn‖‖zn � yn‖
≤ ∥∥un � x∗∥∥� � ‖un � yn‖� � ‖yn � zn‖�

+ λ�
nk�‖un � yn‖� + ‖zn � yn‖�

=
∥∥un � x∗∥∥� +

(
λ�

nk� � �
)‖un � yn‖�

≤ ∥∥un � x∗∥∥�

=
∥∥Trn xn � Trn x∗∥∥�

≤ ∥∥xn � x∗∥∥�. (�.	)

From (�.�), we deduce that

∥∥xn+� � x∗∥∥ =
∥∥αn

(
u � x∗) + βn

(
xn � x∗) + (� � αn � βn)

(
Szn � x∗)∥∥

≤ αn
∥∥u � x∗∥∥ + βn

∥∥xn � x∗∥∥ + (� � αn � βn)
∥∥zn � x∗∥∥

≤ αn
∥∥u � x∗∥∥ + (� � αn)

∥∥xn � x∗∥∥. (�.�)

It follows from (�.�) and induction that

‖xn � p‖ ≤ max
{∥∥u � x∗∥∥,

∥∥x
 � x∗∥∥}
, n ≥ 
.

Hence {xn} is bounded. It is clear that {yn}, {un}, and {zn} are all bounded.
Next, we show ‖yn � Syn‖ → 
. From xn+� = αnu + βnxn + (� � αn � βn)Szn, we have

‖xn � Szn‖ ≤ ‖xn � xn+�‖ + ‖xn+� � Szn‖
≤ ‖xn � xn+�‖ + αn‖u � Szn‖

+ βn‖xn � Szn‖,
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that is,

‖xn � Szn‖ ≤ �
� � βn

‖xn � xn+�‖ + αn

� � βn
‖u � Szn‖.

This together with ‖xn+� � xn‖ → 
 and αn → 
 implies that

lim
n→∞‖xn � Szn‖ = 
. (�.�)

Since Trn is �rmly nonexpansive, we have

∥∥un � x∗∥∥� =
∥∥Trn xn � Trn x∗∥∥�

≤ 〈
Trn xn � Trn x∗,xn � x∗〉

=
〈
un � x∗,xn � x∗〉

=
�
�
(∥∥un � x∗∥∥� +

∥∥xn � x∗∥∥� � ‖xn � un‖�
)

and hence

∥∥un � x∗∥∥� ≤ ∥∥xn � x∗∥∥� � ‖xn � un‖�. (�.
)

By (�.�), we have

∥∥xn+� � x∗∥∥� =
∥∥αn

(
u � x∗) + βn

(
xn � x∗) + (� � αn � βn)

(
Szn � x∗)∥∥�

≤ αn
∥∥u � x∗∥∥� + βn

∥∥xn � x∗∥∥� + (� � αn � βn)
∥∥Szn � x∗∥∥�

≤ αn
∥∥u � x∗∥∥� + βn

∥∥xn � x∗∥∥� + (� � αn � βn)
∥∥zn � x∗∥∥�. (�.�
)

From (�.	) and (�.�
), we have

∥∥xn+� � x∗∥∥� ≤ αn
∥∥u � x∗∥∥� + βn

∥∥xn � x∗∥∥� + (� � αn � βn)
[∥∥un � x∗∥∥�

+
(
λ�

nk� � �
)‖un � yn‖�

]

≤ αn
∥∥u � x∗∥∥� + βn

∥∥xn � x∗∥∥� + (� � αn � βn)
[∥∥xn � x∗∥∥�

+
(
λ�

nk� � �
)‖un � yn‖�

]

≤ αn
∥∥u � x∗∥∥� +

∥∥xn � x∗∥∥� + (� � αn � βn)

× (
λ�

nk� � �
)‖un � yn‖�.

Then we derive

(� � αn � βn)
(
� � λ�

nk�)‖un � yn‖�

≤ ∥∥xn � x∗∥∥� � ‖xn+� � p‖� + αn
∥∥u � x∗∥∥�

≤ (∥∥xn � x∗∥∥ +
∥∥xn+� � x∗∥∥) × ‖xn+� � xn‖ + αn

∥∥u � x∗∥∥�. (�.��)
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It is clear that lim infn→∞(� � αn � βn)(� � λ�
nk�) > 
. So, from (�.��), we have

lim
n→∞‖un � yn‖ = 
. (�.��)

From (�.	), (�.
), and (�.�
), we have

∥∥xn+� � x∗∥∥� ≤ αn
∥∥u � x∗∥∥� + βn

∥∥xn � x∗∥∥� + (� � αn � βn)
∥∥zn � x∗∥∥�

≤ αn
∥∥u � x∗∥∥� + βn

∥∥xn � x∗∥∥� + (� � αn � βn)
∥∥un � x∗∥∥�

≤ αn
∥∥u � x∗∥∥� + βn

∥∥xn � x∗∥∥� + (� � αn � βn)

× [∥∥xn � x∗∥∥� � ‖xn � un‖�
]

≤ αn
∥∥u � x∗∥∥� +

∥∥xn � x∗∥∥� � (� � αn � βn)‖xn � un‖�,

that is,

(� � αn � βn)‖xn � un‖� ≤ αn
∥∥u � x∗∥∥� +

∥∥xn � x∗∥∥� �
∥∥xn+� � x∗∥∥�

≤ αn
∥∥u � x∗∥∥� +

(∥∥xn � x∗∥∥ +
∥∥xn+� � x∗∥∥)

× ‖xn+� � xn‖,

which implies that

lim
n→∞‖xn � un‖ = 
. (�.��)

We have

‖Syn � yn‖ ≤ ‖Syn � Szn‖ + ‖Szn � xn‖ + ‖xn � un‖ + ‖un � yn‖
≤ ‖yn � zn‖ + ‖Szn � xn‖ + ‖xn � un‖ + ‖un � yn‖
=

∥∥PC(un � λnAun) � PC(un � λnAyn)
∥∥ + ‖Szn � xn‖

+ ‖xn � un‖ + ‖un � yn‖
≤ λn‖Aun � Ayn‖ + ‖Szn � xn‖ + ‖xn � un‖ + ‖un � yn‖
≤ (λnk + �)‖un � yn‖ + ‖Szn � xn‖ + ‖xn � un‖.

This together with (�.�), (�.��), and (�.��) implies that

lim
n→∞‖Syn � yn‖ = 
.

Next we prove

lim sup
n→∞

〈u � z
,xn � z
〉 ≤ 
,

where z
 = PFix(S)∩VI(A,C)∩EP(F)(u). First, we show that

lim sup
n→∞

〈u � z
,Syn � z
〉 ≤ 
.
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To show this inequality, we can choose a subsequence {ynj} of {yn} such that

lim
j→∞

〈
u � x∗,Synj � x∗〉 = lim sup

n→∞

〈
u � x∗,Syn � x∗〉.

Since {ynj} is bounded, there exists a subsequence {ynji} of {ynj} which converges weakly
to w. Without loss of generality, we can assume that ynj → w weakly. From ‖Syn � yn‖ → 
,
we obtain Synj → w weakly.
First we show w ∈ EP(F). By un = Trn xn, we have

F(un, y) +
�
rn

〈y � un,un � xn〉 ≥ 
, ∀y ∈ C.

From the monotonicity of F , we have

�
rn

〈y � un,un � xn〉 ≥ �F(un, y) ≥ F(y,un)

and hence
〈
y � unj ,

unj � xnj

rnj

〉
≥ F(y,unj ).

Since
unj�xnj

rnj
→ 
 and unj → w weakly, from the lower semi-continuity of F(x, y) on the

second variable y, we have

F(y,w) ≤ 


for all y ∈ C. For t with 
 < t ≤ � and y ∈ C, let yt = ty+ (� � t)w. Since y ∈ C and w ∈ C, we
have yt ∈ C and hence F(yt ,w) ≤ 
. So, from the convexity of the equilibrium bifunction
F(x, y) on the second variable y, we have


 = F(yt , yt)

≤ tF(yt , y) + (� � t)F(yt ,w)

≤ tF(yt , y)

and hence F(yt , y) ≥ 
. Then we have

F(w, y) ≥ 


for all y ∈ C and hence w ∈ EP(F).
Second, we show that w ∈ VI(A,C). Set

Bv =

{
Av + NCv, if v ∈ C,
∅, if v /∈ C.

Then B is maximal monotone. Let (v,u) ∈ G(B). Since u � Av ∈ NCv and yn ∈ C, we have

〈v � yn,u � Av〉 ≥ 
.
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On the other hand, from yn = PC(un � λnAun), we have

〈
v � yn, yn � (un � λnAun)

〉 ≥ 


and hence

〈
v � yn,

yn � un

λn
+ Aun

〉
≥ 
.

It follows that

〈v � yni ,u〉 ≥ 〈v � yni ,Av〉

�
〈
v � yni ,

yni � uni

λni

+ Auni

〉

=
〈
v � yni ,Av �

yni � uni

λni

� Auni

〉

= 〈v � yni ,Av � Ayni〉 + 〈v � yni ,Ayni � Auni〉

�
〈
v � yni ,

yni � uni

λni

〉

≥ 〈v � yni ,Ayni � Auni〉 �
〈
v � yni ,

yni � uni

λni

〉
,

which implies that 〈v � w,u〉 ≥ 
. We have w ∈ B��(
) and hence w ∈ VI(A,C).
Thirdly, we prove that w ∈ Fix(S). Assume that w /∈ Fix(S). Since ynj ⇀ w and w �= Sw, by

Opial�s condition we have

lim inf
j→∞ ‖ynj � w‖ < lim inf

j→∞ ‖ynj � Sw‖

≤ lim inf
j→∞

(‖ynj � Synj‖ + ‖Synj � Sw‖)

≤ lim inf
j→∞ ‖ynj � w‖,

which is a contradiction. Then we get w ∈ Fix(S). Hence, we deduce that w ∈ Fix(S) ∩
VI(A,C)∩ EP(F). Therefore, from the property (iii) of PC , we have

lim sup
n→∞

〈u � z
,xn � z
〉 = lim sup
n→∞

〈u � z
,Syn � z
〉

= lim
j→∞〈u � z
,Synj � z
〉

= 〈u � z
,w � z
〉 ≤ 
. (�.��)

Finally, we show xn → z
, where z
 = PFix(S)∩VI(A,C)∩EP(F)(u).
From (�.�), we have

‖xn+� � z
‖� =
∥∥αn(u � z
) + βn(xn � z
) + (� � αn � βn)(Szn � z
)

∥∥�

≤ ∥∥βn(xn � z
) + (� � αn � βn)(Szn � z
)
∥∥�
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+ �αn〈u � z
,xn+� � z
〉
≤ [

(� � αn � βn)‖Szn � z
‖ + βn‖xn � z
‖
]�

+ �αn〈u � z
,xn+� � z
〉
≤ (� � αn)�‖xn � z
‖ + �αn〈u � z
,xn+� � z
〉
≤ (� � αn)‖xn � z
‖ + �αn〈u � z
,xn+� � z
〉. (�.��)

Hence, by Lemma �.�, (�.��), and (�.��), we conclude that the sequence xn converges
strongly to z
. Since ‖yn � xn‖ → 
 and ‖un � xn‖, we have yn → z
 and un → z
. This
completes the proof. �

4 Applications
Taking βn ≡ 
 for all n ≥ 
 in (�.�), we immediately obtain the following result.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let F be
a bifunction from C × C → R satisfying (H�)-(H�). Let A be a monotone and k-Lipschitz
continuous mapping of C into H , and let S be a nonexpansive mapping of C into itself such
that Fix(S) ∩ VI(A,C) ∩ EP(F) �= ∅. Let {αn} be a sequence in (
, �), and let {λn} and {rn}
be two sequences in (
,∞). For fixed u ∈ C and given x
 ∈ C arbitrarily, let the sequences
{xn}, {yn}, and {un} be generated iteratively by

⎧
⎪⎨

⎪⎩

F(un, y) + �
rn

〈y � un,un � xn〉 ≥ 
, ∀y ∈ C,
yn = PC(un � λnAun),
xn+� = αnu + (� � αn � βn)SPC(un � λnAyn).

(�.�)

Suppose the following conditions are satisfied:
(a) {λnk} ⊂ (
, � � δ) for some δ ∈ (
, �);
(b) limn→∞ αn = 
 and

∑∞
n=
 αn = ∞.

Then the sequences {xn}, {yn}, and {un} generated by (�.�) converge strongly to
PFix(S)∩VI(A,C)∩EP(F)(u) if and only if limn→∞ ‖xn+� � xn‖ = 
.

In (�.�), we put F(x, y) = 
 for all x, y ∈ C and rn = � for all n ∈ N . Then we have un =
PCxn = xn. Then we obtain the following theorem.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let A be
a monotone and k-Lipschitz continuous mapping of C into H , and let S be a nonexpansive
mapping of C into itself such that Fix(S)∩ VI(A,C) �= ∅. Let {αn} and {βn} be two sequences
in (
, �), and let {λn} be a sequence in (
,∞). For fixed u ∈ C and given x
 ∈ C arbitrarily,
let the sequences {xn} and {yn} be generated iteratively by

{
yn = PC(xn � λnAxn),
xn+� = αnu + βnxn + (� � αn � βn)SPC(xn � λnAyn).

(�.�)

Suppose the following conditions are satisfied:
(a) {λnk} ⊂ (
, � � δ) for some δ ∈ (
, �);
(b) limn→∞ αn = 
 and

∑∞
n=
 αn = ∞;

(c) lim supn→∞ βn < �.
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Then the sequences {xn} and {yn} generated by (�.�) converge strongly to PFix(S)∩VI(A,C)(u) if
and only if limn→∞ ‖xn+� � xn‖ = 
.

In (�.�), we put βn ≡ 
 for all n ≥ 
. Then we obtain the following result.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let A be
a monotone and k-Lipschitz continuous mapping of C into H , and let S be a nonexpansive
mapping of C into itself such that Fix(S) ∩ VI(A,C) �= ∅. Let {αn} be a sequence in (
, �),
and let {λn} be a sequence in (
,∞). For fixed u ∈ C and given x
 ∈ C arbitrarily, let the
sequences {xn} and {yn} be generated iteratively by

{
yn = PC(xn � λnAxn),
xn+� = αnu + (� � αn � βn)SPC(xn � λnAyn).

(�.�)

Suppose the following conditions are satisfied:
(a) {λnk} ⊂ (
, � � δ) for some δ ∈ (
, �);
(b) limn→∞ αn = 
 and

∑∞
n=
 αn = ∞.

Then the sequences {xn} and {yn} generated by (�.�) converge strongly to PFix(S)∩VI(A,C)(u) if
and only if limn→∞ ‖xn+� � xn‖ = 
.

Remark . It is clear that Theorem �.� indicates the result in Zeng and Yao [��].

A mapping T : C → C is called strictly pseudocontractive if there exists k with 
 ≤ k < �
such that

‖Tx � Ty‖� ≤ ‖x � y‖� + k
∥∥(I � T)x � (I � T)y

∥∥�

for all x, y ∈ C. Put A = I � T , then we have

∥∥(I � A)x � (I � A)y
∥∥� ≤ ‖x � y‖� + k‖Ax � Ay‖�.

On the other hand,

∥∥(I � A)x � (I � A)y
∥∥� = ‖x � y‖� + ‖Ax � Ay‖� � �〈x � y,Ax � Ay〉.

Hence we have

〈x � y,Ax � Ay〉 ≥ � � k
�

‖Ax � Ay‖� ≥ 
.

This shows that if T is a strictly pseudocontractive mapping; then I � T is a monotone
and �

��k -Lipschitz continuous mapping. Note that Fix(T) = VI(I � T ,C). Hence it is easy
to obtain the following theorems.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let F be
a bifunction from C × C → R satisfying (H�)-(H�). Let T be a k-strictly pseudocontractive
mapping of C into H , and let S be a nonexpansive mapping of C into itself such that Fix(S)∩
Fix(T) ∩ EP(F) �= ∅. Let {αn} and {βn} be two sequences in (
, �), and let {λn} and {rn} be
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two sequences in (
,∞). For fixed u ∈ C and given x
 ∈ C arbitrarily, let the sequences {xn},
{yn}, and {un} be generated iteratively by

⎧
⎪⎨

⎪⎩

F(un, y) + �
rn

〈y � un,un � xn〉 ≥ 
, ∀y ∈ C,
yn = PC(un � λn(I � T)un),
xn+� = αnu + βnxn + (� � αn � βn)SPC(un � λn(I � T)yn).

(�.�)

Suppose the following conditions are satisfied:
(a) {λnk} ⊂ (
, � � δ) for some δ ∈ (
, �);
(b) limn→∞ αn = 
 and

∑∞
n=
 αn = ∞;

(c) lim supn→∞ βn < �.
Then the sequences {xn}, {yn}, and {un} generated by (�.�) converge strongly to
PFix(S)∩Fix(T)∩EP(F)(u) if and only if limn→∞ ‖xn+� � xn‖ = 
.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let T be
a k-strictly pseudocontractive mapping of C into H , and let S be a nonexpansive mapping of
C into itself such that Fix(S)∩ Fix(T) �= ∅. Let {αn} and {βn} be two sequences in (
, �), and
let {λn} and {rn} be two sequences in (
,∞). For fixed u ∈ C and given x
 ∈ C arbitrarily,
let the sequences {xn} and {yn} be generated iteratively by

{
yn = PC(xn � λn(I � T)xn),
xn+� = αnu + βnxn + (� � αn � βn)SPC(xn � λn(I � T)yn).

(�.�)

Suppose the following conditions are satisfied:
(a) {λnk} ⊂ (
, � � δ) for some δ ∈ (
, �);
(b) limn→∞ αn = 
 and

∑∞
n=
 αn = ∞;

(c) lim supn→∞ βn < �.
Then the sequences {xn} and {yn} generated by (�.�) converge strongly to PFix(S)∩Fix(T)(u) if
and only if limn→∞ ‖xn+� � xn‖ = 
.
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