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Abstract
Combining the implicit midpoint method and the splitting method, we present a
new iterative algorithm with errors to solve the problems of finding zeros of the sum
ofm-accretive operators andμ-inversely strongly accretive operators in a real
q-uniformly smooth and uniformly convex Banach space. We obtain some strong
convergence theorems, which demonstrate the relationship between the zero of the
sum ofm-accretive operator and μ-inversely strongly accretive operator and the
solution of one kind variational inequality. Moreover, the applications of the main
results on the nonlinear problems with Neumann boundaries and Signorini
boundaries are demonstrated.
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1 Introduction and preliminaries
Let E be a real Banach space with norm ‖ · ‖ and let E∗ denote the dual space of E. We use
‘→’ and ‘⇀’ to denote strong and weak convergence either in E or in E∗, respectively. We
denote the value of f ∈ E∗ at x ∈ E by 〈x, f 〉.

A Banach space E is said to be uniformly convex if , for each ε ∈ (, ], there exists δ > 
such that

‖x‖ = ‖y‖ = , ‖x – y‖ ≥ ε ⇒
∥
∥
∥
∥

x + y


∥
∥
∥
∥

≤  – δ.

A Banach space E is said to be smooth if

lim
t→

‖x + ty‖ – ‖x‖
t

exists for each x, y ∈ {z ∈ E : ‖z‖ = }.
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In addition, we define a function ρE : [, +∞) → [, +∞) called the modulus of smooth-
ness of E as follows:

ρE(t) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x, y ∈ E,‖x‖ = ,‖y‖ ≤ t

}

.

It is well known that E is uniformly smooth if and only if ρE(t)
t → , as t → . Let q >  be

a real number. A Banach space E is said to be q-uniformly smooth if there exists a positive
constant C such that ρE(t) ≤ Ctq. It is obvious that a q-uniformly smooth Banach space
must be uniformly smooth.

The generalized duality mapping Jq : E → E∗ is defined by

Jqx :=
{

f ∈ E∗ : 〈x, f 〉 = ‖x‖q,‖f ‖ = ‖x‖q–}, x ∈ E.

In particular, J ≡ J is called the normalized duality mapping and Jq(x) = ‖x‖q–J(x) for
x = . If E is reduced to the Hilbert space H , then Jq ≡ I is the identity mapping. It is well
known that J is single-valued and norm-to-norm uniformly continuous on each bounded
subset of E if E is a real smooth and uniformly convex Banach space, see []. Moreover,
J(cx) = cJx for all x ∈ E and c ∈ R. In what follows, we still denote by J the single-valued
normalized duality mapping. The normalized duality mapping J is said to be weakly se-
quentially continuous if {xn} is a sequence in E which converges weakly to x; it follows that
{Jxn} converges in weak∗ to Jx. J is said to be weakly sequentially continuous at zero if {xn}
is a sequence in E which converges weakly to ; it follows that {Jxn} converges in weak∗

to .
For a mapping T : E → E, we use Fix(T) to denote the fixed point set of it; that is,

Fix(T) := {x ∈ E : Tx = x}.
For an operator A : D(A) ⊂ E → E , we use A– to denote the set of zeros of it; that is,

A– := {x ∈ D(A) : Ax = }.
Let T : E → E be a mapping. Then T is said to be
() nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖ for ∀x, y ∈ E;

() k-Lipschitz if there exists k >  such that

‖Tx – Ty‖ ≤ k‖x – y‖ for ∀x, y ∈ E;

in particular, if  < k < , then T is called a contraction and if k = , then T reduces
to a nonexpansive mapping;

() accretive if for all x, y ∈ E, there exists jq(x – y) ∈ Jq(x – y) such that

〈

Tx – Ty, jq(x – y)
〉 ≥ ;

() μ-inversely strongly accretive if for all x, y ∈ E, there exists jq(x – y) ∈ Jq(x – y) such
that

〈

Tx – Ty, jq(x – y)
〉 ≥ μ‖Tx – Ty‖q

for some μ > ;
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() m-accretive if T is accretive and R(I + λT) = E for ∀λ > ;
() strongly positive (see []) if E is a real smooth Banach space and there exists γ > 

such that

〈Tx, Jx〉 ≥ γ ‖x‖ for ∀x ∈ E;

in this case,

‖aI – bT‖ = sup
‖x‖≤

∣
∣
〈

(aI – bT)x, J(x)
〉∣
∣,

where I is the identity mapping and a ∈ [, ], b ∈ [–, ].
We denote by JA

r (for r > ) the resolvent of the accretive operator A; that is, JA
r := (I +

rA)–. It is well known that JA
r is nonexpansive and Fix(JA

r ) = A–.
Many practical problems can be reduced to finding zeros of the sum of two accretive op-

erators; that is,  ∈ (A + B)x. Forward-backward splitting algorithms, which have recently
received much attention from many mathematicians, were proposed by Lions and Mercier
[], by Passty [], and, in a dual form for convex programming, by Han and Lou [].

The classical forward-backward splitting algorithm is given in the following way:

xn+ = (I + rnB)–(I – rnA)xn, n ≥ . ()

Based on iterative algorithm (), much work has been done for finding x ∈ H such that
x ∈ (A + B)–, where A and B are μ-inversely strongly accretive operator and m-accretive
operator defined in the Hilbert space H , respectively. However, most of the existing work
is undertaken in the frame of Hilbert spaces, see [–], etc.

Recently, Qin et al., presented the following iterative algorithm in the frame of q-uni-
formly smooth Banach spaces E in []:

x ∈ E, xn+ = αnf (xn) + βn(I + rnB)–[(I – rnA)xn + en
]

+ γnfn, n ≥ , ()

where {en} is the error sequence, f is a contraction, A and B are μ-inversely strongly ac-
cretive operator and m-accretive operator, respectively. If (A + B)– = ∅, they proved that
{xn} converges strongly to x = Proj(A+B)– f (x), where Proj(A+B)– is the unique sunny non-
expansive retraction of E onto (A + B)–, under some conditions.

On the other hand, there is some excellent work done on approximating fixed points of
nonexpansive mappings. For example, in , Marino and Xu presented the following
iterative algorithm in the frame of Hilbert spaces in [], which sets up the relationship
between fixed point of a nonexpansive mapping and the solution of one kind variational
inequality

x ∈ C, xn+ = αnγ f (xn) + (I – αnA)Txn, n ≥ , ()

where f is a contraction, A is a strongly positive linear bounded operator, and T is nonex-
pansive. If Fix(T) = ∅, they proved that {xn} converges strongly to p ∈ Fix(T), which solves
the variational inequality 〈(γ f – A)p, z – p〉 ≤  for ∀z ∈ Fix(T) under some conditions.
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The implicit midpoint rule (IMR) is one of the powerful numerical methods for solv-
ing ordinary differential equations, which is extensively studied recently by Alghamdi et
al. They presented the following implicit midpoint rule for approximating fixed point of
nonexpansive mapping in a Hilbert space in []:

x ∈ H , xn+ = ( – αn)xn + αnT
(

xn + xn+



)

, n ≥ , ()

where T is nonexpansive from H to H . If Fix(T) = ∅, then {xn} converges weakly to p ∈
Fix(T), under some conditions.

Inspired by the work in [–], we shall present the following iterative algorithm with
errors in a real q-uniformly smooth and uniformly convex Banach space E:

⎧

⎪⎪⎨

⎪⎪⎩

x ∈ E,

yn = αnxn + ( – αn)JA
rn [ xn+yn

 – rnB( xn+yn
 )],

xn+ = γnηf (xn) + (I – γnT)yn + en, n ≥ ,

(A)

where {en} is the error sequence, A : E → E is an m-accretive operator and B : E → E is a
μ-inversely strongly accretive operator. T : E → E is a strongly positive linear bounded
operator with coefficient γ and f : E → E is a contraction with coefficient k ∈ (, ).
JA
rn = (I + rnA)–. More details of iterative algorithm (A) will be presented in Section .

Then {xn} is proved to converge strongly to p ∈ (A + B)–, which is also a solution of the
following variational inequality: ∀z ∈ (A + B)–, 〈(T – ηf )p, J(p – z)〉 ≤ . In Section ,
we shall present two examples, one of which is the generalized p-Laplacian problems with
Neumann boundaries and the other is Laplacian problems with Signorini boundaries, to
demonstrate the applications of the main results in Section .

Our main contributions are:
(i) the iterative algorithm is new in the sense that it combines the idea of iterative

algorithms ()-();
(ii) the discussion is undertaken in the frame of a real q-uniformly smooth and

uniformly convex Banach space, which is more general than that in a Hilbert space;
(iii) the assumption that ‘the normalized duality mapping J is weakly sequentially

continuous’ in most of the existing related work is weakened to ‘J is weakly
sequentially continuous at zero’;

(iv) a new path convergence theorem for nonexpansive mapping is proved, which
extends the corresponding result in [] from a Hilbert space to a real smooth and
uniformly convex Banach space;

(v) compared to the work done in [], strong convergence theorems are obtained
instead of weak convergence theorems;

(vi) compared to the work done in [], the connection between zeros of the sum of
m-accretive operators and μ-inversely strongly accretive operators and the
solution of one kind variational inequalities is being set up;

(vii) the applications of the main results on the nonlinear problems with Neumann
boundaries and Signorini boundaries are demonstrated, from which we can see the
connections among variational inequalities, nonlinear boundary value problems
and iterative algorithms.
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Next, we list some results we need in the sequel.

Lemma  (see []) Let E be a Banach space and f : E → E be a contraction. Then f has a
unique fixed point u ∈ E.

Lemma  (see []) Let E be a real uniformly convex Banach space, C be a nonempty,
closed, and convex subset of E and T : C → E be a nonexpansive mapping such that
Fix(T) = ∅, then I – T is demiclosed at zero.

Lemma  (see []) In a real Banach space E, the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 
〈

y, j(x + y)
〉

, ∀x, y ∈ E,

where j(x + y) ∈ J(x + y).

Lemma  (see []) Let {an} and {cn} be two sequences of nonnegative real numbers satis-
fying

an+ ≤ ( – tn)an + bn + cn, ∀n ≥ ,

where {tn} ⊂ (, ) and {bn} is a number sequence. Assume that
∑∞

n= tn = +∞,
lim supn→∞

bn
tn

≤ , and
∑∞

n= cn < +∞. Then limn→∞ an = .

Lemma  (see []) Let E be a Banach space and let A be an m-accretive operator. For
λ > , μ > , and x ∈ E, one has

JA
λ x = JA

μ

(
μ

λ
x +

(

 –
μ

λ

)

JA
λ x

)

,

where JA
λ = (I + λA)– and JA

μ = (I + μA)–.

Lemma  (see []) Let E be a real Banach space and let C be a nonempty, closed and
convex subset of E. Suppose A : C → E is a single-valued operator and B : E → E is
m-accretive. Then

Fix
(

(I + rB)–(I – rA)
)

= (A + B)– for ∀r > .

Lemma  (see []) Assume T is a strongly positive bounded operator with coefficient γ > 
on a real smooth Banach space E and  < ρ ≤ ‖T‖–. Then ‖I – ρT‖ ≤  – ργ .

2 Strong convergence theorems
Lemma  Let E be a real smooth and uniformly convex Banach space. Let f : E → E be a
fixed contractive mapping with coefficient k ∈ (, ), T : E → E be a strongly positive linear
bounded operator with coefficient γ and U : E → E be a nonexpansive mapping. Suppose
that the duality mapping J : E → E∗ is weakly sequentially continuous at zero,  < η < γ

k
and Fix(U) = ∅. If for each t ∈ (, ), define Tt : E → E by

Ttx := tηf (x) + (I – tT)Ux, ()
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then Tt has a fixed point xt for each  < t ≤ ‖T‖–, which is convergent strongly to the fixed
point of U , as t → . That is, limt→ xt = p ∈ Fix(U). Moreover, p satisfies the following
variational inequality: for ∀z ∈ Fix(U),

〈

(T – ηf )p, J(p – z)
〉 ≤ . ()

Proof Step . Tt is a contraction for  < t < ‖T‖–.
In fact, noticing Lemma , we have

‖Ttx – Tty‖ ≤ tη
∥
∥f (x) – f (y)

∥
∥ +

∥
∥(I – tT)(Ux – Uy)

∥
∥

≤ ktη‖x – y‖ + ( – tγ )‖x – y‖
=

[

 – t(γ – kη)
]‖x – y‖,

which implies that Tt is a contraction since  < η < γ

k .
Then Lemma  implies that Tt has a unique fixed point, denoted by xt , which uniquely

solves the fixed point equation xt = tηf (xt) + (I – tT)Uxt .
Step . {xt} is bounded for t ∈ (,‖T‖–).
For p ∈ Fix(U), then

‖xt – p‖ =
∥
∥(I – tT)(Uxt – p) + t

(

ηf (xt) – Tp
)∥
∥

≤ ( – tγ )‖xt – p‖ + t
∥
∥ηf (xt) – Tp

∥
∥

= ( – tγ )‖xt – p‖ + t
∥
∥η

(

f (xt) – f (p)
)

+
(

ηf (p) – Tp
)∥
∥

≤ ( – tγ )‖xt – p‖ + t
(

kη‖xt – p‖ +
∥
∥ηf (p) – Tp

∥
∥
)

=
[

 – t(γ – kη)
]‖xt – p‖ + t

∥
∥ηf (p) – Tp

∥
∥.

This ensures that

‖xt – p‖ ≤ ‖ηf (p) – Tp‖
γ – kη

.

Thus {xt} is bounded, which implies that both {f (xt)} and {TUxt} are bounded.
Step . xt – Uxt → , as t → .
Noticing the result of Step , we have ‖xt – Uxt‖ = t‖ηf (xt) – TUxt‖ → , as t → .
Step . 〈(T – ηf )x – (T – ηf )y, J(x – y)〉 ≥ (γ – kη)‖x – y‖ for ∀x, y ∈ E.
In fact,

〈

(T – ηf )x – (T – ηf )y, J(x – y)
〉

=
〈

Tx – Ty, J(x – y)
〉

– η
〈

f (x) – f (y), J(x – y)
〉

≥ γ ‖x – y‖ – kη‖x – y‖ = (γ – kη)‖x – y‖.

Step . If the variational inequality () has solutions, then the solution must be unique.
Suppose both u ∈ Fix(U) and v ∈ Fix(U) are the solutions of the variational inequality

(). Then we have

〈

(T – ηf )v, J(v – u)
〉 ≤  ()



Wei and Shi Journal of Inequalities and Applications  (2015) 2015:183 Page 7 of 17

and

〈

(T – ηf )u, J(u – v)
〉 ≤ . ()

Adding up () and (), we obtain that

〈

(T – ηf )u – (T – ηf )v, J(u – v)
〉 ≤ .

In view of the result of Step , we have u = v.
Step . xt → p ∈ Fix(U), as t → , which satisfies the variational inequality ().
For ∀z ∈ Fix(U), xt – z = t(ηf (xt) – Tz) + (I – tT)(Uxt – z). Thus Lemma  implies that

‖xt – z‖ ≤ ‖I – tT‖‖Uxt – Uz‖ + t
〈

ηf (xt) – Tz, J(xt – z)
〉

≤ ( – tγ )‖xt – z‖ + t
〈

ηf (xt) – Tz, J(xt – z)
〉

.

Then

‖xt – z‖ ≤ 
γ

〈

ηf (xt) – Tz, J(xt – z)
〉

=

γ

[

η
〈

f (xt) – f (z), J(xt – z)
〉

+
〈

ηf (z) – T(z), J(xt – z)
〉]

≤ 
γ

[

ηk‖xt – z‖ +
〈

ηf (z) – Tz, J(xt – z)
〉]

.

Therefore, for ∀z ∈ Fix(U), we have

‖xt – z‖ ≤ 
γ – kη

〈

ηf (z) – Tz, J(xt – z)
〉

. ()

Since {xt} is bounded as t → +, then we can choose {tn} ⊂ (, ) such that tn → + and
xtn ⇀ p. From Lemma  and the result of Step , we see that p = Up. Thus p ∈ Fix(U).
Substituting z by p in (), then we can deduce that xtn → p since J is weakly sequentially
continuous at zero. Next, we shall prove that p solves the variational inequality ().

Since xt = tηf (xt) + (I – tT)Uxt , then

(T – ηf )xt = –

t

(I – tT)(I – U)xt .

For ∀z ∈ Fix(U), since U is nonexpansive, then

〈

(T – ηf )xt , J(xt – z)
〉

= –

t
〈

(I – tT)(I – U)xt , J(xt – z)
〉

= –

t
〈

(I – U)xt – (I – U)z, J(xt – z)
〉

+
〈

T(I – U)xt , J(xt – z)
〉

= –

t
[‖xt – z‖ –

〈

Uxt – Uz, J(xt – z)
〉]

+
〈

T(I – U)xt , J(xt – z)
〉

≤ 〈

T(I – U)xt , J(xt – z)
〉

. ()
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Since xtn → p, then (I – U)xtn → (I – U)p = , as n → ∞. Since {xtn} is bounded,
(T – ηf )xtn → (T – ηf )p and J is uniformly continuous on each bounded subset of E,
then taking limits on both sides of () we have 〈(T – ηf )p, J(p – z)〉 ≤  for z ∈ Fix(U).
Thus p satisfies ().

In a summary, we infer that each cluster point of {xt} is equal to p, which is the unique
solution of the variational inequality ().

This completes the proof. �

Lemma  (see []) Let E be a real q-uniformly smooth Banach space with constant Kq.
Let A : E → E be a μ-inversely strongly accretive operator. Then for ∀r ≤ ( qμ

Kq
)


q– , (I – rA)

is nonexpansive.

Theorem  Let E be a real q-uniformly smooth Banach space with constant Kq and also
be a uniformly convex Banach space. Let f : E → E be a fixed contractive mapping with
coefficient k ∈ (, ), T : E → E be a strongly positive linear bounded operator with coef-
ficient γ . Suppose that the duality mapping J : E → E∗ is weakly sequentially continuous
at zero, and  < η < γ

k . Let A : E → E be an m-accretive operator and B : E → E be a
μ-inversely strongly accretive operator. Let {xn} be generated by the iterative algorithm (A).
Suppose {en} ⊂ E, {αn} and {γn} are two sequences in (, ) and {rn} ⊂ (, +∞) satisfying
the following conditions:

(i)
∑∞

n= γn = ∞, γn → , αn → , as n → ∞;
(ii)

∑∞
n= |αn+ – αn| < +∞,

∑∞
n= |γn+ – γn| < +∞;

(iii)
∑∞

n= |rn+ – rn| < +∞,  < ε ≤ rn ≤ ( qμ

Kq
)


q– for n ≥ ;

(iv)
∑∞

n= ‖en‖ < +∞.
If (A + B)– = ∅, then {xn} converges strongly to a point p ∈ (A + B)–, which is the

unique solution of the following variational inequality: for ∀z ∈ (A + B)–,

〈

(T – ηf )p, J(p – z)
〉 ≤ . ()

Proof Let un = (I – rnB)( xn+yn
 ) for n ≥ .

We shall split the proof into six steps.
Step . {yn} is well defined.
Define Wt : E → E by Wtx := tu + ( – t)W ( u+x

 ), where W : E → E is nonexpansive for
x, u ∈ E, then Wt is a contraction for  ≤ t < .

In fact,

‖Wtx – Wty‖ ≤ ( – t)
∥
∥
∥
∥

u + x


–
u + y



∥
∥
∥
∥

≤  – t


‖x – y‖,

which implies that Wt is a contraction. Thus there exists xt such that Wtxt = xt . That is,
xt = tu + ( – t)W ( u+x

 ) for  ≤ t < .
From Lemma  we know that JA

rn (I – rnB) is nonexpansive, therefore {yn} is well defined.
Step . {xn}, {un}, {yn} are all bounded.
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In view of Lemmas  and , we have, for ∀p ∈ (A + B)–,

‖yn – p‖ ≤ αn‖xn – p‖ + ( – αn)
∥
∥
∥
∥

xn + yn


– p

∥
∥
∥
∥

≤ αn‖xn – p‖ +
 – αn


‖xn – p‖ +

 – αn


‖yn – p‖, ()

which implies that ‖yn – p‖ ≤ ‖xn – p‖.
Using Lemma  and (), we have, for p ∈ (A + B)– and n ≥ ,

‖xn+ – p‖ ≤ γn
∥
∥ηf (xn) – Tp

∥
∥ +

∥
∥(I – γnT)(yn – p)

∥
∥ + ‖en‖

≤ γnηk‖xn – p‖ + γn
∥
∥ηf (p) – Tp

∥
∥ + ( – γnγ )‖yn – p‖ + ‖en‖

≤ [

 – γn(γ – kη)
]‖xn – p‖ + γn(γ – kη)

‖ηf (p) – Tp‖
γ – kη

+ ‖en‖

≤ max

{

‖xn – p‖,
‖ηf (p) – Tp‖

γ – kη

}

+ ‖en‖. ()

By using the inductive method, we can easily get the following result from ():

‖xn+ – p‖ ≤ max

{

‖x – p‖,
‖ηf (p) – Tp‖

γ – kη

}

+
n

∑

k=

‖ek‖,

which implies that {xn} is bounded. Then () implies that {yn} is bounded.
Since JA

rn and (I – rnB) are nonexpansive, f is a contraction and T is bounded, then {un},
{f (xn)}, {JA

rn un}, {B( xn+yn
 )} and {Tyn} are all bounded.

Set M = sup{‖un‖,‖JA
rn un‖,‖B( xn+yn

 )‖,‖xn‖,η‖f (xn)‖,‖Tyn‖ : n ≥ }.
Step . limn→∞ ‖xn+ – xn‖ = .
First, we shall discuss ‖JA

rn un – JA
rn– un–‖ for n ≥ .

If rn– ≤ rn, then by using Lemma , we have

∥
∥JA

rn un – JA
rn– un–

∥
∥

=
∥
∥
∥
∥

JA
rn–

(
rn–

rn
un +

(

 –
rn–

rn

)

JA
rn un

)

– JA
rn– un–

∥
∥
∥
∥

≤
∥
∥
∥
∥

rn–

rn
un +

(

 –
rn–

rn

)

JA
rn un – un–

∥
∥
∥
∥

≤ rn–

rn
‖un – un–‖ +

(

 –
rn–

rn

)
∥
∥JA

rn un – un–
∥
∥

≤ ‖un – un–‖ +
rn – rn–

ε

∥
∥JA

rn un – un–
∥
∥. ()

If rn ≤ rn–, then imitating the proof of (), we have

∥
∥JA

rn un – JA
rn– un–

∥
∥ ≤ ‖un – un–‖ +

rn– – rn

ε

∥
∥JA

rn un – un–
∥
∥. ()

Combining () and (), we have, for n ≥ ,

∥
∥JA

rn un – JA
rn– un–

∥
∥ ≤ ‖un – un–‖ +

|rn– – rn|
ε

∥
∥JA

rn un – un–
∥
∥. ()
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Note that

‖un – un–‖ ≤
∥
∥
∥
∥

(I – rnB)
(

xn + yn


–

xn– + yn–



)∥
∥
∥
∥

+ |rn– – rn|
∥
∥
∥
∥

B
(

xn– + yn–



)∥
∥
∥
∥

≤ ‖xn – xn–‖


+
‖yn – yn–‖


+ |rn– – rn|

∥
∥
∥
∥

B
(

xn– + yn–



)∥
∥
∥
∥

. ()

Using () and (), for n ≥ , we have

‖yn – yn–‖ ≤ αn‖xn – xn–‖ + |αn – αn–|‖xn–‖
+ ( – αn)

∥
∥JA

rn un – JA
rn– un–

∥
∥ + |αn – αn–|

∥
∥JA

rn– un–
∥
∥

≤ αn‖xn – xn–‖ + |αn – αn–|‖xn–‖ + ( – αn)‖un – un–‖
+

|rn – rn–|
ε

∥
∥JA

rn un – un–
∥
∥ + |αn – αn–|

∥
∥JA

rn– un–
∥
∥

≤  + αn


‖xn – xn–‖ +

 – αn


‖yn – yn–‖

+ M|αn – αn–| +
(

 +

ε

)

M|rn – rn–|. ()

From (), we know that for n ≥ ,

‖yn – yn–‖ ≤ ‖xn – xn–‖ + M|αn – αn–| + M

(

 +

ε

)

|rn – rn–|. ()

Using (), we have for n ≥ ,

‖xn+ – xn‖ ≤ γnηk‖xn – xn–‖ + η|γn – γn–|
∥
∥f (xn–)

∥
∥ + ( – γnγ )‖yn – yn–‖

+ |γn – γn–|‖Tyn–‖ + ‖en+ – en‖
≤ [

 – γn(γ – ηk)
]‖xn – xn–‖

+ M

[

|γn – γn–| + |αn – αn–| +
(

 +

ε

)

|rn – rn–|
]

+ ‖en+ – en‖. ()

From the assumptions on {en}, {αn}, {γn} and {rn}, in view of () and Lemma , we have
limn→∞ ‖xn+ – xn‖ = .

Step . Set Wn = JA
rn (I – rnB), then Wnyn – yn → , as n → ∞.

It is obvious that Wn is nonexpansive and (A + B)– = Fix(Wn).
Since both {xn} and {Wn( xn+yn

 )} are bounded and αn → , as n → +∞, then

yn – Wn

(
xn + yn



)

= αn

[

xn – Wn

(
xn + yn



)]

→ , as n → +∞.

Since both {f (xn)} and {Tyn} are bounded and γn → , as n → +∞, then

xn+ – yn = γn
[

ηf (xn) – Tyn
]

+ en → , as n → +∞.
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Therefore, in view of the result of Step ,

‖Wnyn – yn‖ ≤
∥
∥
∥
∥

Wnyn – Wn

(
xn + yn



)∥
∥
∥
∥

+
∥
∥
∥
∥

Wn

(
xn + yn



)

– yn

∥
∥
∥
∥

≤ ‖xn – yn‖


+ αn

∥
∥
∥
∥

xn – Wn

(
xn + yn



)∥
∥
∥
∥

→ , as n → ∞.

Step . lim supn→+∞〈ηf (p) – Tp, J(xn+ – p)〉 ≤ , where p ∈ (A + B)–, which is the
unique solution of the variational inequality ().

Since Wn is nonexpansive, then Lemma  implies that there exists zt such that zt =
tηf (zt) + (I – tT)Wnzt for t ∈ (, ). Moreover, zt → p ∈ Fix(Wn) = (A + B)–, as t → ;
and p is the unique solution of the variational inequality ().

Since ‖zt‖ ≤ ‖zt – p‖+‖p‖, then {zt} is bounded, as t → . Using Lemma  repeatedly,
we have

‖zt – yn‖

= ‖zt – Wnyn + Wnyn – yn‖

≤ ‖zt – Wnyn‖ + 
〈

Wnyn – yn, J(zt – yn)
〉

=
∥
∥tηf (zt) + (I – tT)Wnzt – Wnyn

∥
∥

 + 
〈

Wnyn – yn, J(zt – yn)
〉

≤ ‖Wnzt – Wnyn‖ + t
〈

ηf (zt) – TWnzt , J(zt – Wnyn)
〉

+ 
〈

Wnyn – yn, J(zt – yn)
〉

≤ ‖zt – yn‖ + t
〈

ηf (zt) – TWnzt , J(zt – Wnyn)
〉

+ ‖Wnyn – yn‖‖zt – yn‖,

which implies that

t
〈

TWnzt – ηf (zt), J(zt – Wnyn)
〉 ≤ ‖Wnyn – yn‖‖zt – yn‖.

So, limt→ lim supn→+∞〈TWnzt – ηf (zt), J(zt – Wnyn)〉 ≤  in view of Step .
Since zt → p, then Wnzt → Wnp = p, as t → . Noticing the following fact that

〈

Tp – ηf (p), J(p – Wnyn)
〉

=
〈

Tp – ηf (p), J(p – Wnyn) – J(zt – Wnyn)
〉

+
〈

Tp – ηf (p), J(zt – Wnyn)
〉

=
〈

Tp – ηf (p), J(p – Wnyn) – J(zt – Wnyn)
〉

+
〈

Tp – ηf (p) – TWnzt + ηf (zt), J(zt – Wnyn)
〉

+
〈

TWnzt – ηf (zt), J(zt – Wnyn)
〉

,

we have lim supn→+∞〈Tp – ηf (p), J(p – Wnyn)〉 ≤ .
Since 〈Tp – ηf (p), J(p – xn+)〉 = 〈Tp – ηf (p), J(p – xn+) – J(p – Wnyn)〉 + 〈Tp –

ηf (p), J(p –Wnyn)〉 and xn+ –Wnyn → , then lim supn→∞〈ηf (p)–Tp, J(xn+ –p)〉 ≤ .
Step . xn → p, as n → +∞, where p ∈ (A + B)– is the same as that in Step .
Since

‖yn – p‖ ≤ αn‖xn – p‖ + ( – αn)
∥
∥
∥
∥

xn + yn


– p

∥
∥
∥
∥

≤  + αn


‖xn – p‖ +

 – αn


‖yn – p‖,

then ‖yn – p‖ ≤ ‖xn – p‖.
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Using Lemma  and letting M = max{M,‖p‖}, we have for n ≥ ,

‖xn+ – p‖

=
∥
∥γn

(

ηf (xn) – Tp
)

+ (I – γnT)(yn – p) + en
∥
∥



≤ ( – γnγ )‖yn – p‖ + γn
〈

ηf (xn) – Tp, J(xn+ – p)
〉

+ 
〈

en, J(xn+ – p)
〉

≤ ( – γnγ )‖xn – p‖ + γnη
〈

f (xn) – f (p), J(xn+ – p) – J(xn – p)
〉

+ γnη
〈

f (xn) – f (p), J(xn – p)
〉

+ γn
〈

ηf (p) – Tp, J(xn+ – p)
〉

+ ‖en‖‖xn+ – p‖
≤ [

 – γn(γ – ηk)
]‖xn – p‖

+ γn
[


〈

ηf (p) – Tp, J(xn+ – p)
〉

+ η‖xn – p‖‖xn+ – xn‖
]

+ M‖en‖. ()

Let δ
()
n = γn(γ – ηk), δ()

n = γn[〈ηf (p) – Tp, J(xn+ – p)〉 + η‖xn – p‖‖xn+ – xn‖] and
δ

()
n = M‖en‖. Then () can be simplified as ‖xn+ – p‖ ≤ ( –δ

()
n )‖xn – p‖ +δ

()
n +δ

()
n .

Using the assumptions, the results of Steps ,  and  and by using Lemma , we know
that xn → p, as n → +∞.

This completes the proof. �

Theorem  If en ≡ , then iterative algorithm (A) becomes the following accurate iterative
algorithm:

⎧

⎪⎪⎨

⎪⎪⎩

x ∈ E,

yn = αnxn + βnJA
rn [ xn+yn

 – rnB( xn+yn
 )], n ≥ ,

xn+ = γnηf (xn) + (I – γnT)yn, n ≥ .

(B)

If (A+B)– = ∅, then under the assumptions except on {en} of Theorem , {xn} generated
by the iterative algorithm (B) converges strongly to p ∈ (A + B)–, which is the unique
solution of the variational inequality ().

3 Applications
In this section, we shall demonstrate the applications of Theorem  to the nonlinear prob-
lems with Neumann boundaries and Signorini boundaries, respectively.

Example  Now, we shall present an example of nonlinear Neumann boundary value
problem involving the generalized p-Laplacian, which comes from []:

⎧

⎨

⎩

– div[(C(x) + |∇u|)
p–

 ∇u] + ε|u|q–u + g(x, u(x),∇u(x)) = h(x), a.e. x ∈ �,

–〈ϑ , (C(x) + |∇u|)
p–

 ∇u〉 ∈ βx(u(x)), a.e. x ∈ .
(C)

In (C), � is a bounded conical domain of a Euclidean space RN with its boundary  ∈ C

(see []). h(x) ∈ L(�) is a given function. ε is a nonnegative constant and ϑ denotes the
exterior normal derivative of ,  ≤ C(x) ∈ Lp(�).
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Let ϕ :  × R → R be a given function such that, for each x ∈ , ϕx = ϕ(x, ·) : R → R is
a proper, convex and lower-semi-continuous function with ϕx() = . Let βx be the sub-
differential of ϕx, i.e., βx ≡ ∂ϕx. Suppose that  ∈ βx() and for each t ∈ R, the function
x ∈  → (I + λβx)–(t) ∈ R is measurable for λ > .

Suppose that g : � × RN+ → R is a given function satisfying the following conditions:
(a) Carathéodory’s conditions:

x → g(x, r) is measurable on � for all r ∈ RN+;

r → g(x, r) is continuous on RN+ for almost all x ∈ �.

(b) Nonexpansive with respect to r, i.e.,

∣
∣g(x, r, . . . , rN+) – g(x, t, . . . , tN+)

∣
∣ ≤ |r – t|,

where (r, r, . . . , rN+), (t, . . . , tN+) ∈ RN+.
(c) Monotone with respect to r, i.e.,

(

g(x, r, . . . , rN+) – g(x, t, . . . , tN+)
)

(r – t) ≥ 

for all x ∈ � and (r, . . . , rN+), (t, . . . , tN+) ∈ RN+.
Assume N

N+ < p < +∞, N
N+ < q < +∞, where N ≥ . Let 

p + 
p′ = . We use ‖ ·‖ to denote

the norm of L(�) and 〈·, ·〉 to denote the inner product in RN , respectively.

Lemma  ([]) Define the mapping Bp,q : W ,p(�) → (W ,p(�))∗ by

〈v, Bp,qu〉 =
∫

�

〈(

C(x) + |∇u|)
p–

 ∇u,∇v
〉

dx + ε

∫

�

∣
∣u(x)

∣
∣
q–u(x)v(x) dx

for any u, v ∈ W ,p(�). Then Bp,q is everywhere defined, strictly monotone, hemi-continuous
and coercive.

Lemma  ([]) The mapping �p : W ,p(�) → R defined by �p(u) =
∫


ϕx(u|(x)) d(x)

for any u ∈ W ,p(�) is proper convex and lower-semi-continuous on W ,p(�).

Lemma  ([]) The mapping A : L(�) → L(�) defined by

Au =
{

f ∈ L(�) : f ∈ Bp,qu + ∂�p(u)
}

for ∀u ∈ D(A),

where

D(A) =
{

u ∈ L(�) : there exists f ∈ L(�) such that f ∈ Bp,qu + ∂�p(u)
}

is m-accretive.

Lemma  Define S : D(A) ⊂ L(�) → L(�) by

Su(x) = g
(

x, u(x),∇u(x)
)

– h(x)
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for u(x) ∈ D(S), where h(x) is the same as that in (C). Then S is inversely strongly accre-
tive.

Proof From assumptions (c) and (b) on g , we know that if r ≤ t, then

g(x, t, . . . , tN+) – g(x, r, . . . , rN+) =
∣
∣g(x, r, . . . , rN+) – g(x, t, . . . , tN+)

∣
∣

≤ |r – t| = t – r;

if r ≥ t, then

g(x, r, . . . , rN+) – g(x, t, . . . , tN+) =
∣
∣g(x, r, . . . , rN+) – g(x, t, . . . , tN+)

∣
∣

≤ |r – t| = r – t.

Thus

[

g(x, r, . . . , rN+) – g(x, t, . . . , tN+)
] ≤ [

g(x, r, . . . , rN+) – g(x, t, . . . , tN+)
]

(r – t),

which implies that

〈Su – Sv, u – v〉 =
∫

�

[

g
(

x, u(x),∇u(x)
)

– g
(

x, v(x),∇v(x)
)]

(u – v) dx

≥
∫

�

[

g
(

x, u(x),∇u(x)
)

– g
(

x, v(x),∇v(x)
)] dx = ‖Su – Sv‖

.

Then S is inversely strongly monotone.
This completes the proof. �

Lemma  ([]) For h(x) ∈ L(�), nonlinear boundary value problem (C) has a unique
solution in L(�).

Lemma  ([]) For ∀ϕ ∈ C∞
 (�), 〈ϕ, ∂�p(u)〉 = , u ∈ W ,p(�).

Lemma  u(x) ∈ L(�) is the solution of (C) if and only if u(x) ∈ (A + S)–.

Proof If u(x) is the solution of (C), then

– div
[(

C(x) + |∇u|)
p–

 ∇u
]

+ ε|u|q–u + g
(

x, u(x),∇u(x)
)

= h(x), a.e. x ∈ �.

Thus, for ∀ϕ ∈ C∞
 (�), by using the property of generalized function and Lemma , we

have

 =
∫

�

– div
[(

C(x) + |∇u|)
p–

 ∇u
]

ϕ dx + ε

∫

�

|u|q–uϕ dx

+
∫

�

g
(

x, u(x),∇u(x)
)

ϕ dx –
∫

�

hϕ dx

=
∫

�

〈(

C(x) + |∇u|)
p–

 ∇u,∇ϕ
〉

dx +
∫

�

ε|u|q–uϕ dx
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+
∫

�

g
(

x, u(x),∇u(x)
)

ϕ dx –
∫

�

hϕ dx

= 〈ϕ, Bp,qu + Su〉 =
〈

ϕ, Bp,qu + ∂�p(u) + Su
〉

= 〈ϕ, Au + Su〉.

Then u(x) ∈ (A + S)–.
On the other hand, if u(x) ∈ (A + S)–, then for ∀ϕ ∈ C∞

 (�),

 = 〈ϕ, Au + Su〉 =
〈

ϕ, Bp,qu + ∂�p(u) + Su
〉

=
∫

�

〈(

C(x) + |∇u|)
p–

 ∇u,∇ϕ
〉

dx + ε

∫

�

|u|q–uϕ dx

+
∫

�

g
(

x, u(x),∇u(x)
)

ϕ dx –
∫

�

hϕ dx

=
∫

�

{

– div
[(

C(x) + |∇u|)
p–

 ∇u
]

+ ε|u|q–u + g
(

x, u(x),∇u(x)
)

– h
}

ϕ dx.

Therefore, – div[(C(x) + |∇u|)
p–

 ∇u] + ε|u|q–u + g(x, u(x),∇u(x)) = h(x), a.e. x ∈ �. By
using Green’s formula, we know that for any v ∈ W ,p(�),

∫



〈

ϑ ,
(

C(x) + |∇u|)
p–

 ∇u
〉

v| d(x)

=
∫

�

div
[(

C(x) + |∇u|)
p–

 ∇u
]

v dx +
∫

�

〈(

C(x) + |∇u|)
p–

 ∇u,∇v
〉

dx

=
∫

�

[

ε|u|q–u + g
(

x, u(x),∇u(x)
)

– h(x)
]

v(x) dx + 〈v, Bp,qu〉 –
∫

�

ε|u|q–uv dx

=
〈

v, Au + Su – ∂�p(u)
〉

=
〈

v, –∂�p(u)
〉

= –
∫



βx(u)v| d(x).

Thus –〈ϑ , (C(x) + |∇u|)
p–

 ∇u〉 ∈ βx(u), a.e. on .
This completes the proof. �

Theorem  Let A and S be the same as those in Lemma  and Lemma , respectively.
Let f : L(�) → L(�) be a fixed contractive mapping with coefficient k ∈ (, ) and T :
L(�) → L(�) be a strongly positive linear bounded operator with coefficient γ . Suppose
that  < η < γ

k . Let {un} be generated by the iterative algorithm (D)

⎧

⎪⎪⎨

⎪⎪⎩

u ∈ L(�),

yn = αnun + ( – αn)(I + rnA)–[ un+yn
 – rnS( un+yn

 )],

un+ = γnηf (un) + (I – γnT)yn + en, n ≥ .

(D)

Suppose {en} ⊂ L(�), {αn} and {γn} are two sequences in (, ) and {rn} ⊂ (, +∞) sat-
isfies the conditions presented in Theorem . Then {un(x)} converges strongly to a point
p(x) ∈ (A + S)–, which is the common solution of nonlinear boundary value problem (C)
and the following variational inequality: for ∀z ∈ (A + S)–,

〈

(T – ηf )p, p – z
〉 ≤ . ()
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Example  Next, we shall consider the following Laplacian equation with Signorini
boundary value conditions, which can be found in []:

⎧

⎨

⎩

–�u + u = h(x), x ∈ �,

u ≥ Mu, ∂u
∂ϑ

≥ , (u – Mu) ∂u
∂ϑ

= , a.e. x ∈ ,
(E)

where � is a bounded domain of RN (N ≥ ) with its boundary  sufficiently smooth,
ϑ is the exterior normal derivative of . h(x) ∈ L(�), h ∈ H 

 (), φ ∈ H 
 () are given

functions. Mu = h(x) –
∫


φ ∂u

∂ϑ
d(x) for x ∈  and φ is a nonnegative function defined

on .

From [], we know that (E) can be expressed in the form of the following quasi-
variational inequality:

⎧

⎨

⎩

u ∈ H
L(�), u ∈ Q(u),

〈Lu, u – w〉 ≤ 〈h(x), u – w〉, ∀w ∈ Q(u),
(F)

where H
L(�) := {u ∈ H(�) : Lu ∈ L(�)} with norm ‖ · ‖H

L(�) = (‖ · ‖
H(�) + ‖ · ‖

L(�))



for u ∈ H
L(�), L = L + L and Lu = –�u, Lu = u for u ∈ H

L(�). Q(u) := {v ∈ H(�) :
v ≥ h(x) – 〈φ, ∂u

∂ϑ
〉 , a.e. x ∈ }, here 〈·, ·〉 denotes the generalized duality pairing between

H 
 () and H– 

 ().

Lemma  ([]) Quasi-variational inequality (F) has a solution, which implies that (E)
has a solution u(x) ∈ H

L(�).

Lemma  If u(x) ∈ (L + L)–, where Lu = Lu – h(x), then u(x) ∈ H
L(�) is the solution

of (E).

Proof It is easy to check that if u(x) ∈ (L + L)–, then u(x) satisfies (F), which implies
that the result is true in view of Lemma .

This completes the proof. �

Theorem  Let L and L be the same as those above. Let f : H
L(�) → H

L(�) be a fixed
contractive mapping with coefficient k ∈ (, ), T : H

L(�) → H
L(�) be a strongly positive

linear bounded operator with coefficient γ . Suppose that  < η < γ

k . Let {un(x)} be generated
by the iterative algorithm (G):

⎧

⎪⎪⎨

⎪⎪⎩

u ∈ H
L(�),

yn = αnun + ( – αn)(I + rnL)–[ un+yn
 – rnL( un+yn

 )],

un+ = γnηf (un) + (I – γnT)yn + en, n ≥ .

(G)

Suppose {en} ⊂ H
L(�), {αn} and {γn} are two sequences in (, ) and {rn} ⊂ (, +∞) sat-

isfies the conditions presented in Theorem . Then {un(x)} converges strongly to a point
p(x) ∈ (L + L)–, which is the common solution of the Laplacian equation with Signorini
boundary value condition (E) and the following variational inequality: for ∀z ∈ (L +L)–,

〈

(T – ηf )p, p – z
〉 ≤ . ()
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