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Abstract
The split variational inclusion problem is an important problem, and it is a
generalization of the split feasibility problem. In this paper, we present a
descent-conjugate gradient algorithm for the split variational inclusion problems in
Hilbert spaces. Next, a strong convergence theorem of the proposed algorithm is
proved under suitable conditions. As an application, we give a new strong
convergence theorem for the split feasibility problem in Hilbert spaces. Finally, we
give numerical results for split variational inclusion problems to demonstrate the
efficiency of the proposed algorithm.
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1 Introduction
Let H be a real Hilbert space, and B : H � H be a set-valued mapping with domain
D(B) := {x ∈ H : B(x) �= ∅}. Recall that B is called monotone if 〈u – v, x – y〉 ≥  for any
u ∈ Bx and v ∈ By; B is maximal monotone if its graph {(x, y) : x ∈ D(B), y ∈ Bx} is not
properly contained in the graph of any other monotone mapping. An important problem
for set-valued monotone mappings is to find x̄ ∈ H such that  ∈ Bx̄. Here, x̄ is called a zero
point of B. A well-known method for approximating a zero point of a maximal monotone
mapping defined in a real Hilbert space is the proximal point algorithm first introduced
by Martinet [] and generated by Rockafellar []. This is an iterative procedure which gen-
erates {xn} by x = x ∈ H and

xn+ = JB
βn xn, n ∈N, (.)

where {βn} ⊆ (,∞), B is a maximal monotone mapping in a real Hilbert space, and JB
r is

the resolvent mapping of B defined by JB
r = (I + rB)– for each r > . In , Rockafellar

[] proved the following in the Hilbert space setting: If the solution set B–() is nonempty
and lim infn→∞ βn > , then the sequence {xn} in (.) converges weakly to an element of
B–(). In particular, if B is the subdifferential ∂f of a proper lower semicontinuous and
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convex function f : H →R, then (.) is reduced to

xn+ = arg min
y∈H

{
f (y) +


βn

‖y – xn‖
}

, n ∈N. (.)

In this case, {xn} converges weakly to a minimizer of f .
Let H and H be two real Hilbert spaces, B : H � H and B : H � H be two set-

valued maximal monotone mappings, A : H → H be a linear and bounded operator, and
A∗ be the adjoint of A. Let f : H → H and g : H → H be two proper lower semicon-
tinuous, and convex functions. In , Moudafi [] presented the following general split
variational inclusion problem:

Find x̄ ∈ H such that  ∈ f (x̄) + B(x̄) and  ∈ g(Ax̄) + B(Ax̄). (GSFVIP)

Clearly, we know that split variational inclusion problem (SFVIP) is a generalization of
variational inclusion problems and a generalization of split feasibility problem. Hence, it
is important to study the split variational inclusion problems in Hilbert spaces.

For problem (GSFVIP), Moudafi [] gave the following algorithm and a weak conver-
gence theorem under suitable conditions:

xn+ := JB
λ (I – λf )

(
xn + γ A∗(JB

λ (I – λg) – I
)
Axn

)
.

It is worth noting that λ and γ are fixed numbers. Hence, it is important to establish gen-
eralized iteration processes and strong convergence theorems for problem (SFVIP).

In this paper, we consider the following split variational inclusion problems in Hilbert
spaces:

Find x̄ ∈ H such that  ∈ B(x̄) and  ∈ B(Ax̄). (SFVIP)

In , Byrne et al. [] gave the following two convergence theorems for split variational
inclusion problems.

First, from the idea of the algorithms for fixed point theorem, the algorithm given in
Theorem . can be seen as a Picard iteration method.

Theorem . [] Let H and H be two real Hilbert spaces, A : H → H be a linear and
bounded operator, and let A∗ denote the adjoint of A. Let B : H � H and B : H � H

be two set-valued maximal monotone mappings. Let β >  and ρ ∈ (, 
‖A‖ ). Let � be the

solution set of (SFVIP) and suppose that � �= ∅. Let {xn} be defined by

xn+ := JB
β

[
xn – ρA∗(I – JB

β

)
Axn

]

for each n ∈ N. Then {xn} converges weakly to an element x̄ ∈ �.

Next, from the idea of the algorithms for fixed point theorem, the algorithm given in
Theorem . can be seen as Halpern’s iteration method.

Theorem . [] Let H and H be two real Hilbert spaces, A : H → H be a linear and
bounded operator, and let A∗ denote the adjoint of A. Let B : H � H and B : H � H
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be two set-valued maximal monotone mappings. Let {an} be a sequence of real numbers
in [, ] and let β > . Let u ∈ H be fixed and let ρ ∈ (, 

‖A‖ ). Let � be the solution set of
(SFVIP) and suppose that � �= ∅. Let {xn} be defined by

xn+ := anu + ( – an)JB
β

[
xn – ρA∗(I – JB

β

)
Axn

]

for each n ∈ N. Assume that limn→∞ an = ,
∑∞

n= an = ∞. Then limn→∞ xn = x̄ for some
x̄ ∈ �.

Remark . In Theorems . and ., we know that β and ρ are fixed numbers.

In , Chuang [] gave the following two convergent theorems for problem (SFVIP).
Indeed, from the idea of the algorithms for fixed point theorem, the algorithm given in
Theorem . can be seen as Halpern-Mann type iteration method.

Theorem . [] Let H and H be two real Hilbert spaces, A : H → H be a linear and
bounded operator, and let A∗ denote the adjoint of A. Let B : H � H and B : H � H

be two set-valued maximal monotone mappings. Let {an}, {bn}, and {cn} be sequences of
real numbers in [, ] with an + bn + cn =  and  < an <  for each n ∈ N. Let {βn} be a
sequence in (,∞). Let u ∈ H be fixed. Let {ρn} be a sequence in (, 

‖A‖+ ). Let � be the
solution set of (SFVIP) and suppose that � �= ∅. Let {xn} be defined by

xn+ := anu + bnxn + cnJB
βn

[
xn – ρnA∗(I – JB

βn

)
Axn

]

for each n ∈ N. Assume that limn→∞ an = ,
∑∞

n= an = ∞, lim infn→∞ cnρn > ,
lim infn→∞ bncn > , and lim infn→∞ βn > . Then limn→∞ xn = x̄, where x̄ = P�u.

Besides, the algorithm in Theorem . comes from the optimization theorem and
Tikhonov regularization method.

Theorem . [] Let H and H be two real Hilbert spaces, A : H → H be a linear and
bounded operator, and let A∗ denote the adjoint of A. Let B : H � H and B : H � H

be two set-valued maximal monotone mappings. Let {βn} be a sequence in (,∞), {an} be
a sequence in (, ), and {ρn} be a sequence in (, /(‖A‖ + )). Let � be the solution set of
(SFVIP) and suppose that � �= ∅. Let {xn} be defined by

xn+ := JB
βn

[
( – anρn)xn – ρnA∗(I – JB

βn

)
Axn

]

for each n ∈ N. Assume that limn→∞ an = ,
∑∞

n= anρn = ∞, lim infn→∞ ρn >  and
lim infn→∞ βn > . Then limn→∞ xn = x̄, where x̄ = P�, i.e., x̄ is the minimal norm solu-
tion of (SFVIP).

Further, we also observed that Bnouhachem et al. [] proposed the following descent-
projection algorithm to study the split feasibility problem.

Let A : Rn →R
m be a bounded linear operator, and A∗ be the adjoint of A. Let f : Rn →

(–∞,∞] and g : Rm → (–∞,∞] be two proper, lower semicontinuous, and convex func-
tions. Let {ρk} be a sequence of positive real numbers.



Chuang and Lin Journal of Inequalities and Applications  (2015) 2015:176 Page 4 of 20

Algorithm . For given xk ∈R
n, find the approximate solution by the following iterative

process.

Step . For k ∈ N, let Ck and Qk be
{

Ck := {u ∈ R
n : f (xk) + 〈uk , u – xk〉 ≤ },

Qk := {v ∈R
m : g(Axk) + 〈vk , v – Axk〉 ≤ },

where uk ∈ ∂f (xk) and vk ∈ ∂g(Axk).
Step . yk = PCk [xk – ρkA�(I – PQk )Axk], where ρk >  satisfies

ρk
∥∥A�(I – PQk )Axn – A�(I – PQk )Ayk

∥∥ ≤ δ‖xk – yk‖,  < δ < .

Step . If yk = xk , then stop. Otherwise, go to Step .
Step . The new iterative xk+ is defined by

xk+ = PCk

[
xk – αkd(xk ,ρk)

]
,

where
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d(xk ,ρk) := xk – yk + ρkA�(I – PQk )Ayk ,
εk := ρk[A�(I – PQk )Ayk – A�(I – PQk )Axk],
D(xk ,ρk) := xk – yk + εk ,
φ(xk ,ρk) := 〈xk – yk , D(xk ,ρk)〉,
αk := φ(xk ,ρk )

‖d(xk ,ρk )‖ .

Let H and H be infinite dimensional Hilbert spaces, A : H → H be a bounded linear
operator, and A∗ be the adjoint of A. Let B : H � H and B : H � H be set-valued
maximal monotone mappings. Let {an}, {ηn}, {γn}, and {ρn} be real sequences. Let δ be a
fixed real numbers. Let � be the solution set of problem (SFVIP). In this paper, motivated
by the above works and related results, we present the following algorithm with conjugate
gradient method for the split variational inclusion problems in Hilbert spaces.

Motivated by Algorithm . and the above results, we want to give a strong convergence
theorem in infinite dimensional real Hilbert spaces. (Indeed, for computers and program
language, we can only give examples for a finite dimensional space.) Next, we want that
the convergent rate of the given algorithm are faster than the above algorithms. Hence, we
give the following algorithm with conjugate method. In our numerical results, we know
that this algorithm is very fast under some conditions.

Algorithm .

Step . Choose x ∈ H arbitrarily, set r ∈ (, ) and d = .
Step . dn := –A∗(I – JB

βn )Axn + ηndn–.
Step . For n ∈N, set yn as

yn = JB
βn

[
( – anρn)xn – ρnA∗(I – JB

βn

)
Axn + γndn

]
, (.)

where ρn >  satisfies

ρn
∥∥A∗(I – JB

βn

)
Axn – A∗(I – JB

βn

)
Ayn

∥∥ ≤ δ‖xn – yn‖,  < δ < . (.)
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Step . If xn = yn, then set n := n +  and go to Step . Otherwise, go to Step .
Step . The new iterative xn+ is defined by

xn+ = JB
βn

[
xn – αnD(xn,ρn)

]
, (.)

where

D(xn,ρn) := xn – yn + ρn
[
A∗(I – JB

βn

)
Ayn – A∗(I – JB

βn

)
Axn

]
, (.)

αn :=
〈xn – yn, D(xn,ρn)〉

‖D(xn,ρn)‖ . (.)

Then update n := n +  and go to Step .

Remark .
() It is worth noting that dn is defined by using the idea of the so-called conjugate

gradient direction ([], Chapter ). Further, it is natural to assume that {xn} is a
bounded sequence for the convergence theorems with the conjugate gradient
direction method.

() If we set

εn := ρn
[
A∗(I – JB

βn

)
Ayn – A∗(I – JB

βn

)
Axn

]
, (.)

then it follows from (.) and (.) that

∣∣〈xn – yn, εn〉
∣∣ ≤ ‖xn – yn‖ · ‖εn‖ ≤ δ‖xn – yn‖ · ‖xn – yn‖ = δ‖xn – yn‖. (.)

() If we choose ρn such that  < ρn ≤ δ
‖A‖·‖A∗‖ = δ

‖A‖ , then (.) holds.
() In our convergence theorem, we may assume that xn �= yn for each n ∈N by the

assumptions on the sequence {an}.

Next, a strong convergence theorem of the proposed algorithm is proved under suitable
conditions. As an application, we give a descent-projection-conjugate gradient algorithm
and a strong convergence theorem for the split feasibility problem. Finally, we give numer-
ical results to demonstrate the efficiency of the proposed algorithm.

2 Preliminaries
Let H be a (real) Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. We
denote the strongly convergence and the weak convergence of {xn} to x ∈ H by xn → x and
xn ⇀ x, respectively. From [, ], for each x, y, u, v ∈ H and λ ∈ [, ], we have

‖x + y‖ ≤ ‖x‖ + 〈y, x + y〉; (.)

‖x + y‖ = ‖x‖ + 〈x, y〉 + ‖y‖; (.)

〈x – y, u – v〉 = ‖x – v‖ + ‖y – u‖ – ‖x – u‖ – ‖y – v‖. (.)

Let C be a nonempty, closed, and convex subset of a real Hilbert space H , and let T :
C → H be a mapping. Let Fix(T) := {x ∈ C : Tx = x}. Then T is said to be a nonexpansive
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mapping if ‖Tx – Ty‖ ≤ ‖x – y‖ for every x, y ∈ C. T is said to be a quasi-nonexpansive
mapping if Fix(T) �= ∅ and ‖Tx – y‖ ≤ ‖x – y‖ for every x ∈ C and y ∈ Fix(T). It is easy
to see that Fix(T) is a closed convex subset of C if T is a quasi-nonexpansive mapping.
Besides, T is said to be a firmly nonexpansive mapping if ‖Tx – Ty‖ ≤ 〈x – y, Tx – Ty〉 for
every x, y ∈ C, that is, ‖Tx – Ty‖ ≤ ‖x – y‖ – ‖(I – T)x – (I – T)y‖ for every x, y ∈ C.

Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Then for each
x ∈ H , there is a unique element x̄ ∈ C such that

‖x – x̄‖ = min
y∈C

‖x – y‖.

Here, set PCx = x̄, and PC is called the metric projection from H onto C.

Lemma . [] Let C be a nonempty, closed, and convex subset of a real Hilbert space H ,
and let PC be the metric projection from H onto C. Then 〈x – PCx, PCx – y〉 ≥  for all x ∈ H
and y ∈ C.

Lemma . Let H be a real Hilbert space. Let B : H � H be a set-valued maximal mono-
tone mapping, β > , and let JB

β be defined by JB
β := (I + βB)– (JB

β is called resolvent map-
ping). Then the following are satisfied:

(i) for each β > , JB
β is a single-valued and firmly nonexpansive mapping;

(ii) D(JB
β ) = H and Fix(JB

β ) = {x ∈D(B) :  ∈ Bx};
(iii) ‖x – JB

β x‖ ≤ ‖x – JB
γ x‖ for all  < β ≤ γ and for all x ∈ H ;

(iv) (I – JB
β ) is a firmly nonexpansive mapping for each β > ;

(v) suppose that B–() �= ∅, then ‖x – JB
β x‖ + ‖JB

β x – x̄‖ ≤ ‖x – x̄‖ for each x ∈ H ,
each x̄ ∈ B–(), and each β > ;

(vi) suppose that B–() �= ∅, then 〈x – JB
β x, JB

β x – w〉 ≥  for each x ∈ H and each
w ∈ B–(), and each β > .

Lemma . Let H and H be two real Hilbert spaces, A : H → H be a linear operator,
and A∗ be the adjoint of A, and let β >  be fixed. Let B : H � H be a set-valued maximal
monotone mapping, and let JB

β be a resolvent mapping of B. Let T : H → H be defined by
Tx := A∗(I – JB

β )Ax for each x ∈ H. Then
(i) ‖(I – JB

β )Ax – (I – JB
β )Ay‖ ≤ 〈Tx – Ty, x – y〉 for all x, y ∈ H;

(ii) ‖A∗(I – JB
β )Ax – A∗(I – JB

β )Ay‖ ≤ ‖A‖ · 〈Tx – Ty, x – y〉 for all x, y ∈ H.

Lemma . Let H and H be two real Hilbert spaces, A : H → H be a linear operator,
and A∗ be the adjoint of A, and let β >  be fixed, and let ρ ∈ (, 

‖A‖ ). Let B : H � H be
a set-valued maximal monotone mapping, and let JB

β be a resolvent mapping of B. Then

∥∥[
x – ρA∗(I – JB

β

)
Ax

]
–

[
y – ρA∗(I – JB

β

)
Ay

]∥∥

≤ ‖x – y‖ –
(
ρ – ρ‖A‖)∥∥(

I – JB
β

)
Ax –

(
I – JB

β

)
Ay

∥∥

for all x, y ∈ H. Furthermore, I – ρA∗(I – JB
β )A is a nonexpansive mapping.

Lemma . [] Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let T : C → H be a nonexpansive mapping, and let {xn} be a sequence in C. If xn ⇀ w and
limn→∞ ‖xn – Txn‖ = , then Tw = w.
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Lemma . [] Let {an} be a sequence of real numbers such that there exists a subsequence
{ni} of {n} such that ani < ani+ for all i ∈ N. Then there exists a nondecreasing sequence
{mk} ⊆ N such that mk → ∞, amk ≤ amk +, and ak ≤ amk + are satisfied by all (sufficiently
large) numbers k ∈N. In fact, mk = max{j ≤ k : aj < aj+}.

Lemma . [] Let {an}n∈N be a sequence of nonnegative real numbers, {αn} a sequence
of real numbers in [, ] with

∑∞
n= αn = ∞, {un} a sequence of nonnegative real numbers

with
∑∞

n= un < ∞, {tn} a sequence of real numbers with lim sup tn ≤ . Suppose that an+ ≤
( – αn)an + αntn + un for each n ∈N. Then limn→∞ an = .

3 Strong convergence theorems for (SFVIP)
In Remark ., we have said that it is natural to assume that {xn} is a bounded sequence
in the following result. For example, ([], Theorem .) use the assumption: {∇f(zn)} is a
bounded sequence; ([], Assumption ., Theorem .) use the assumption: {yi

n}n∈N is a
bounded sequence; ([], Assumption , Proposition .) use the assumption: there exists
a positive number M such that ‖∇f�(x)‖ ≤ M for each x ∈ R

p and each � = , , . . . , L.
Here, we need a similar assumption for our algorithm and convergence theorem in this
paper.

Theorem . Let H and H be infinite dimensional Hilbert spaces, A : H → H be a
bounded linear operator, and A∗ be the adjoint of A. Let B : H � H and B : H � H be
set-valued maximal monotone mappings. Let {an}, {ηn}, {γn} be sequences in [, ]. Choose
δ ∈ (, /), and let {ρn} be a sequence in (, min{ δ

‖A‖ , 
‖A‖+ }). Let � be the solution set of

problem (SFVIP) and assume that � �= ∅. For the sequence {xn} in Algorithm ., and we
further assume that:

(i) limn→∞ an = limn→∞ ηn = ,
∑∞

n= an = ∞, lim infn→∞ ρn > , and lim infn→∞ βn > ;
(ii) limn→∞ γn

an
= t for some t ≥ , and {xn} is a bounded sequence.

Then limn→∞ xn = x̄, where x̄ := P�.

Proof Clearly, � is a closed and convex subset of H. Let x̄ = P�. Since lim infn→∞ ρn > ,
we may assume that ρn ≥ ρ for some ρ > . Without loss of generality, we may assume
that xn �= yn for each n ∈ N. Take any w ∈ � and let w be fixed. Take any n ∈ N, and let n
be fixed. Let x̄ = P�. Since w ∈ �, we know that Aw ∈ B–

 (). By Lemma .(ii), we know
that

A∗(I – JB
βn

)
Aw = A∗(Aw – JB

βn Aw
)

= A∗(Aw – Aw) = . (.)

By Lemma .(v) and (.),

‖xn+ – w‖ +
∥∥xn+ – xn + αnD(xn,ρn)

∥∥ ≤ ∥∥xn – αnD(xn,ρn) – w
∥∥. (.)

By (.),

‖xn – w‖ – ‖xn+ – w‖

≥ ‖xn – w‖ –
∥∥xn – αnD(xn,ρn) – w

∥∥ +
∥∥xn+ – xn + αnD(xn,ρn)

∥∥

≥ ‖xn – w‖ –
∥∥xn – αnD(xn,ρn) – w

∥∥
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= ‖xn – w‖ – ‖xn – w‖ –
∥∥αnD(xn,ρn)

∥∥ + 
〈
xn – w,αnD(xn,ρn)

〉
= 

〈
xn – w,αnD(xn,ρn)

〉
– α

n
∥∥D(xn,ρn)

∥∥. (.)

Besides, by Lemma .,

〈
A∗(I – JB

βn

)
Ayn – A∗(I – JB

βn

)
Aw, yn – w

〉 ≥ . (.)

By (.) and (.),

〈
A∗(I – JB

βn

)
Ayn, yn – w

〉 ≥ . (.)

By Lemma .(vi) and (.),

〈
xn – yn – ρnA∗(I – JB

βn

)
Axn, yn – w

〉 ≥ 〈anρnxn – γndn, yn – w〉. (.)

By (.) and (.), we have

〈anρnxn – γndn, yn – w〉
≤ 〈

xn – yn – ρnA∗(I – JB
βn

)
Axn + ρnA∗(I – JB

βn

)
Ayn, yn – w

〉
=

〈
D(xn,ρn), yn – w

〉
. (.)

By (.), we know that

〈
D(xn,ρn), xn – yn

〉
+ 〈anρnxn – γndn, yn – w〉 ≤ 〈

D(xn,ρn), xn – w
〉
. (.)

Here, we set

εn := ρn
[
A∗(I – JB

βn

)
Ayn – A∗(I – JB

βn

)
Axn

]
. (.)

Then it follows from (.) and (.) that

〈
D(xn,ρn), xn – yn

〉
= 〈xn – yn, xn – yn + εn〉
= ‖xn – yn‖ + 〈xn – yn, εn〉
≥ ‖xn – yn‖ –

∣∣〈xn – yn, εn〉
∣∣

≥ ( – δ)‖xn – yn‖ (.)

and

〈
D(xn,ρn), xn – yn

〉
= 〈xn – yn, xn – yn + εn〉
= ‖xn – yn‖ + 〈xn – yn, εn〉
=



‖xn – yn‖ + 〈xn – yn, εn〉 +



‖xn – yn‖

≥ 

‖xn – yn‖ + 〈xn – yn, εn〉 +



‖εn‖
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=


‖xn – yn + εn‖

=


∥∥D(xn,ρn)

∥∥. (.)

By (.) and (.),

‖xn – w‖ – ‖xn+ – w‖

≥ αn
〈
xn – w, D(xn,ρn)

〉
– α

n
∥∥D(xn,ρn)

∥∥

≥ αn
〈
D(xn,ρn), xn – yn

〉
+ αnanρn〈xn, yn – w〉 – αnγn〈dn, yn – w〉

– α
n
∥∥D(xn,ρn)

∥∥

= αn
〈
D(xn,ρn), xn – yn

〉
+ αnanρn〈xn, yn – w〉 – αnγn〈dn, yn – w〉. (.)

By (.) and (.), αn ≥ 
 for each n ∈N. It follows from (.) and  > δ that

‖xn – yn + εn‖ = ‖xn – yn‖ + ‖εn‖ + 〈xn – yn, εn〉
≥ ‖xn – yn‖ + ‖εn‖ – 

∣∣〈xn – yn, εn〉
∣∣

≥ ‖xn – yn‖ + ‖εn‖ – δ‖xn – yn‖

≥ ( – δ)‖xn – yn‖ > . (.)

By (.), (.), (.), and (.),

α
n ≤

(‖xn – yn‖ · ‖xn – yn + εn‖
‖xn – yn + εn‖

)

≤ ‖xn – yn‖

( – δ)‖xn – yn‖ =


 – δ
. (.)

So, {αn} is a bounded sequence. By (.) and (.),

‖xn+ – w‖

≤ ‖xn – w‖ – αn
〈
D(xn,ρn), xn – yn

〉
+ αnanρn〈xn, w – yn〉 + αnγn〈dn, yn – w〉

≤ ‖xn – w‖ – αn( – δ)‖xn – yn‖ + αnanρn〈xn, w – yn〉 + αnγn〈dn, yn – w〉

≤ ‖xn – w‖ –
 – δ


‖xn – yn‖ + αnanρn〈xn, w – yn〉 + αnγn〈dn, yn – w〉. (.)

It follows from (.) and (.) that

‖xn+ – w‖

≤ ‖xn – w‖ – αn( – δ)‖xn – yn‖ + αnγn〈dn, yn – w〉
+ αnanρn

(‖xn – yn‖ + ‖w‖ – ‖xn – w‖ – ‖yn‖)
≤ ( – αnanρn)‖xn – w‖ – αn[ – δ – anρn]‖xn – yn‖

+ αnanρn
(‖w‖ – ‖yn‖) + αnγn〈dn, yn – w〉. (.)

Since limn→∞ an = , and two sequences {ρn} and {αn} are bounded, we may assume that
anρn <  – δ and  < αnanρn <  for each n ∈ N. Since {xn} is a bounded sequence, it is
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easy to see that {A∗(I – JB
βn )Axn} is a bounded sequence. Then there exists M >  such that

‖A∗(I – JB
βn )Axn‖ ≤ M for each n ∈N.

Since limn→∞ ηn = , there exists k ∈ N such that ηn < / for each n > k. Let M∗ =
max{M,‖dk‖}. Then ‖dk‖ < M∗. Suppose that ‖dn‖ ≤ M∗ for some n > k. Then we have

‖dn+‖ ≤ ∥∥A∗(I – JB
βn+

)
Axn+

∥∥ + ηn+‖dn‖ ≤ M +


‖dn‖ ≤ M∗.

By the induction method, we know that ‖dn‖ ≤ M∗ for each n ≥ k. So, {dn} is a bounded
sequence.

Next, we know that

‖yn – w‖
≤ ∥∥JB

βn

[
( – anρn)xn – ρnA∗(I – JB

βn

)
Axn + γndn

]
– JB

βn

[
( – anρn)w – ρnA∗(I – JB

βn

)
Aw

]∥∥
+

∥∥JB
βn

[
( – anρn)w – ρnA∗(I – JB

βn

)
Aw

]
– JB

βn

[
w – ρnA∗(I – JB

βn

)
Aw

]∥∥
≤ ( – anρn)‖xn – w‖ + γn‖dn‖ +

∥∥JB
βn

[
( – anρn)w

]
– JB

βn [w]
∥∥

≤ ( – anρn)‖xn – w‖ + anρn‖w‖ + γn‖dn‖. (.)

Hence, if follows from (.) and the two sequences {xn} and {dn} being bounded that
sequence {yn} is bounded.

Besides, we have

‖yn – w‖

≤ ∥∥[
( – anρn)xn – ρnA∗(I – JB

βn

)
Axn

]
–

[
w – ρnA∗(I – JB

βn

)
Aw

]
+ γndn

∥∥

=
∥∥[

xn – ρnA∗(I – JB
βn

)
Axn

]
–

[
w – ρnA∗(I – JB

βn

)
Aw

]∥∥

+ 
〈[

xn – ρnA∗(I – JB
βn

)
Axn

]
–

[
w – ρnA∗(I – JB

βn

)
Aw

]
,γndn – anρnxn

〉
+ ‖γndn – anρnxn‖

≤ ∥∥[
xn – ρnA∗(I – JB

βn

)
Axn

]
–

[
w – ρnA∗(I – JB

βn

)
Aw

]∥∥

+ 
〈[

xn – ρnA∗(I – JB
βn

)
Axn

]
–

[
w – ρnA∗(I – JB

βn

)
Aw

]
,γndn – anρnxn

〉
+ γ 

n ‖dn‖ + (anρn)‖xn‖ + γnanρn‖dn‖ · ‖xn‖. (.)

By (.) and Lemma .,

‖yn – w‖

≤ ‖xn – w‖ –
(
ρn – ρ

n‖A‖)∥∥(
I – JB

βn

)
Axn –

(
I – JB

βn

)
Aw

∥∥

+ 
〈[

xn – ρnA∗(I – JB
βn

)
Axn

]
–

[
w – ρnA∗(I – JB

βn

)
Aw

]
,γndn – anρnxn

〉
+ γ 

n ‖dn‖ + (anρn)‖xn‖ + γnanρn‖dn‖ · ‖xn‖
≤ ‖xn – w‖ –

(
ρn – ρ

n‖A‖)∥∥(
I – JB

βn

)
Axn

∥∥ + γ 
n ‖dn‖

+ ‖xn – w‖ · (γn‖dn‖ + anρn‖xn‖
)

+ (anρn)‖xn‖ + γnanρn‖dn‖ · ‖xn‖. (.)
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Next, we know that

∥∥yn – JB
βn xn

∥∥
=

∥∥JB
βn

[
( – anρn)xn – ρnA∗(I – JB

βn

)
Axn + γndn

]
– JB

βn xn
∥∥

≤ ∥∥[
( – anρn)xn – ρnA∗(I – JB

βn

)
Axn

]
– xn

∥∥ + γn‖dn‖
≤ anρn‖xn‖ + ρn

∥∥A∗(I – JB
βn

)
Axn

∥∥ + γn‖dn‖
≤ anρn‖xn‖ + ρn‖A‖ · ∥∥Axn – JB

βn Axn
∥∥ + γn‖dn‖. (.)

Further, by Lemma ., we have

‖yn – x̄‖

=
∥∥JB

βn

[
( – anρn)xn – ρnA∗(I – JB

βn

)
Axn + γndn

]
– JB

βn

[
x̄ – ρnA∗(I – JB

βn

)
Ax̄

]∥∥

≤ 〈
( – anρn)xn – ρnA∗(I – JB

βn

)
Axn + γndn – x̄ + ρnA∗(I – JB

βn

)
Ax̄, yn – x̄

〉
=

〈
( – anρn)xn – ρnA∗(I – JB

βn

)
Axn – ( – anρn)x̄ + ρnA∗(I – JB

βn

)
Ax̄, yn – x̄

〉
– anρn〈x̄, yn – x̄〉 + γn〈dn, yn – x̄〉

≤ ∥∥( – anρn)xn – ρnA∗(I – JB
βn

)
Axn – ( – anρn)x̄ + ρnA∗(I – JB

βn

)
Ax̄

∥∥
· ‖yn – x̄‖ + anρn〈–x̄, yn – x̄〉 + γn〈dn, yn – x̄〉

≤ ( – anρn)‖xn – x̄‖ · ‖yn – x̄‖ + anρn〈–x̄, yn – x̄〉 + γn〈dn, yn – x̄〉

≤ ( – anρn)


‖xn – x̄‖ +



‖yn – x̄‖ + anρn〈–x̄, yn – x̄〉 + γn〈dn, yn – x̄〉

≤
(

 – anρn



)
‖xn – x̄‖ +



‖yn – x̄‖ + anρn〈–x̄, yn – x̄〉 + γn〈dn, yn – x̄〉. (.)

This implies that

‖yn – x̄‖

≤ ( – anρn)‖xn – x̄‖ + anρn〈–x̄, yn – x̄〉 + γn〈dn, yn – x̄〉
= ( – anρn)‖xn – x̄‖ + anρn〈–x̄, yn – xn〉 + anρn〈–x̄, xn – x̄〉

+ γn〈dn, yn – x̄〉
≤ ( – anρn)‖xn – x̄‖ + anρn‖x̄‖ · ‖yn – xn‖ + anρn〈–x̄, xn – x̄〉

+ γn‖dn‖ · ‖yn – x̄‖. (.)

By (.), we also have

‖xn+ – x̄‖ – ‖xn+ – yn‖ – 〈xn+ – xn, yn – x̄〉
= ‖yn – x̄‖

≤ ( – anρn)‖xn – x̄‖ + anρn‖x̄‖ · ‖yn – xn‖ + anρn〈–x̄, xn – x̄〉
+ γn‖dn‖ · ‖yn – x̄‖. (.)
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That is,

‖xn+ – x̄‖

≤ ( – anρn)‖xn – x̄‖ + anρn‖x̄‖ · ‖yn – xn‖ + anρn〈–x̄, xn – x̄〉
+ ‖xn+ – yn‖ + 〈xn+ – xn, yn – x̄〉 + γn‖dn‖ · ‖yn – x̄‖. (.)

By (.) again, we have

‖xn+ – x̄‖ + ‖xn+ – xn‖ +
∥∥αnD(xn,ρn)

∥∥ + 
〈
xn+ – xn,αnD(xn,ρn)

〉
≤ ‖xn – x̄‖ +

∥∥αnD(xn,ρn)
∥∥ – 

〈
xn – x̄,αnD(xn,ρn)

〉
.

This implies that

‖xn+ – xn‖ ≤ ‖xn – x̄‖ – ‖xn+ – x̄‖ – 
〈
xn+ – xn,αnD(xn,ρn)

〉
– 

〈
xn – x̄,αnD(xn,ρn)

〉
. (.)

By (.) and (.), we have

‖xn+ – x̄‖ – αnγn〈dn, yn – x̄〉
≤ ( – αnanρn)‖xn – x̄‖ + αnanρn

(‖x̄‖ – ‖yn‖)
= ( – αnanρn)‖xn – x̄‖ + αnanρn

(‖x̄ – yn + yn‖ – ‖yn‖)
≤ ( – αnanρn)‖xn – x̄‖ + αnanρn

(
〈x̄ – yn, x̄〉 + ‖yn‖ – ‖yn‖)

≤ ( – αnanρn)‖xn – x̄‖ + αnanρn〈x̄ – yn, x̄〉
= ( – αnanρn)‖xn – x̄‖ + αnanρn〈–x̄, yn – x̄〉
= ( – αnanρn)‖xn – x̄‖ + αnanρn

(〈–x̄, yn – xn〉 + 〈–x̄, xn – x̄〉). (.)

This implies that

‖xn+ – x̄‖

≤
(

 –



anρ

)
‖xn – x̄‖ +

anρ


· αnρn

ρ

(〈–x̄, yn – xn〉 + 〈–x̄, xn – x̄〉)

+
anρ


· αn

ρ
· γn

an
〈dn, yn – x̄〉. (.)

Case : there exists a natural number N such that ‖xn+ – x̄‖ ≤ ‖xn – x̄‖ for each n ≥ N .
Clearly, limn→∞ ‖xn – x̄‖ exists. By (.) and limn→∞ γn = , we know that

lim
n→∞‖xn – yn‖ = lim

n→∞
∥∥D(xn,ρn)

∥∥ = . (.)

By (.) and (.),

lim
n→∞‖xn+ – xn‖ = lim

n→∞‖xn+ – yn‖ = . (.)
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By (.), (.), (.), and limn→∞ γn = ,

lim
n→∞‖yn – x̄‖ = lim

n→∞‖xn – x̄‖. (.)

By (.), (.), and limn→∞ γn = ,

lim
n→∞

(
ρn – ρ

n‖A‖)∥∥Axn – JB
βn Axn

∥∥ = . (.)

By (.),

lim
n→∞

∥∥Axn – JB
βn Axn

∥∥ = . (.)

By (.), (.), and limn→∞ an = ,

lim
n→∞

∥∥yn – JB
βn xn

∥∥ = . (.)

By (.) and (.),

lim
n→∞

∥∥xn – JB
βn xn

∥∥ = . (.)

Since lim infn→∞ βn > , we may assume that βn ≥ β for some β > . By (.), (.) and
Lemma .(iii),

lim
n→∞

∥∥xn – JB
β xn

∥∥ = lim
n→∞

∥∥Axn – JB
β Axn

∥∥ = . (.)

Since {xn} is a bounded sequence, there is a subsequence {xnk } of {xn} and z ∈ H such that
xnk ⇀ z and

lim sup
n→∞

〈–x̄, xn – x̄〉 = lim
k→∞

〈–x̄, xnk – x̄〉 = 〈–x̄, z – x̄〉. (.)

It follows from xnk ⇀ z and (.) that z ∈ Fix(JB
β ) = B–

 (). Besides, since xnk ⇀ z, we
have

lim
k→∞

〈Axnk – Az, y〉 = lim
k→∞

〈
xnk – z, A∗y

〉
= . (.)

Then Axnk ⇀ Az. Similarly, we know that Az ∈ Fix(JB
β ) = B–

 (). So, z ∈ �. By (.) and
Lemma ., we know that

lim sup
n→∞

〈–x̄, xn – x̄〉 = lim
k→∞

〈–x̄, xnk – x̄〉 = 〈–x̄, z – x̄〉 ≤ . (.)

We also have

lim sup
n→∞

〈dn, xn – x̄〉

= lim sup
n→∞

〈
–A∗(I – JB

βn

)
Axn + ηndn–, xn – x̄

〉
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= lim sup
n→∞

(〈
–A∗(I – JB

βn

)
Axn + A∗(I – JB

βn

)
Ax̄, xn – x̄

〉
+ 〈ηndn–, xn – x̄〉)

≤ lim sup
n→∞

ηn〈dn–, xn – x̄〉 = . (.)

Hence, it follows from (.) and (.) that

lim sup
n→∞

〈dn, yn – x̄〉

= lim sup
n→∞

(〈dn, yn – xn〉 + 〈dn, xn – x̄〉)

≤ lim sup
n→∞

〈dn, yn – xn〉 + lim sup
n→∞

〈dn, xn – x̄〉 ≤ . (.)

By (.), (.), (.), and Lemma ., we know that limn→∞ xn = x̄.
Case : suppose that there exists a subset {ni} of {n} such that ‖xni – x̄‖ ≤ ‖xni+ – x̄‖

for all i ∈ N. By Lemma ., there exists a nondecreasing sequence {mk} in N such that
mk → ∞,

‖xmk – x̄‖ ≤ ‖xmk + – x̄‖ and ‖xk – x̄‖ ≤ ‖xmk + – x̄‖ (.)

for all k ∈N. By (.),

‖xmk + – x̄‖

≤ ( – αmk amk ρmk )‖xmk – x̄‖ + αmk amk ρmk 〈–x̄, ymk – xmk 〉
+ αmk amk ρmk 〈–x̄, xmk – x̄〉 + αmk γmk 〈dmk , ymk – x̄〉 (.)

for all k ∈N. By (.) and (.),

αmk amk ρmk ‖xmk – x̄‖

≤ ‖xmk – x̄‖ – ‖xmk + – x̄‖ + αmk amk ρmk 〈–x̄, ymk – xmk 〉
+ αmk amk ρmk 〈–x̄, xmk – x̄〉 + αmk γmk 〈dmk , ymk – x̄〉

≤ αmk amk ρmk 〈–x̄, ymk – xmk 〉 + αmk amk ρmk 〈–x̄, xmk – x̄〉
+ αmk γmk 〈dmk , ymk – x̄〉 (.)

for all k ∈N. This implies that

‖xmk – x̄‖ ≤ 〈–x̄, ymk – xmk 〉 + 〈–x̄, xmk – x̄〉

+
γmk

amk ρmk

〈dmk , ymk – x̄〉 (.)

for all k ∈N. By (.), and following a similar argument to the above, we know that

⎧⎪⎨
⎪⎩

limk→∞ ‖ymk – xmk ‖ = limk→∞ ‖xmk + – xmk ‖ = ,
lim supk→∞〈–x̄, xmk – x̄〉 ≤ ,
lim supk→∞〈dmk , ymk – x̄〉 ≤ .

(.)
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By (.), (.), and (.), we can get the following and this is the conclusion of Theo-
rem .:

lim
k→∞

‖xmk – x̄‖ = lim
k→∞

‖xk – x̄‖ = . (.)

Now, for completeness, we show the proof of (.).
By (.),

‖xmk + – x̄‖

≤ ‖xmk – x̄‖ –
 – δ


‖xmk – ymk ‖ + αmk amk ρmk 〈xmk , x̄ – ymk 〉

+ αmk γmk 〈dmk , ymk – x̄〉. (.)

By (.) and (.),

 – δ


‖xmk – ymk ‖

≤ ‖xmk – x̄‖ – ‖xmk + – x̄‖ + αmk amk ρmk 〈xmk , x̄ – ymk 〉
+ αmk γmk 〈dmk , ymk – x̄〉

≤ αmk amk ρmk 〈xmk , x̄ – ymk 〉 + αmk γmk 〈dmk , ymk – x̄〉. (.)

By (.), we know that

lim
k→∞

‖xmk – ymk ‖ = . (.)

Further,

lim
k→∞

D(xmk ,ρmk ) = . (.)

By (.) and (.),

‖xmk + – xmk ‖

≤ –
〈
xmk + – xmk ,αmk D(xmk ,ρmk )

〉
– 

〈
xmk – x̄,αmk D(xmk ,ρmk )

〉
. (.)

By (.) and (.),

lim
k→∞

‖xmk + – xmk ‖ = . (.)

We also have

lim sup
n→∞

〈dn, xn – x̄〉

= lim sup
n→∞

〈
–A∗(I – JB

βn

)
Axn + ηndn–, xn – x̄

〉

= lim sup
n→∞

(〈
–A∗(I – JB

βn

)
Axn + A∗(I – JB

βn

)
Ax̄, xn – x̄

〉
+ 〈ηndn–, xn – x̄〉)

≤ lim sup
n→∞

ηn〈dn–, xn – x̄〉 = . (.)
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Hence, it follows from (.) and (.) that

lim sup
k→∞

〈dmk , ymk – x̄〉

= lim sup
k→∞

(〈dmk , ymk – xmk 〉 + 〈dmk , xmk – x̄〉)

≤ lim sup
k→∞

〈dmk , ymk – xmk 〉 + lim sup
k→∞

〈dmk , xmk – x̄〉 ≤ . (.)

By (.),

‖ymk – x̄‖

≤ ‖xmk – x̄‖ –
(
ρmk – ρ

mk
‖A‖)∥∥(

I – JB
βmk

)
Axmk

∥∥

+ M · (γmk ‖dmk ‖ + amk ρmk ‖xmk ‖
)

+ γ 
mk

‖dmk ‖ + (amk ρmk )‖xmk ‖ + γmk amk ρmk ‖dmk ‖ · ‖xmk ‖, (.)

where

M := sup
k∈N

{

∥∥[

xmk – ρmk A∗(I – JB
βmk

)
Axmk

]
–

[
x̄ – ρmk A∗(I – JB

βmk

)
Ax̄

]∥∥}
.

By (.),

(
ρmk – ρ

mk
‖A‖)∥∥(

I – JB
βmk

)
Axmk

∥∥

≤ ‖xmk – ymk ‖ · (‖xmk – x̄‖ + ‖ymk – x̄‖)
+ M · (γmk ‖dmk ‖ + amk ρmk ‖xmk ‖

)
+ γ 

mk
‖dmk ‖ + (amk ρmk )‖xmk ‖ + γmk amk ρmk ‖dmk ‖ · ‖xmk ‖. (.)

By (.) and (.), we know that

lim
k→∞

(
ρmk – ρ

mk
‖A‖)∥∥(

I – JB
βmk

)
Axmk

∥∥ = . (.)

This implies that

lim
k→∞

∥∥Axmk – JB
βmk

Axmk

∥∥ = . (.)

By (.), (.), and (.), we have

lim
k→∞

∥∥ymk – JB
βmk

xmk

∥∥ = lim
k→∞

∥∥xmk – JB
βmk

xmk

∥∥ = . (.)

Since {xmk } is bounded, there is a subsequence {zk} of {xmk } such that zk ⇀ u and

lim sup
k→∞

〈–x̄, xmk – x̄〉 = lim
k→∞

〈–x̄, zk – x̄〉 = 〈–x̄, u – x̄〉. (.)
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By (.), (.), Lemma ., and Lemma ., we know that u ∈ �. So, by (.) and
Lemma ., we know that

lim sup
k→∞

〈–x̄, xmk – x̄〉 ≤ . (.)

Therefore, the proof is completed. �

4 Application: split feasibility problems
Let C and Q be nonempty, closed, and convex subsets of infinite dimensional real Hilbert
spaces H and H, respectively. Let A : H → H be a linear and bounded operator. The
split feasibility problem is the following problem:

Find x̄ ∈ H such that x̄ ∈ C and Ax̄ ∈ Q. (SFP)

Let {an}, {ηn}, {γn}, and {ρn} be real sequences. Let δ be a fixed real number. Let � be
the solution set of problem (SFP).

Algorithm .

Step . Choose x ∈ H arbitrarily, set r ∈ (, ) and d = .
Step . dn := –A∗(I – PQ)Axn + ηndn–.
Step . For n ∈N, set yn as

yn = PC
[
( – anρn)xn – ρnA∗(I – PQ)Axn + γndn

]
, (.)

where ρn >  satisfies

ρn
∥∥A∗(I – PQ)Axn – A∗(I – PQ)Ayn

∥∥ ≤ δ‖xn – yn‖,  < δ < . (.)

Step . If xn = yn, then set n := n +  and go to Step . Otherwise, go to Step .
Step . The new iterative xn+ is defined by

xn+ = PC
[
xn – αnD(xn,ρn)

]
, (.)

where

D(xn,ρn) := xn – yn + ρn
[
A∗(I – PQ)Ayn – A∗(I – PQ)Axn

]
, (.)

αn :=
〈xn – yn, D(xn,ρn)〉

‖D(xn,ρn)‖ . (.)

Then update n := n +  and go to Step .

Following the same argument as in [], we can get the following strong convergence
theorem of the proposed algorithm for the split feasibility problem.

Theorem . Let C and Q be nonempty, closed, and convex subsets of infinite dimensional
real Hilbert spaces H and H, respectively. Let A : H → H be a linear and bounded opera-
tor. Let {an}, {ηn}, {γn} be sequences in [, ]. Choose δ ∈ (, /), and let {ρn} be a sequence
in (, min{ δ

‖A‖ , 
‖A‖+ }). Let � be the solution set of problem (SFVIP) and assume that
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� �= ∅. For the sequence {xn} in Algorithm ., we further assume that:
(i) limn→∞ an = limn→∞ ηn = ,

∑∞
n= an = ∞, lim infn→∞ ρn > ;

(ii) limn→∞ γn
an

= t for some t ≥ , and {xn} is a bounded sequence.
Then limn→∞ xn = x̄, where x̄ := P� .

5 Numerical results for (SFVIP)
All codes were written in R language (version .. (--)), and all numerical re-
sults run on ASUS All in one PC series with i- CPU.

Set u = (, ), β = , βn =  + 
n– for n ≥ , ηn = 

n+ , an = 
n+ , γ = , and γn = 

n– for
n ≥ , and β = . Let ε >  and the algorithm stop if ‖xn– – xn‖ < ε.

Example . Let A and B, B : R →R
 be defined by

A :=

[
 
 

]
,

B

[
x
y

]
=

[
 –

– 

][
x
y

]
+

[
–


]
,

B

[
x
y

]
=

[
 
 

][
x
y

]
+

[
–
–

]
.

Find a point x̄ = (x̄, x̄)� ∈R
 such that B(x̄) = (, )� and B(Ax̄) = (, )�. Indeed, x̄ = 

and x̄ = .

Example . Let B and B be the same as in Example .. Let

A :=

[
 
 –

]
.

Find a point x̄ = (x̄, x̄) ∈R
 such that B(x̄) = (, )� and B(Ax̄) = (, )�. Indeed, x̄ = .

and x̄ = –..

Example . Let B : R →R
, B : R →R

 be defined by

A :=

⎡
⎢⎣

 
 
 

⎤
⎥⎦ ,

B

[
x
y

]
=

[
 
 

][
x
y

]
+

[
–
–

]
,

B

⎡
⎢⎣

x
y
z

⎤
⎥⎦ =

⎡
⎢⎣

 – –
–  
–  

⎤
⎥⎦

⎡
⎢⎣

x
y
z

⎤
⎥⎦ .

Find a point x̄ = (x̄, x̄)� ∈ R
 such that B(x̄) = (, )� and B(Ax̄) = (, , )�. Indeed,

x̄ = . and x̄ = –..

For the above examples, we give the numerical results (see Tables -) for the proposed
algorithm and related algorithms.
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Table 1 Numerical results for Example 5.1 (ρ = ρn = 0.01)

x1 = (1, 1)� ε = 10–3 ε = 10–4

Time Iteration Approximate solution Time Iteration Approximate solution

Algorithm 1.2 0.02 19 (0.9853714, –0.01460836) 0.02 60 (0.9932032, –0.006789955)
Theorem 1.1 0.01 218 (1.087499, 0.08749895) 0.05 505 (1.008727, 0.008726755)
Theorem 1.2 0.04 213 (1.237467, 0.2433358) 0.08 939 (1.065859, 0.06719048)
Theorem 1.3 0.01 137 (1.376151, 0.3943719) 0.14 1,308 (1.094086, 0.09599743)
Theorem 1.4 0.02 206 (1.083916, 0.08392859) 0.06 484 (1.007433, 0.007437749)

x1 = (1, 1)� ε = 10–5 ε = 10–6

Time Iteration Approximate solution Time Iteration Approximate solution

Algorithm 1.2 0.06 287 (0.9977524, –0.002246182) 0.25 970 (0.9993371, –0.0006624296)
Theorem 1.1 0.06 792 (1.000870, 0.0008703675) 0.08 1,078 (1.000088, 8.750662e–05)
Theorem 1.2 0.25 2,974 (1.020805, 0.02122562) 0.99 9,403 (1.006580, 0.006713283)
Theorem 1.3 0.34 4,205 (1.029428, 0.03002226) 1.59 13,297 (1.009306, 0.009494477)
Theorem 1.4 0.07 749 (1.000037, 4.018706e–05) 0.07 953 (0.9994309, –5.664470e–04)

x1 = (1, 1)� ε = 10–7 ε = 10–8

Time Iteration Approximate solution Time Iteration Approximate solution

Algorithm 1.2 0.75 2,999 (0.9997898, –0.0002100474) 2.62 9,426 (0.9999335, –6.645199e–05)
Theorem 1.1 0.11 1,365 (1.000009, 8.727519e–06) 0.14 1,562 (1.000001, 8.704438e–07)
Theorem 1.2 5.03 29,732 (1.002081, 0.002123133) 19.63 94,018 (1.000658, 0.000671414)
Theorem 1.3 8.73 42,047 (1.002943, 0.003002578) 21.03 132,961 (1.000931, 0.0009495180)
Theorem 1.4 0.09 1,034 (0.9994033, –5.942738e–04) 0.09 1,047 (0.9994030, –5.945951e–04)

Table 2 Numerical results for Example 5.2 (ρ = ρn = 0.001)

x1 = (1, 1)� ε = 10–3 ε = 10–4

Time Iteration Approximate solution Time Iteration Approximate solution

Algorithm 1.2 ≤ 20 (0.4872068, –0.5128408) 0.02 61 (0.4953678 – 0.5046371)
Theorem 1.1 0.02 157 (1.382916, 0.3832697) 0.26 3,035 (0.5882673, –0.4116973328)

x1 = (1, 1)� ε = 10–5 ε = 10–6

Time Iteration Approximate solution Time Iteration Approximate solution

Algorithm 1.2 0.07 209 (0.4985109, –0.5014895) 0.19 716 (0.4996333, –0.5003667)
Theorem 1.1 0.56 5,912 (0.5088314, –0.4911650960) 0.90 8,790 (0.5008829, –0.4991167527)

x1 = (1, 1)� ε = 10–7 ε = 10–8

Time Iteration Approximate solution Time Iteration Approximate solution

Algorithm 1.2 0.49 1,984 (0.4999414, –0.5000586) 1.04 3,944 (0.4999930, –0.5000070)
Theorem 1.1 1.33 11,668 (0.5000883, –0.4999116996) 1.79 14,545 (0.5000088, –0.4999911653)

Table 3 Numerical results for Example 5.3 (ρ = ρn = 0.001)

x1 = (1, 1)� ε = 10–3 ε = 10–4

Time Iteration Approximate solution Time Iteration Approximate solution

Algorithm 1.2 0.02 40 (1.540193, –0.5400902) 0.04 162 (1.515364, –0.5153539)
Theorem 1.1 ≤ 7 (0.5038810, 0.4956130) 0.33 3,658 (1.3762567, –0.3763273899)

x1 = (1, 1)� ε = 10–5 ε = 10–6

Time Iteration Approximate solution Time Iteration Approximate solution

Algorithm 1.2 0.19 697 (1.504028, –0.5040270) 0.55 2,233 (1.500311, –0.5003114)
Theorem 1.1 0.76 7,689 (1.4876280, –0.4876350226) 1.38 11,719 (1.4987623, –0.4987630241)

x1 = (1, 1)� ε = 10–7 ε = 10–8

Time Iteration Approximate solution Time Iteration Approximate solution

Algorithm 1.2 1.06 4,175 (1.499761, –0.4997615) 1.32 5,188 (1.499727, –0.4997275)
Theorem 1.1 2.06 15,750 (1.4998763, –0.4998763253) 2.83 19,781 (1.4999876, –0.4999876348)
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