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Abstract
In this paper, we consider an approximation sequence of a common fixed point
generated by Halpern type iteration with a finite family of nonexpansive mappings in
a Hadamard space. We propose another style of Halpern type iteration with multiple
anchor points and prove that it converges strongly to a common fixed point.
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1 Introduction
The problem of finding a fixed point of nonexpansive mappings is one of the most im-
portant problems in nonlinear analysis and it has been investigated by many researchers
with various approaches. In , Wittmann [] obtained that a Halpern type iteration
with nonexpansive mapping is strongly convergent to a fixed point in a Hilbert space.
Later, Shimizu and Takahashi [] showed that a Halpern type iteration with two nonex-
pansive mappings converges strongly to a common fixed point in a Hilbert space. More-
over, Kimura et al. [] proved an approximation of common fixed points of a finite family
of nonexpansive mappings in a uniformly convex Banach space whose norm is Gâteaux
differentiable.

On the other hand, in , Saejung [] introduced a Halpern type iteration with a non-
expansive mapping approximating a fixed point in a Hadamard space, and also proved the
following theorem.

Theorem . Let X be a Hadamard space. Let T, T, . . . , TN : X → X be nonexpansive
mappings with

⋂N
i= F(Ti) �= ∅, and let u, x ∈ C be arbitrarily chosen. Define an iterative

sequence {xn} by

xn+ = αnu ⊕ ( – αn)T(n mod N)+xn

for all n ∈N, where {αn} is a sequence in ], [ such that limn→∞ αn = ,
∑∞

n= αn = ∞, and
∑∞

n= |αn+ – αn| < ∞. Suppose, in addition, that

N⋂

i=

F(Ti) = F(TN ◦ TN– ◦ · · · ◦ T).

Then {xn} converges to z ∈ ⋂N
i= F(Ti) which is nearest to u.
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In this paper, we introduce an approximation theorem of common fixed points of nonex-
pansive mappings in a Hadamard space. We produce the iterative sequence {xn} as follows.
Let u, u, . . . , ur , x be arbitrary points in a Hadamard space, and let {xn} be iteratively gen-
erated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ti
n = αnui ⊕ ( – αn)Tixn, i = , , . . . , r,

y
n = t

n,
yj

n = β
j–
n tj

n ⊕ ( – β
j–
n )yj–

n , j = , , . . . , r,
xn+ = yr

n

for all n ∈ N, where {αn} is a sequence under the same conditions of Theorem ., and,
for all k = , , . . . , r – , {βk

n} are sequences in [a, b] ⊂ ], [. This iterative sequence is
another type of convex combination for Theorem .. Furthermore, the anchor point of
known Halpern type iteration is single, however our iterative sequence has multiple an-
chor points. Then we show that {xn} converges strongly to a common fixed point. In a
Hilbert space, {xn} is convergent to the nearest point to

∑r
i= γ iui in the set of common

fixed points of {Ti}, where γ i ∈ ], [ for all i = , , . . . , r, and
∑r

i= γ i = ; see []. However,
it is not always true in a Hadamard space.

2 Preliminaries
Let (X, d) be a metric space. For x, y ∈ X, a mapping c : [, l] → X is called a geodesic with
endpoints x, y if c satisfies c() = x, c(l) = y and d(c(u), c(v)) = |u – v| for u, v ∈ [, l]. If a
geodesic with endpoints x, y exists for any x, y ∈ X, then we call X a geodesic metric space.
Moreover, if a geodesic exists uniquely for each x, y ∈ X, then we call X a uniquely geodesic
space. A Hadamard space, which is defined below, is a uniquely geodesic space.

Let X be a uniquely geodesic space. For x, y ∈ X, the image of a geodesic c with endpoints
x, y is called a geodesic segment joining x and y, and is denoted by [x, y]. A geodesic triangle

(x, x, x) with vertices x, x, x in X is the union of geodesic segments joining each pair
of vertices. A comparison triangle 
(x̄, x̄, x̄) in R

 for 
(x, x, x) is a triangle such that
d(xi, xj) = ‖x̄i – x̄j‖ for all i, j = , , . If, for any p, q ∈ 
(x, x, x) and their comparison
points p̄, q̄ ∈ 
(x̄, x̄, x̄), the inequality

d(p, q) ≤ ‖p̄ – q̄‖

is satisfied for all triangle in X, then X is called a CAT() space, and this inequality is called
the CAT() inequality. A Hadamard space is defined as a complete CAT() space.

Let X be a Hadamard space. For t ∈ [, ] and x, y ∈ X, there exists unique z ∈ [x, y] such
that d(x, z) = ( – t)d(x, y) and d(z, y) = td(x, y). We denote z by tx ⊕ ( – t)y. From the
CAT() inequality, we obtain the following lemma. This lemma plays an important role in
this paper.

Lemma . Let X be a Hadamard space. Then, for any x, y, z ∈ X and t ∈ ], [, it follows
that

d
(
x, ty ⊕ ( – t)z

) ≤ td(x, y) + ( – t)d(x, z) – t( – t)d(x, y).

By this lemma, it is easy to see the following result.
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Lemma . Let {xn}, {yn} be bounded sequences of a Hadamard space X. For {αn} ⊂ ], [,
define a sequence {zn} by zn = αnxn ⊕ ( – αn)yn. Then {zn} is bounded.

For more details on Hadamard spaces, see [].
Let T be a mapping from X into itself. T is called a nonexpansive mapping if the in-

equality d(Tx, Ty) ≤ d(x, y) is satisfied for any x, y ∈ X. A point z ∈ X is called a fixed point
of T if Tz = z holds. We denote the set of all fixed points of T by F(T). A subset C ⊂ X is
said to be convex if, for any x, y ∈ C, [x, y] is included in C. We know that F(T) is a closed
convex subset of X if T is nonexpansive.

Let {xn} be a bounded sequence in a metric space X. For any x ∈ X, we put

r
(
x, {xn}

)
= lim sup

n→∞
d(x, xn), r

({xn}
)

= inf
x∈X

r
(
x, {xn}

)
.

Then, if there exists x ∈ X such that r(x, {xn}) = r({xn}), we call x an asymptotic center of
{xn}. Moreover if, for any subsequence of {xn}, each asymptotic center is a unique point
x, we say that {xn} is �-convergent to x. We know that any bounded sequence {xn} in a
Hadamard space has a �-converging subsequence; see [, ].

3 Halpern type iteration with multiple anchor points
In this section, we introduce some lemmas and show the main theorem.

Lemma . (Aoyama-Kimura-Takahashi-Toyoda [], Xu []) Let {sn} be a sequence of non-
negative real numbers, {αn} be a sequence in [, ] with

∑∞
n= αn = ∞, {un} be a sequence of

nonnegative real numbers with
∑∞

n= un < ∞, and {tn} be a sequence of real numbers with
lim supn→∞ tn ≤ . Suppose that

sn+ ≤ ( – αn)sn + αntn + un for all n ∈N.

Then limn→∞ sn = .

Lemma . Let {an} be a sequence of real numbers with
∑∞

n=|an+ – an| < ∞. Then {an}
is convergent.

Lemma . (Seajung []) Let X be a Hadamard space and T , S : X → X be nonexpansive
mappings with F(T) ∩ F(S) �= ∅. For any β ∈ ], [, define a mapping U by Ux = βTx ⊕ ( –
β)Sx for all x ∈ X. Then U is a nonexpansive mapping such that F(U) = F(T) ∩ F(S).

Lemma . (He-Fang-López-Li []) Let X be a Hadamard space and {xn} be a bounded
sequence of X. If {xn} is �-convergent to x ∈ X, then

d(u, x) ≤ lim inf
n→∞ d(u, xn)

for all u ∈ X.

Lemma . (Kirk-Panyanak []) Let X be a Hadamard space and T : X → X be a nonex-
pansive mapping. Suppose {xn} ⊂ X is �-convergent to x ∈ X. If d(xn, Txn) → , then x is
an element of F(T).

Lemma . (Mayer []) Let X be a Hadamard space and g : X →R∪{+∞}. If g is convex
and lower semicontinuous, then g is bounded from below on bounded subsets of X. Further-
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more, g attains its infimum on nonempty bounded convex closed subsets of X. The resulting
minimizer is unique if g is strictly convex.

Using Lemma ., we get the following result.

Corollary . Let X be a Hadamard space. For any u, u, . . . , un ∈ X and β,β, . . . ,βn ∈
], [ with

∑n
i= β i = , define a function g : X →R by

g(x) =
n∑

i=

β id(ui, x)

for all x ∈ X. Then g attains its infimum on a nonempty closed convex subset C of X, and
its minimizer is unique.

Proof Let p be an element of X. Since g(x) → ∞ as d(x, p) → ∞, there exists a nonempty
bounded closed convex set D such that the minimizers of g on C and D are identical.

For x, y ∈ X with x �= y and t ∈ ], [, we have

g
(
tx ⊕ ( – t)y

)
=

n∑

i=

β id
(
ui, tx ⊕ ( – t)y

)

≤
n∑

i=

β i(td(ui, x) + ( – t)d(ui, y) – t( – t)d(x, y))

= tg(x) + ( – t)g(y) – t( – t)d(x, y)

< tg(x) + ( – t)g(y).

Thus g is a strictly convex, and by Lemma . we get the desired result. �

Now we can obtain the main theorem for a finite family of nonexpansive mappings with
multiple anchor points.

Theorem . Let X be a Hadamard space and T, T, . . . , Tr : X → X be nonexpansive
mappings with F =

⋂r
i= F(Ti) �= ∅. Let u, u, . . . , ur , x be arbitrary points in X and let {xn}

be iteratively generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ti
n = αnui ⊕ ( – αn)Tixn, i = , , . . . , r,

y
n = t

n,
yj

n = β
j–
n tj

n ⊕ ( – β
j–
n )yj–

n , j = , , . . . , r,
xn+ = yr

n

for all n ∈N, where {αn} is a sequence in ], [ such that

(i) lim
n→∞αn = ,

(ii)
∞∑

n=

αn = ∞,

(iii)
∞∑

n=

|αn+ – αn| < ∞,
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and, for all k = , , . . . , r – , {βk
n} are sequences in [a, b] ⊂ ], [ such that

(iv)
∞∑

n=

∣
∣βk

n+ – βk
n
∣
∣ < ∞.

Then {xn} converges to x ∈ F which is the unique minimizer of g(x) =
∑r

i= γid(ui, x) on F ,
where γk = βk– ∏r–

j=k (–β j) for k = , , . . . , r – and γr = βr– for β =  and β i = limn→∞ β i
n

for i = , , . . . , r – .

For the sake of simplicity, we will prove only the case for triple mappings, that is, the
following theorem. The proof of Theorem . is omitted as it can be deduced by similar
arguments.

Theorem . Let X be a Hadamard space and R, S, T : X → X be nonexpansive mappings
with F = F(R) ∩ F(S) ∩ F(T) �= ∅. Let u, v, w, x be arbitrary points in X and let {xn} be
iteratively generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

rn = αnu ⊕ ( – αn)Rxn,
sn = αnv ⊕ ( – αn)Sxn,
tn = αnw ⊕ ( – αn)Txn,
xn+ = βnrn ⊕ ( – βn)(γnsn ⊕ ( – γn)tn)

for all n ∈N, where {αn} is a sequence in ], [ such that

(i) lim
n→∞αn = ,

(ii)
∞∑

n=

αn = ∞,

(iii)
∞∑

n=

|αn+ – αn| < ∞,

and {βn}, {γn} are sequences in [a, b] ⊂ ], [ such that

(iv)
∞∑

n=

|βn+ – βn| < ∞,

(v)
∞∑

n=

|γn+ – γn| < ∞.

Then {xn} converges to x ∈ F which is a minimizer of g(x) = βd(u, x) + ( – β)(γ d(v, x) +
( – γ )d(w, x)) on F , where β = limn→∞ βn and γ = limn→∞ γn.

Proof Let yn = γnsn ⊕ ( – γn)tn for all n ∈ N. We first show {xn} is bounded. Let p ∈ F .
Then

d(xn+, p)

= d
(
βnrn ⊕ ( – βn)yn, p

)
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≤ βnd(rn, p) + ( – βn)d(yn, p)

≤ βn
(
αnd(u, p) + ( – αn)d(Rxn, p)) + ( – βn)

(
γnd(sn, p) + ( – γn)d(tn, p))

≤ βn
(
αnd(u, p) + ( – αn)d(xn, p))

+ ( – βn)γn
(
αnd(v, p) + ( – αn)d(xn, p))

+ ( – βn)( – γn)
(
αnd(w, p) + ( – αn)d(xn, p))

= αn
(
βnd(u, p) + ( – βn)

(
γnd(v, p) + ( – γn)d(w, p))) + ( – αn)d(xn, p).

Putting M = max{d(u, p), d(v, p), d(w, p)}, we have

d(xn+, p) ≤ max
{

M, d(xn, p)}.

By induction, we get

d(xn+, p) ≤ max
{

M, d(x, p)},

and hence we have {xn} is bounded. Since R, S, and T are all nonexpansive, we get {Rxn},
{Sxn}, {Txn} are bounded. Moreover, by Lemma ., we also have that {rn}, {sn}, {tn}, {yn}
are bounded sequences.

Next, we show that d(xn+, xn) → . Using the CAT() inequality, we obtain

d(rn, rn–) = d
(
αnu ⊕ ( – αn)Rxn,αn–u ⊕ ( – αn–)Rxn–

)

≤ d
(
αnu ⊕ ( – αn)Rxn,αnu ⊕ ( – αn)Rxn–

)

+ d
(
αnu ⊕ ( – αn)Rxn–,αn–u ⊕ ( – αn–)Rxn–

)

≤ ( – αn)d(Rxn, Rxn–) + |αn – αn–|d(u, Rxn–)

≤ ( – αn)d(xn, xn–) + |αn – αn–|d(u, Rxn–).

From this result, we also get

d(yn, yn–)

= d
(
γnsn ⊕ ( – γn)tn,γn–sn– ⊕ ( – γn–)tn–

)

≤ d
(
γnsn ⊕ ( – γn)tn,γnsn– ⊕ ( – γn)tn

)

+ d
(
γnsn– ⊕ ( – γn)tn,γnsn– ⊕ ( – γn)tn–

)

+ d
(
γnsn– ⊕ ( – γn)tn–,γn–sn– ⊕ ( – γn–)tn–

)

≤ γnd(sn, sn–) + ( – γn)d(tn, tn–) + |γn – γn–|d(sn–, tn–)

≤ γn
(
( – αn)d(xn, xn–) + |αn – αn–|d(v, Sxn–)

)

+ ( – γn)
(
( – αn)d(xn, xn–) + |αn – αn–|d(w, Txn–)

)

+ |γn – γn–|d(sn–, tn–)

≤ ( – αn)d(xn, xn–)

+ |αn – αn–|
(
d(v, Sxn–) + d(w, Txn–)

)
+ |γn – γn–|d(sn–, tn–).
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Therefore, we get

d(xn+, xn) = d
(
βnrn ⊕ ( – βn)yn,βn–rn– ⊕ ( – βn–)yn–

)

≤ d
(
βnrn ⊕ ( – βn)yn,βnrn– ⊕ ( – βn)yn

)

+ d
(
βnrn– ⊕ ( – βn)yn,βnrn– ⊕ ( – βn)yn–

)

+ d
(
βnrn– ⊕ ( – βn)yn–,βn–rn– ⊕ ( – βn–)yn–

)

≤ βnd(rn, rn–) + ( – βn)d(yn, yn–) + |βn – βn–|d(rn–, yn–)

≤ ( – αn)d(xn, xn–)

+ |αn – αn–|
(
d(u, Rxn–) + d(v, Sxn–) + d(w, Txn–)

)

+ |γn – γn–|d(sn–, tn–) + |βn – βn–|d(rn–, yn–).

Using conditions (ii), (iii), (iv), (v), and Lemma ., we have

d(xn+, xn) → .

From conditions (iv), (v) and Lemma ., there exist β ,γ ∈ ], [ such that βn → β and
γn → γ . We put Ux = βRx ⊕ ( – β)Qx for all x ∈ X, where Qx = γ Sx ⊕ ( – γ )Tx. From
Lemma ., we have that the mapping Q is nonexpansive with F(Q) = F(S) ∩ F(T). Simi-
larly, we have that U is nonexpansive with F(U) = F(R) ∩ F(Q) = F .

We show that d(Uxn, xn) → . Let qn = αnu ⊕ ( – αn)Qxn. Then, using the CAT() in-
equality, we have

d
(
Uxn,βnrn ⊕ ( – βn)qn

)

= d
(
βRxn ⊕ ( – β)Qxn,βn

(
αnu ⊕ ( – αn)Rxn

) ⊕ ( – βn)
(
αnu ⊕ ( – αn)Qxn

))

≤ αnβnd(Rxn, u) + αn( – βn)d(Qxn, u) + |β – βn|d(Rxn, Qxn).

Since {βn} converges to β , by condition (i), we get

d
(
Uxn,βnrn ⊕ ( – βn)qn

) → .

Put t′
n = αnv ⊕ ( – αn)Txn. Then, using this result, we have

d(Qxn, yn) = d
(
γ Sxn ⊕ ( – γ )Txn,γnsn ⊕ ( – γn)tn

)

≤ d
(
γ Sxn ⊕ ( – γ )Txn,γnsn ⊕ ( – γn)t′

n
)

+ d
(
γnsn ⊕ ( – γn)t′

n,γnsn ⊕ ( – γn)tn
)

≤ αnγnd(Sxn, v) + αn( – γn)d(Txn, v)

+ |γ – γn|d(Sxn, Txn) + ( – γn)d
(
t′
n, tn

)
.

By the CAT() inequality, we get

d
(
t′
n, tn

)
= d

(
αnv ⊕ ( – αn)Txn,αnw ⊕ ( – αn)Txn

)

≤ αnd(v, w) → .
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Since γn → γ , we have

d(Qxn, yn) → .

Therefore, by condition (i), we have

d
(
βnrn ⊕ ( – βn)qn, xn+

)
= d

(
βnrn ⊕ ( – βn)qn,βnrn ⊕ ( – βn)yn

)

≤ ( – βn)d(qn, yn)

≤ d
(
αnu ⊕ ( – αn)Qxn, Qxn

)
+ d(Qxn, yn)

= αnd(u, Qxn) + d(Qxn, yn)

→ .

Consequently, we get

d(Uxn, xn) ≤ d
(
Uxn,βnrn ⊕ ( – βn)qn

)
+ d

(
βnrn ⊕ ( – βn)qn, xn+

)
+ d(xn+, xn)

→ .

Suppose p is an element of F . Then we get

d(p, Uxn) = d
(
p,βRxn ⊕ ( – β)Qxn

)

≤ βd(p, Rxn) + ( – β)d(p, Qxn) – β( – β)d(Rxn, Qxn)

≤ d(p, xn) – β( – β)d(Rxn, Qxn).

Thus, we have

β( – β)d(Rxn, Qxn) ≤ d(p, xn) – d(p, Uxn)

≤ (
d(p, xn) + d(p, Uxn)

)
d(xn, Uxn)

→ ,

and hence we get

d(Rxn, Qxn) → .

Furthermore, we obtain that

d(xn, Qxn) ≤ d(xn, Uxn) + d(Uxn, Qxn)

= d(xn, Uxn) + βd(Rxn, Qxn)

→ .

By the same procedure, it follows that

d(p, Qxn) ≤ d(p, xn) – γ ( – γ )d(Sxn, Txn),
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and hence we get

d(Sxn, Txn) → .

Therefore, we have that

d(Rxn, xn) ≤ d(Rxn, Uxn) + d(Uxn, xn) = ( – β)d(Rxn, Qxn) + d(Uxn, xn) → ,

d(Sxn, xn) ≤ d(Sxn, Qxn) + d(Qxn, xn) = ( – γ )d(Sxn, Txn) + d(Qxn, xn) → ,

d(Txn, xn) ≤ d(Txn, Qxn) + d(Qxn, xn) = γ d(Sxn, Txn) + d(Qxn, xn) → .

Define a function g on X by g(x) = βd(u, x) + ( – β)h(x) for all x ∈ X, where h(x) =
γ d(v, x) + ( – γ )d(w, x). From Corollary ., there exists x ∈ F which is the unique
minimizer of g on F . Then we have

d(xn+, x)

= d
(
βnrn ⊕ ( – βn)yn, x

)

≤ βnd(rn, x) + ( – βn)
(
γnd(sn, x) + ( – γn)d(tn, x))

≤ βn
(
αnd(u, x) + ( – αn)d(Rxn, x) – αn( – αn)d(u, Rxn))

+ ( – βn)γn
(
αnd(v, x) + ( – αn)d(Sxn, x) – αn( – αn)d(v, Sxn))

+ ( – βn)( – γn)
(
αnd(w, x) + ( – αn)d(Txn, x) – αn( – αn)d(w, Txn))

≤ ( – αn)d(xn, x)

+ αn
(
βnd(u, x) + ( – βn)

(
γnd(v, x) + ( – γn)d(w, x)))

– αn( – αn)
(
βnd(u, Rxn) + ( – βn)

(
γnd(v, Sxn) + ( – γn)d(w, Txn))).

Put

cn = βnd(u, x) + ( – βn)
(
γnd(v, x) + ( – γn)d(w, x))

– ( – αn)
(
βnd(u, Rxn) + ( – βn)

(
γnd(v, Sxn) + ( – γn)d(w, Txn))).

Since βn → β and γn → γ , we get

∣
∣βnd(u, x) + ( – βn)

(
γnd(v, x) + ( – γn)d(w, x)) – g(x)

∣
∣ → .

Moreover, since d(Rxn, xn), d(Sxn, xn) and d(Txn, xn) converges to , we also get

∣
∣βnd(u, Rxn) + ( – βn)

(
γnd(v, Sxn) + ( – γn)d(w, Txn)) – g(xn)

∣
∣ → .

Therefore, we obtain that

∣
∣cn –

(
g(x) – g(xn)

)∣
∣

≤ ∣
∣βnd(u, x) + ( – βn)

(
γnd(v, x) + ( – γn)d(w, x)) – g(x)

∣
∣
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+
∣
∣βnd(u, Rxn) + ( – βn)

(
γnd(v, Sxn) + ( – γn)d(w, Txn)) – g(xn)

∣
∣

+ αn
∣
∣βnd(u, Rxn) + ( – βn)

(
γnd(v, Sxn) + ( – γn)d(w, Txn))∣∣

→ ,

and hence

lim sup
n→∞

cn = lim sup
n→∞

(
g(x) – g(xn)

)
.

Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that

lim sup
n→∞

(
g(x) – g(xn)

)
= lim

i→∞
(
g(x) – g(xni )

)
,

and {xni} is �-convergent to some x ∈ X. From Lemma ., we have that

lim
i→∞

(
g(x) – g(xni )

)

= g(x)

–
(
β lim inf

i→∞ d(u, xni )
 + ( – β)

(
γ lim inf

i→∞ d(v, xni )
 + ( – γ ) lim inf

i→∞ d(w, xni )

))

≤ g(x) –
(
βd(u, x) + ( – β)

(
γ d(v, x) + ( – γ )d(w, x)))

= g(x) – g(x).

Since d(Uxn, xn) → , x is an element of F by Lemma .. Moreover, since x is a minimizer
of g on F , we have that

lim sup
n→∞

cn ≤ g(x) – g(x) ≤ .

Hence, by Lemma ., {xn} converges to x in F . �

For any points in a Hadamard space, we know that there exists a unique point in any
closed convex subset which is the nearest of each subset to the point. Thus, we obtain the
following corollary.

Corollary . Let X be a Hadamard space and T, T, . . . , Tr : X → X be nonexpansive
mappings with F =

⋂r
i= F(Ti) �= ∅. Suppose u, x are arbitrary points in X and {xn} is iter-

atively generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ti
n = αnu ⊕ ( – αn)Tixn, i = , , . . . , r,

y
n = t

n,
yj

n = β
j–
n tj

n ⊕ ( – β
j–
n )yj–

n , j = , , . . . , r,
xn+ = yr

n

for all natural number n, where {αn} is a sequence in ], [ such that

(i) lim
n→∞αn = ,
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(ii)
∞∑

n=

αn = ∞,

(iii)
∞∑

n=

|αn+ – αn| < ∞,

and, for all k = , , . . . , r – , {βk
n} are sequences in [a, b] ⊂ ], [ such that

(iv)
∞∑

n=

∣
∣βk

n+ – βk
n
∣
∣ < ∞.

Then {xn} converges to x in F which is the nearest point of F to u.

Proof Let x ∈ F be the nearest point to u. Then we have that

d(u, x) = inf
x∈F

d(u, x).

From Theorem ., {xn} converges to the minimizer of g(x) = d(u, x) on F . Therefore, {xn}
is convergent to x. �

Remark It will be interesting to consider similar results for an amenable semigroup of
nonexpansive mappings using asymptotic invariant nets as in [] for Hadamard spaces.
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