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1 Introduction
Motivated by Grüss [], our purpose is to prove more general versions of Grüss type in-
equalities for delta discrete fractional calculus. It is well known that Grüss type inequalities
in continuous and discrete cases play a crucial role in studying the qualitative behavior of
differential and difference equations, respectively, as well as many other areas of mathe-
matics [–]. For the background and a summary on these particular subjects, we refer
the interested reader to the excellent references [, –].

The study of discrete fractional calculus was pioneered by Diaz and Osler []. In the
mentioned work, the authors used an infinite sum to give a definition of discrete frac-
tional sum, whereas Gray and Zhang used a finite sum in []. In the last decade, new
results in this area have been established [–], as well as importance has been gained
by inequalities on discrete fractional calculus in [, –]

2 Preliminaries
We begin with basic definitions and results from [].

Definition  The vth fractional sum of f is defined by

�–vf (t, a) =


�(v)

t–v∑

s=a
(t – s – )v–f (s),

where f and �–vf are defined for s = a mod() and t = (a + v) mod(), respectively. In
particular, �–v maps functions defined on Na to functions defined on Na+v, where Nt =
{t, t + , t + , . . .}.

Here,

tv :=
�(t + )

�(t – v + )
.

From now on in this context for convenience we set �–vf (t, a) = �–vf (t).
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Theorem  [] Let f be a real valued function defined on Na and let μ, v > . Then

�–v(�–μf (t)
)

= �–(μ+v)f (t) = �–μ
(
�–vf (t)

)
for all t ∈Na+μ+v.

Theorem  [] For v >  and p a positive integer we have

�–v�pf (t) = �p�–vf (t) –
v–∑

k=

(t – a)v–p+k

�(v + k – p + )
�kf (a),

where f is defined on Na.

Remark  Let μ >  and m –  < μ < m, m = �μ�, where m is a positive integer, and set
v = m – μ > . Then by Theorem  we have

�–v�mf (t) = �m�–vf (t) –
m–∑

k=

(t – a)v–m+k

�(v + k – m + )
�kf (a),

where f is defined on Na and hence

�m�–vf (t) = �μ
∗ f (t) +

m–∑

k=

(t – a)v–m+k

�(v + k – m + )
�kf (a). (.)

Definition  [] The μth fractional Riemann-Liouville type difference is defined by

�μf (t) := �m–vf (t) := �m(
�–vf (t)

)
,

where μ > , m –  < μ < m, and v = m – μ > .

So from (.) we get

�μf (t) = �μ
∗ f (t) +

m–∑

k=

(t – a)v–m+k

�(v + k – m + )
�kf (a), (.)

where f is defined on Na.

Theorem  [] For μ > , μ noninteger, m = �μ�, v = m – μ, the following holds:

f (t) =
m–∑

k=

(t – a)k

k!
�kf (a) +


�(μ)

t–μ∑

s=a+v
(t – s – )μ–�μ

∗ f (s) (.)

for all t ∈Na+m, where f is defined on Na with a ∈ Z
+ := {, , , . . .}.

Remark  Here [a, b] denotes the discrete interval [a, b] = [a, a + , a + , . . . , b], where
a < b and a, b ∈ {, , . . .}. Let μ >  be noninteger such that m –  < μ < m, i.e. m = �μ�.
Consider a function f defined on [a, b]. Then clearly the fractional discrete Taylor formula
(.) is valid only for t ∈ [a + m, b], a + m < b.
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We now give a discrete Caputo type fractional extended Taylor formula.

Theorem  [] Let μ > p, p ∈N, μ not integer, m = �μ�, v = m – μ. Then

�pf (t) =
m–∑

k=p

(t – a)k–p

(k – p)!
�kf (a) +


�(μ – p)

t–μ+p∑

s=a+v
(t – s – )μ–p–�μ

∗ f (s) (.)

for all t ∈Na+m–p, where f is defined on Na, a ∈ Z
+.

Remark  We assume that f is defined on [a, b]. Then (.) is valid only for [a + m – p, b]
with a + m – p < b. Notice p =  applied to (.) yields (.).

Remark  For μ > , μ not an integer, m = �μ�, v = m – μ, f defined on Na, a ∈ Z
+ and

�kf (a) for k = , . . . , m – , we get

f (t) =


�(μ)

t–μ∑

s=a+v
(t – s – )μ–�μ

∗ f (s) for all t ∈Na+m. (.)

Remark  For μ > p, p ∈ N, μ noninteger, m = �μ�, v = m – μ; f defined on Na, a ∈ Z
+, if

we assume that �kf (a) = , k = p, . . . , m – , then we obtain

�pf (t) =


�(μ – p)

t–μ+p∑

s=a+v
(t – s – )μ–p–�μ

∗ f (s) for all t ∈Na+m–p. (.)

3 Main results
We present the following discrete delta Grüss type inequality.

Theorem  Let μ > p, p ∈ Z
+, μ not an integer, m = �μ�, v = m – μ, f , g be defined on Na,

a ∈ Z
+ and a + m – p < b, b ∈N. Assume that

�kf (a) = �kg(a) =  for k = p + , . . . , m – , p < m – ,

and

m ≤ �μ
∗ f (s) ≤ M, m ≤ �μ

∗ g(s) ≤ M

for s = a + , . . . , b, where m, m, M, and M are positive constants. Then


b – a – m + p

b∑

j=a+m–p+

[(
�pf (j)

)(
�pg(j)

)]

–


(b – a – m + p)

[ b∑

j=a+m–p+

�pf (j)

][ b∑

j=a+m–p+

�pg(j)

]

≤ MMC – mmC

[�(μ – p + )] ,
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where

C := (b – a – m + p)
b∑

j=a+m–p+

[
(j – a – v)μ–p]

and

C :=
[(b – a – v + )μ–p+ – (m – p – v + )μ–p+]

(μ – p + ) .

Proof By (.), we have

�pf (j) =
m–∑

k=p

(j – a)k–p

(k – p)!
�kf (a) +


�(μ – p)

j–μ+p∑

s=a+v
(j – s – )μ–p–�μ

∗ f (s).

By hypothesis �kf (a) = , k = p + , . . . , m – , p < m – . So we have

�pf (j) = �pf (a) +


�(μ – p)

j–μ+p∑

s=a+v
(j – s – )μ–p–(�μ

∗ f (s)
)

(.)

and

�pg(j) = �pg(a) +


�(μ – p)

j–μ+p∑

s=a+v
(j – s – )μ–p–(�μ

∗ g(s)
)

(.)

for all j ∈ [a + m – p + , . . . , b]. Multiplying (.) and (.) gives us

(
�pf (j)

)(
�pg(j)

)
=

(
�pf (a)

)(
�pg(a)

)
+


[�(μ – p)]

×
[j–μ+p∑

s=a+v
(j – s – )μ–p–(�μ

∗ f (s)
)
][j–μ+p∑

s=a+v
(j – s – )μ–p–(�μ

∗ g(s)
)
]

+
�pf (a)

�(μ – p)

[j–μ+p∑

s=a+v
(j – s – )μ–p–(�μ

∗ g(s)
)
]

+
�pg(a)
�(μ – p)

[j–μ+p∑

s=a+v
(j – s – )μ–p–(�μ

∗ f (s)
)
]

.

Summing from a + m – p +  to b yields

b∑

j=a+m–p+

(
�pf (j)

)(
�pg(j)

)

=
b∑

j=a+m–p+

(
�pf (a)

)(
�pg(a)

)
+


[�(μ – p)]

×
b∑

j=a+m–p+

{[j–μ+p∑

s=a+v
(j – s – )μ–p–(�μ

∗ f (s)
)
][j–μ+p∑

s=a+v
(j – s – )μ–p–(�μ

∗ g(s)
)
]}
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+
�pf (a)

�(μ – p)

b∑

j=a+m–p+

[j–μ+p∑

s=a+v
(j – s – )μ–p–(�μ

∗ g(s)
)
]

+
�pg(a)
�(μ – p)

b∑

j=a+m–p+

[j–μ+p∑

s=a+v
(j – s – )μ–p–(�μ

∗ f (s)
)
]

.

Then


b – a – m + p

b∑

j=a+m–p+

(
�pf (j)

)(
�pg(j)

)

=


b – a – m + p

b∑

j=a+m–p+

[(
�pf (a)

)(
�pg(a)

)]
+


(b – a – m + p)[�(μ – p)]

×
b∑

j=a+m–p+

{[j–μ+p∑

s=a+v
(j – s – )μ–p–(�μ

∗ f (s)
)
][j–μ+p∑

s=a+v
(j – s – )μ–p–(�μ

∗ g(s)
)
]}

+
�pf (a)

(b – a – m + p)�(μ – p)

b∑

j=a+m–p+

[j–μ+p∑

s=a+v
(j – s – )μ–p–(�μ

∗ g(s)
)
]

+
�pg(a)

(b – a – m + p)�(μ – p)

b∑

j=a+m–p+

[j–μ+p∑

s=a+v
(j – s – )μ–p–(�μ

∗ f (s)
)
]

. (.)

On the other hand,


b – a – m + p

b∑

j=a+m–p+

(
�pf (j)

)

= �pf (a) +


(b – a – m + p)�(μ – p)

b∑

j=a+m–p+

[j–μ+p∑

s=a+v
(j – s – )μ–p–(�μ

∗ f (s)
)
]

and


(b – a – m + p)

b∑

j=a+m–p+

(
�pg(j)

)

= �pg(a) +


(b – a – m + p)�(μ – p)

b∑

j=a+m–p+

[j–μ+p∑

s=a+v
(j – s – )μ–p–(�μ

∗ g(s)
)
]

.

Multiplying the above two terms yields


(b – a – m + p)

[ b∑

j=a+m–p+

(
�pf (j)

)
][ b∑

j=a+m–p+

(
�pg(j)

)
]

=
(
�pf (a)

)(
�pg(a)

)

+
�pf (a)

(b – a – m + p)�(μ – p)

b∑

j=a+m–p+

[j–μ+p∑

s=a+v
(j – s – )μ–p–(�μ

∗ g(s)
)
]
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+
�pg(a)

(b – a – m + p)�(μ – p)

b∑

j=a+m–p+

[j–μ+p∑

s=a+v
(j – s – )μ–p–(�μ

∗ f (s)
)
]

+


(b – a – m + p)�(μ – p)

b∑

j=a+m–p+

[j–μ+p∑

s=a+v
(j – s – )μ–p–(�μ

∗ f (s)
)
]

×
b∑

j=a+m–p+

[j–μ+p∑

s=a+v
(j – s – )μ–p–(�μ

∗ g(s)
)
]

. (.)

So, using (.) and (.), we get


b – a – m + p

b∑

j=a+m–p+

[(
�pf (j)

)(
�pg(j)

)]

–


(b – a – m + p)

[ b∑

j=a+m–p+

(
�pf (j)

)
][ b∑

j=a+m–p+

(
�pg(j)

)
]

≤ MM

(b – a – m + p)[�(μ – p)]

b∑

j=a+m–p+

[j–μ+p∑

s=a+v
(j – s – )μ–p–

]

–
mm

(b – a – m + p)[�(μ – p)]

[ b∑

j=a+m–p+

[j–μ+p∑

s=a+v
(j – s – )μ–p–

]]

.

Now, calculating the sums:

j–μ+p∑

s=a+v
(j – s – )μ–p– =

∫ j–μ+p+

τ=a+v

(
j – σ (τ )

)μ–p–
�τ =


μ – p

(j – a – v)μ–p,

We get

b∑

j=a+m–p+

[j–μ+p∑

s=a+v
(j – s – )μ–p–

]

≤ 
(μ – p)

b∑

j=a+m–p+

[
(j – a – v)μ–p],

[ b∑

j=a+m–p+

[j–μ+p∑

s=a+v
(j – s – )μ–p–

]]
=


(μ – p)

[ b–a–v∑

j=a+m–p+

(s)μ–p

]

=


(μ – p)


(μ – p + )

× [
(b – a – v + )μ–p+ – (m – p – v + )μ–p+].

Consequently, we get


b – a – m + p

b∑

j=a+m–p+

[(
�pf (j)

)(
�pg(j)

)]

–


(b – a – m + p)

[ b∑

j=a+m–p+

(
�pf (j)

)
][ b∑

j=a+m–p+

(
�pg(j)

)
]
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≤ MM

(b – a – m + p)[�(μ – p)]


(μ – p)

b∑

j=a+m–p+

[
(j – a – v)μ–p]

–
mm

(b – a – m + p)[�(μ – p)]


(μ – p)(μ – p + )

× [
(b – a – v + )μ–p+ – (m – p – v + )μ–p+]

=
MMC – mmC

(b – a – m + p)[�(μ – p + )] . �
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9. Pečarić, JE, Tepeš, B: A note on Grüss type inequality in terms of �-seminorms. Pril. - Maked. Akad. Nauk. Umet., Odd.

Mat.-Teh. Nauki 23/24 (2002/2003); 29-35 (2004)
10. Anastassiou, GA: Nabla Discrete fractional calculus and inequalities. arXiv:0911.3374v1 [math.CA] (2009)
11. Anastassiou, GA: Multivariate Fink type identity and multivariate Ostrowski, comparison of means and Grüss type

inequalities. Math. Comput. Model. 46, 351-374 (2007)
12. Bohner, M, Matthews, T: The Grüss inequality on time scales. Commun. Math. Anal. 3, 1-8 (2007) (electronic)
13. Graham, RL, Knuth, DE, Patashnik, O: Concrete Mathematics: A Foundation for Computer Science, 2nd edn.

Addison-Wesley, Reading (1994)
14. Mercer, AM: An improvement of the Grüss inequality. JIPAM. J. Inequal. Pure Appl. Math. 6(4), 93 (2005)
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