
Duc Thanh et al. Journal of Inequalities and Applications  (2015) 2015:158 
DOI 10.1186/s13660-015-0679-3

R E S E A R C H Open Access

A solution for the non-cooperative
equilibrium problem of two person via fixed
point theory
Tran Duc Thanh1, Aatef Hobiny2 and Erdal Karapınar3,4*

*Correspondence:
erdalkarapinar@yahoo.com
3Department of Mathematics,
Atilim University, İncek, Ankara,
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Abstract
In this paper, we investigate the non-cooperative equilibrium problem of two person
games in the setting of game theory and propose a solution via coupled fixed point
results in the context of partial metric spaces. We also realize that our coupled fixed
point results can be applied to get a solution of a class of nonlinear Fredholm type
integral equations.
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1 Introduction
It is very well known fact that real world problem can be modeled as a mathematical
equation. The existence of a solution of such problems has been investigated in several
branches of mathematics, such as differential equations, integral equations, functional
equations, partial differential equations, random differential equations, etc. and one has
proposed solutions for such problems via fixed point theory. But the application area of
fixed point theory is not only limited to mathematics, but also occurs in other quantita-
tive sciences, such as, computer science, economics, biology, physics, etc. Game theory,
a branch of economics, has used fixed point theory techniques and approaches to solve
its own problems.

Game theory can be regarded as a formal (mathematical) way to study games. Indeed,
we consider the games as conflicts where some number of individuals (called players) take
part and each one tries to maximize his utility in taking part in the conflict. Games can
be classified in many ways, but here we focus on the following classification: Cooperative
games, in which, players are allowed to cooperate and non-cooperative games, in which
players are not allowed to cooperate. In the sequel, we shall demonstrate how the question
of the existence of equilibria is related to the question of the existence of a fixed point.
Throughout the paper, we follow the notion and notation in []. We recall some basic
concepts.

A two person game G in normal form consists of the following data:
() topological spaces S and S, the so called strategies for player  resp. player ,
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() a topological subspace U ⊂ S × S of an allowed strategy pair,
() a biloss operator

L :U → R


(s, s) �→ (
L(s, s); L(s, s)

)
,

()

where Li(s, s) is the loss of player i if the strategies s and s are played.
A pair (s, s) ∈ U is called a non-cooperative equilibrium if

L(s, s) ≤ L(s, s), ∀s ∈ S,

L(s, s) ≤ L(s, s), ∀s ∈ S.
()

Assume that there exist mappings

C : S → S,

D : S → S,
()

such that the following equations hold:

L
(
C(s), s

)
= min

s∈S
L(s, s), ∀s ∈ S,

L
(
s, D(s)

)
= min

s∈S
L(s, s), ∀s ∈ S.

()

Such mappings C and D are called optimal decision rules. Then any solution (s, s) of the
system

C(s) = s,

D(s) = s,
()

is a non-cooperative equilibrium. Denoting by F the function

F :S × S → S × S

(s, s) �→ (
C(s); D(s)

)
,

()

any coupled fixed point (s, s) of F is a non-cooperative equilibrium. Hence, the inves-
tigation of the existence of a solution for a non-cooperative equilibrium is equivalent to
searching for the existence of a couple fixed point. More details as regards game theory
can be found in [].

The main goal of the present work is to solve the problem of the non-cooperative equi-
librium of two person games. For this purpose, we shall present some coupled fixed point
theorems in partial metric spaces. Our aim is to explore not only the results themselves
but also their applications to nonlinear integral equations.

2 Preliminaries
The notion of a partial metric was proposed by Matthews (see [, ]) as a generalization of
the metric concept to get better results in the branches of computer sciences: semantics
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and computer domain. Indeed, a partial metric is a function that is obtained from the
metric by replacing the condition d(x, x) =  with the condition d(x, x) ≤ d(x, y) for all x, y.
In the last decade, a number of authors have brought into focus fixed point problems in
the context of partial metric spaces as well as topological properties of a partial metric
space; see e.g. [–] and the related references given therein.

We first need to recall some basic concepts and necessary results. Throughout the paper,
N and N denote the set of positive integers and the set of nonnegative integers, respec-
tively. Similarly, R, R+, and R

+
 represent the set of reals, positive reals, and nonnegative

reals, respectively.

Definition . (See e.g. [, ]) Let X be a nonempty set. The mapping p : X × X → [,∞)
is said to be a partial metric on X if for any x, y, z ∈ X the following conditions hold true:

(P) x = y if and only if p(x, x) = p(y, y) = p(x, y).
(P) p(x, x) ≤ p(x, y).
(P) p(x, y) = p(y, x).
(P) p(x, z) ≤ p(x, y) + p(y, z) – p(y, y).

The pair (X, p) is then called a partial metric space (in short, PMS).

Let (X, p) be a partial metric space. Then the functions dp, dm : X × X → [,∞) given by

dp(x, y) = p(x, y) – p(x, x) – p(y, y)

and

dm(x, y) = max
{

p(x, y) – p(x, x), p(x, y) – p(y, y)
}

are the (usual) metrics on X. It is easy to check that dp and dm are equivalent. Note that
each partial metric p on X generates a T-topology τp with as a base the family of open
p-balls {Bp(x, ε) : x ∈ X, ε > }, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}.

Definition . (See e.g. [, ]) Let (X, p) be a partial metric space.
() A sequence {xn} in X converges to x ∈ X if and only if p(x, x) = limn→∞ p(xn, x).
() A sequence {xn} in X is called a Cauchy sequence if and only if limn,m→∞ p(xn, xm)

exists (and is finite).
() (X, p) is called complete if every Cauchy sequence {xn} in X converges to x ∈ X .
() A mapping f : X → X is said to be continuous at x ∈ X if, for every ε > , there

exists δ >  such that f (B(x, δ)) ⊂ B(f (x), ε).

Referring to [], we say that a sequence {xn} in (X, p) is called a -Cauchy sequence if
limn,m→∞ p(xn, xm) = . Also, we say that (X, p) is -complete if every -Cauchy sequence
in X converges, with respect to the partial metric p, to a point x ∈ X such that p(x, x) = .
Notice that if (X, p) is complete, then it is -complete, but the converse does not hold.
Moreover, every -Cauchy sequence in (X, p) is Cauchy in (X, dp).

Example . (See e.g. [, ])
() Let X = [, +∞) and define p(x, y) = max{x, y}, for all x, y ∈ X . Then (X, p) is a

complete partial metric space. It is clear that p is not a (usual) metric.
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() Let X = [, +∞) ∩Q, where Q is the set of rational numbers. Define
p(x, y) = max{x, y}, for all x, y ∈ X . Then (X, p) is a -complete partial metric space
which is not complete.

Proposition . (See e.g. [, ]) Let (X, p) be a partial metric space.
() A sequence {xn} is a Cauchy sequence in (X, p) if and only if {xn} is a Cauchy

sequence in (X, dp).
() (X, p) is complete if and only if (X, dp) complete. Moreover,

lim
n→∞ dp(xn, x) =  ⇔ lim

n→∞ p(x, x) = lim
n→∞ p(xn, x) = lim

n,m→∞ p(xm, xn).

The following lemmas have an important role to play in the proofs of the theorems.

Lemma . (See e.g. [, ]) Assume xn → z as n → ∞ in a PMS (X, p) such that p(z, z) = .
Then limn→∞ p(xn, y) = p(z, y) for every y ∈ X.

Lemma . (See e.g. [, ]) Let (X, p) be a complete PMS. Then:
() If p(x, y) =  then x = y.
() If x �= y, then p(x, y) > .

Lemma . (See e.g. [, ]) Let (X, p) be a PMS. If xn → x and yn → y as n → ∞ for all
xn, yn, x, y ∈ X then p(xn, yn) → p(x, y) as n → ∞.

The existence and uniqueness of fixed points of contractive type mappings in partially
ordered metric spaces have been considered recently by several authors: Ran and Reurings
[], Nieto and Rodriguez-Lopez [, ]. On the other hand, the notion of a coupled fixed
point was suggested by Guo and Lakshmikantham in []. Following this initial result,
Gnana Bhaskar and Lakshmikantham [] proposed the notion of mixed monotone prop-
erty and get coupled fixed point results in the setting of partially ordered metric spaces
(see also [–] and the related references therein.) Later, it was reported that most of
the coupled fixed point results can be derived from the existence results, and vice versa;
see e.g. [–]. On the other hand, coupled fixed point results still have worth regarding
their applications. Most of the times, using coupled fixed point theory is the most eco-
nomical way to solve problems (regarding time and speed of the process). This paper can
be considered as an example.

Recall that a pair (x, y) ∈ X ×X is called a coupled fixed point of the mapping T : X ×X →
X if T(x, y) = x, T(y, x) = y (see e.g. []).

Definition . ([]) Let (X,≤) be a partially ordered set and T : X × X → X. The map-
ping T is said to have the mixed monotone property if T(x, y) is monotone non-decreasing
in x and monotone non-increasing in y, that is, for any x, y ∈ X

x, x ∈ X, x ≤ x ⇒ T(x, y) ≤ T(x, y)

and

y, y ∈ X, y ≤ y ⇒ T(x, y) ≥ T(x, y).
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Next, we introduce a class of functions which plays a crucial role in this paper. Let F :
R

+
 → R be a mapping satisfying:

(F) F is strictly increasing and continuous.
(F) For each sequence (an) ⊂R

+
 , limn→∞ an =  if and only if limn→∞ F(an) = –∞.

We denote by F the family of all functions F that satisfy the conditions (F)-(F) (see
[]). It is easy to check that F(x) = ln x and G(x) = ln x + x for all x ∈ R

+
 belong to F .

In [], Wardowski introduced the new concept of an F-contraction and proved fixed
point theorems in the classical setting of metric spaces. In [], the authors introduced
the concept of an F-contraction, a generalized F-contraction, and they proved some fixed
point theorems for multi-valued mappings in the partial metric spaces (see also [, ,
–]).

Definition . ([]) Let (X, p) be a partial metric space. A mapping T : X × X → X is
called an F-contraction if there exist F ∈F and τ ∈R

+
 such that

τ + F
(
p(Tx, Ty)

) ≤ F
(
p(x, y)

)

for all x, y ∈ X.

3 Auxiliary results: coupled fixed points in partial metric spaces
In this section we state and prove some new coupled fixed point results for F-contractive
mappings in the context of complete partial metric spaces.

Theorem . Let (X,≤) be a partially ordered set and suppose there exists a partial met-
ric p on X such that (X, p) is a -complete partial metric space. Let T : X × X → X be a
continuous mapping having the mixed monotone property on X. Suppose also that

()
τ + F

(
p
(
T(x, y), T(u, v)

)) ≤ F
(
max

{
p(x, u), p(y, v)

})
()

for all x ≤ u, y ≥ v, for some F ∈F and τ > .
() There are x, y ∈ X such that x ≤ T(x, y), y ≥ T(y, x).
Then T has a coupled fixed point, that is, there exist x, y ∈ X such that x = T(x, y), y =

T(y, x).

Proof Let x, y ∈ X be such that x ≤ T(x, y), y ≥ T(y, x). Let x = T(x, y) and y =
T(y, x). Then x ≤ x and y ≥ y. Again, let x = T(x, y) and y = T(y, x). Since T has
the mixed monotone property, we have x ≤ x and y ≥ y. Continuing this way, we get
two sequences {xn} and {yn} in X such that xn+ = T(xn, yn), yn+ = T(yn, xn) and

x ≤ x ≤ x ≤ · · · ≤ xn ≤ xn+ · · · , y ≥ y ≥ y ≥ · · · ≥ yn ≥ yn+ ≥ · · · .

Now, for each n = , , , . . . , we have

τ + F
(
p(xn, xn+)

)
= τ + F

(
p
(
T(xn–, yn–), T(xn, yn)

))

≤ F
(
max

{(
p(xn–, xn)

)
, p(yn–, yn)

})
()
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and

τ + F
(
p(yn, yn+)

)
= τ + F

(
p
(
T(yn–, xn–), T(yn, xn)

))

≤ F
(
max

{
p(yn–, yn), p(xn–, xn)

})
. ()

Since (), () hold and F is increasing we get

τ + F
(
max

{
p(xn, xn+), p(yn, yn+)

}) ≤ F
(
max

{
p(yn–, yn), p(xn–, xn)

})
. ()

It follows that

max
{

p(xn, xn+), p(yn, yn+)
} ≤ max

{
p(yn–, yn), p(xn–, xn)

}

for all n = , , . . . . Hence, the sequence rn := max{p(xn, xn+), p(yn, yn+)} is a non-increasing.
Thus, there is r ≥  such that limn→∞ rn = r. Since F is continuous, letting n → ∞ in (),
we arrive at

τ + F(r) ≤ F(r).

Since τ >  and the definition of F , we can deduce that F(r) = –∞; this implies that r = .
Therefore

lim
n→∞ max

{
p(xn, xn+), p(yn, yn+)

}
= . ()

Next, we claim that

lim
m,n→∞ max

{
p(xm, xn), p(yn, ym)

}
= . ()

Suppose, to the contrary, that there exists ε >  for which we can seek two subsequences
{xm(k)} and {xn(k)} of, respectively, {xm} and {xn} such that n(k) is the smallest index for
which

n(k) > m(k) > k, max
{

p(xm(k), xn(k)), p(yn(k), ym(k))
} ≥ ε. ()

This means that

max
{

p(xm(k), xn(k)–), p(ym(k), yn(k)–)
}

< ε, ()

and we obtain

p(xm(k), xn(k)) ≤ p(xm(k), xn(k)–) + p(xn(k)–, xn(k)) – p(xn(k)–, xn(k)–)

≤ p(xm(k), xn(k)–) + p(xn(k)–, xn(k)) < ε + p(xn(k)–, xn(k)). ()

Similarly, we get

p(ym(k), yn(k)) < ε + p(yn(k)–, yn(k)). ()
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Combining (), (), and (), we obtain

ε ≤ max
{

p(xm(k), xn(k)), p(ym(k), yn(k))
} ≤ ε + max

{
p(xn(k)–, xn(k)), p(yn(k)–, yn(k))

}
. ()

Letting k → ∞ in () and using (), we have

lim
k→∞

max
{

p(xm(k), xn(k)), p(ym(k), yn(k))
}

= ε. ()

Now, by the facts that

p(xm(k), xn(k)) ≤ p(xm(k), xn(k)–) + p(xn(k)–, xn(k))

and

p(ym(k), yn(k)) ≤ p(ym(k), yn(k)–) + p(yn(k)–, yn(k))

we obtain

max
{

p(xm(k), xn(k)), p(ym(k), yn(k))
} ≤ max

{
p(xm(k), xn(k)–), p(ym(k), yn(k)–)

}

+ max
{

p(xn(k)–, xn(k)), p(yn(k)–, yn(k))
}

. ()

By the same argument, we also have

max
{

p(xm(k), xn(k)–), p(ym(k), yn(k)–)
} ≤ max

{
p(xm(k), xn(k)), p(ym(k), yn(k))

}

+ max
{

p(xn(k)–, xn(k)), p(yn(k)–, yn(k))
}

. ()

Letting k → ∞ in (), () and using (), (), we have

lim
k→∞

max
{

p(xm(k), xn(k)–), p(ym(k), yn(k)–)
}

= ε. ()

Next, since xm(k) ≤ xn(k)– and ym(k) ≥ yn(k)–, we have

τ + F
(
p(xm(k)+, xn(k))

)
= τ + F

(
p
(
T(xm(k), ym(k)), T(xn(k)–, xn(k)–)

))

≤ F
(
max

{
p(xm(k), xn(k)–), p(yn(k)–, ym(k))

})
.

For the same reason, we also have

τ + F
(
p(yn(k), ym(k)+)

)
= τ + F

(
p
(
T(ym(k), xm(k)), T(yn(k)–, xn(k)–)

))

≤ F
(
max

{
p(xn(k)–, xm(k)), p(yn(k)–, ym(k))

})
.

Therefore

τ + max
{

F
(
p(xm(k)+, xn(k))

)
, F

(
p(yn(k), ym(k)+)

)}

≤ F
(
max

{
p(xn(k)–, xm(k)), p(yn(k)–, ym(k))

})
.
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Letting k → ∞ and using (), we arrive at

τ + F(ε) ≤ F(ε).

This yields ε = , this is a contradiction. Hence, we have proved that

lim
m,n→∞ max

{
p(xm, xn), p(yn, ym)

}
= .

This implies that

lim
m,n→∞ p(xm, xn) =  and lim

m,n→∞ p(ym, yn) = . ()

Since (X, p) is -complete partial metric space, we can find u, v ∈ X such that

lim
n→∞ p(u, xn) = p(u, u) = 

and

lim
n→∞ p(v, yn) = p(v, v) = .

Now, we show that u = T(u, v) and v = T(v, u). Indeed, since u ≤ u and v ≥ v, we have

τ + F
(
p
(
T(u, v), T(u, v)

)) ≤ F
(
max

{
p(u, u), p(v, v)

})
= F() = –∞.

This implies that p(T(u, v), T(u, v)) = .
Since xn → u, yn → v as n → ∞ in (X, p) and T is continuous, we have T(xn, yn) →

T(u, v) in (X, p), this means that

lim
n→∞ p

(
xn+, T(u, v)

)
= lim

n→∞ p
(
T(xn, yn), T(u, v)

)
= .

Now, we have

p
(
u, T(u, v)

) ≤ p(u, xn+) + p
(
xn+, T(u, v)

)
– p(xn+, xn+).

Letting n → ∞, we get p(u, T(u, v)) = , and so u = T(u, v). By the same argument, we also
have p(v, T(v, u)) = , and so v = T(v, u). �

In the next theorem, we omit the continuity hypothesis of T .

Theorem . Let (X,≤) be a partially ordered set and suppose there exists a partial met-
ric p on X such that (X, p) is a -complete partial metric space. Let T : X × X → X be a
mapping having the mixed monotone property on X. Assume that:

()
τ + F

(
p
(
T(x, y), T(u, v)

)) ≤ F
(
max

{
p(x, u), p(y, v)

})
()

for all x ≤ u, y ≥ v, for some F ∈F and τ > .
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() There are x, y ∈ X such that x ≤ T(x, y), y ≥ T(y, x).
Also, assume that X has the properties:
(i) If a non-decreasing sequence {xn} in X converges to x then xn ≤ x for all n.

(ii) If a non-increasing sequence {yn} in X converges to y then yn ≥ y for all n.
Then T has a coupled fixed point, that is, there exist x, y ∈ X such that x = T(x, y), y =

T(y, x).

Proof We follow the line of the proof of Theorem .. Hence, we only need to show that

lim
n→∞ p

(
xn+, F(u, v)

)
= lim

n→∞ p
(
T(xn, yn), T(u, v)

)
= ,

under conditions (i) and (ii). Indeed, we have xn ≤ u and yn ≥ v for all n. Applying (), we
have

τ + F
(
p
(
xn+, T(u, v)

))
= τ + F

(
p
(
F(xn, yn), F(u, v)

)) ≤ F
(
max

{
p(xn, u), p(yn, v)

})
.

Letting n → ∞, we obtain

lim
n→∞ F

(
p
(
xn+, T(u, v)

))
= –∞.

Hence

lim
n→∞ p

(
xn+, F(u, v)

)
= lim

n→∞ p
(
T(xn, yn), T(u, v)

)
= . �

We easily get the following corollary.

Corollary . Let (X,≤) be a partially ordered set and suppose there exists a partial met-
ric p on X such that (X, p) is a -complete partial metric space. Let T : X × X → X be a
mapping having the mixed monotone property on X. Assume that:

()

τ + F
(
p
(
T(x, y), T(u, v)

)) ≤ F
(

p(x, u) + p(y, v)


)
()

for all x ≤ u, y ≥ v, for some F ∈F and τ > .
() There are x, y ∈ X such that x ≤ T(x, y), y ≥ T(y, x).
Also, assume that either
(a) T is continuous; or
(b) X has the properties:

(i) If a non-decreasing sequence {xn} in X converges to x then xn ≤ x for all n.
(ii) If a non-increasing sequence {yn} in X converges to y then yn ≥ y for all n.

Then T has a coupled fixed point, that is, there exist x, y ∈ X such that x = T(x, y), y =
T(y, x).

Proof By the fact that

p(x, u) + p(y, v)


≤ max
{

p(x, u), p(y, v)
}
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for all x, y, u, v ∈ X, the condition () implies the condition (). Therefore, the result as
desired follows from Theorem . and Theorem .. �

The following corollary states that T has a fixed point under a certain condition.

Corollary . In addition to the hypotheses of Corollary ., if x and y are comparable,
then T has a unique fixed point, that is, there exists x ∈ X such that T(x, x) = x.

Proof Since x, y are comparable, we have x ≥ y or x ≤ y. Suppose we are in the first
case. Then, by the mixed monotone property of T , we have

x = T(x, y) ≥ T(y, y) ≥ T(y, x) = y,

and, hence, by induction one obtains

xn ≥ yn for all n ≥ .

Now, since x = limn→∞ xn+, y = limn→∞ yn+, we have p(x, y) = limn→∞ p(xn+, yn+). On the
other hand, we have

τ + F
(
p(xn+, yn+)

)
= τ + F

(
p
(
T(xn, yn), T(yn, xn)

))

≤ F
(
max

{(
p(xn, xn)

)
, p(yn, yn)

})
. ()

Following Lemma ., we also have

lim
n→∞ p(xn, xn) = lim

n→∞ p(yn, yn) = .

Letting n → ∞ in (), we arrive at limn→∞ p(xn+, yn+) = . Therefore p(x, y) = , or x = y.
Hence T(x, x) = x. �

Remark . We underline the fact that the coupled fixed point theorem in this paper can
be observed from the fixed point result of a single mapping by using the techniques in
[–]. On the other hand, we prefer to keep the proofs for the sake of completeness.

4 Main result: non-cooperative equilibrium problem for two players
In this section, by using coupled fixed point theorems, we shall show that a two person
game has a non-cooperative equilibrium. The reader may consult the excellent sources on
general concepts of two person games in [] and [].

Let (S, p) be a -complete partial metric space. Suppose that S has a partially order re-
lation ≤. We consider a two person game G in normal form that consists of the following
data:

() S = S and S = S are strategies for player  and, respectively, player ;
() the set U = S × S of allowed strategies pairs;
() we have the biloss operator

L :U → R


(s, s) �→ (
L(s, s); L(s, s)

)
,

()
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where Li(s, s) is the loss of player i if the strategies s and s are played. A pair (s, s) ∈ U
is called a non-cooperative equilibrium if

L(s, s) ≤ L(s, s), ∀s ∈ S,

L(s, s) ≤ L(s, s), ∀s ∈ S.
()

This means that

L(s, s) = min
s∈S

L(s, s),

L(s, s) = min
s∈S

L(s, s).
()

To see what strategy pairs are non-cooperative equilibria, one considers the optimal deci-
sion rules C, D such that

L
(
C(s), s

)
= min

s∈S
L(s, s),

L
(
s, D(s)

)
= min

s∈S
L(s, s).

()

Then any fixed point of the map

(s, s) �→ (
C(s), D(s)

)

is a non-cooperative equilibrium.
In this section, we shall consider that D(s) = C(s) for all s ∈ S. It is easy to see that if

L(s, s) = L(s, s) for all (s, s) ∈ S × S then D(s) = C(s) and it is not difficult to give an
example that D(s) = C(s) in the case L(s, s) �= L(s, s). Let T : S × S → R be the map
defined by

T(x, y) = C(y)

for all x, y ∈ S. Suppose that T has coupled fixed point (a, b) ∈R. It follows that

a = T(a, b) = C(b),

b = T(b, a) = C(a),
()

and (a, b) is fixed point of the map (s, s) �→ (C(s), C(s)). Therefore, the existence of the
coupled fixed point of T implies a non-cooperative equilibrium. Hence, we can reduce the
process of proving the existence of a non-cooperative equilibrium to giving the existence
of a coupled fixed point of T .

Theorem . Let S and G be as mentioned above. Suppose that the optimal decision rule
is a monotone continuous function C which satisfies:

()
τ + F

(
p
(
C(x), C(y)

)) ≤ F
(
p(x, y)

)
()

for all x, y ∈ S and y ≥ x, for some F ∈F and τ > .
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() There are x, y ∈R
+
 such that x ≤ C(y), y ≥ C(x).

Then the two person game G has a non-cooperative equilibrium.

Proof Let T : S × S → S be defined by

T(x, y) = C(y)

for all x, y ∈ S. Since C is continuous, we see that T is continuous. Since C is monotone, it
is easy to check that T has the mixed monotone property on X. For all x, y, u, v ∈R

+
, with

x ≤ u, y ≥ v we have

p
(
T(x, y), T(u, v)

)
= p

(
C(y), C(v)

)
.

Therefore, the condition () reduces to

τ + F
(
p
(
C(y), C(v)

)) ≤ F
(
max

{
p(x, u), p(y, v)

})
, ()

for every x ≤ u, y ≥ v. Since

max
{

p(x, u), p(y, v)
} ≥ p(y, v)

and F is increasing, we see that the condition () implies (). Applying Theorem ., we
conclude that T has a coupled fixed point. This implies that the two person game G has a
non-cooperative equilibrium. �

Since every metric is partial metric, we immediately obtain the following corollary.

Corollary . Let G be as mentioned above. Suppose that (S, d) is a metric space and the
optimal decision rule is a monotone continuous function C which satisfies:

()
τ + F

(
d
(
C(x), C(y)

)) ≤ F
(
d(x, y)

)
()

for all x, y ∈ S and x < y, for some F ∈F and τ > .
() There are x, y ∈R

+
 such that x ≤ C(y), y ≥ C(x).

Then the two person game G has a non-cooperative equilibrium.

Now we shall give an example to show that Corollary . is effective.

Example . Consider S = R
+
 endowed with the metric d(x, y) = |x – y| for all x, y ∈ S. Let

G be a two person game with biloss operator

L(s, s) = s
 ( + s)e–τ – s,

L(s, s) = s
( + s)e–τ – s,

where s, s ∈ R
+
 and a given τ > . It is easy to compute the optimal decision rules C, D

such that for G

C(s) =
e–τ

 + s
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and

D(s) =
e–τ

 + s
,

where s, s ∈ R
+
. We have D(s) = C(s) for all s ∈ R

+
, and C is continuous map. We need

show that C satisfies all conditions of Corollary .. We have

d
(
C(x), C(y)

)
= e–τ

∣∣
∣∣


 + x

–


 + y

∣∣
∣∣ ≤ e–τ |x – y| = e–τ d(x, y)

for all x, y ∈ R
+
. By passing to logarithms, we arrive at

τ + ln d
(
C(x), C(y)

) ≤ ln d(x, y)

for all x �= y. Since F(x) = ln x ∈F we can deduce that C satisfies () in Corollary .. Choos-
ing x = , we have

C(x) = e–τ .

Let y = , we have y ≥ C(x). On the other hand x =  ≤ C(y) = e–τ

 . Therefore, C sat-
isfies all conditions of Corollary .. Applying this corollary, we see that the two person
game G has a non-cooperative equilibrium.

5 Application to nonlinear integral equations
In this section, we study the existence of unique solution of nonlinear integral equations,
as an application of the fixed point theorem proved in Section .

Let us consider the following integral equation:

x(t) = h(t) +
∫ t



[
K(t, s) + K(t, s)

](
f
(
s, x(s)

)
+ g

(
s, x(s)

))
ds, ()

where the unknown function x(t) takes real values.
Let X = C([, K]) be the space of all real continuous functions defined on [, K]. It well

known that C([, K]) endowed with the metric

d(x, y) = ‖x – y‖ = max
t∈[,K ]

∣∣x(t) – y(t)
∣∣

is a complete metric space. By a solution of (), we mean a continuous function x ∈ X
that satisfies () on [, K]. By certain conditions on K, K, f , g , and using the results of
the previous section, we will prove that () has a unique solution. For this, note that X
can be equipped with the partial order � given by

x, y ∈ X, x � y

⇐⇒ (
x(t) ≤ y(t) ∀t ∈ [, K] and ‖x‖,‖y‖ ≤ 

)
or x(t) = y(t) ∀t ∈ [, K].

()

As in [] and the references given therein, we assume that the functions K, K, f , g
fulfill the following conditions.
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Assumption .
(A) f , g ∈ C([, K] ×R), h ∈ X , and K, K ∈ C([, K] × [, K]) such that K(t, s) ≥  and

K(t, s) ≤  for all t, s ≥ ;
(B) f (t, ·) : R→R is increasing for all t ∈ [, K]; g(t, ·) : R →R is decreasing for all

t ∈ [, K];
(C) there exists τ ∈ [,∞) such that

 ≤ f (t, x) – f (t, y) ≤ τe–τ x – y


, ∀x ≥ y

and

–τe–τ x – y


≤ g(t, x) – g(t, y) ≤ , ∀x ≥ y;

(D) maxt,s∈[,K ] |K(t, s) – K(t, s)| ≤ .

Define T : X × X → X by

T(x, y)(t) = h(t) +
∫ t


K(t, s)

(
f
(
s, x(s)

)
+ g

(
s, y(s)

))
ds

+
∫ t


K(t, s)

(
f
(
s, y(s)

)
+ g

(
s, x(s)

))
ds

for all t ∈ [, K].

Definition . An element (α,β) ∈ C([, K] × C[, K]) is a coupled normal lower and a
normal upper solution of the integral equation () if α � β and

α � T(α,β) and β � T(β ,α).

Theorem . Suppose that Assumption . is fulfilled. Then the existence of a coupled
normal lower and normal upper solution for () provides the existence of a unique solution
of () in C([, K]).

Proof Suppose {un} is a monotone non-decreasing sequence in X that converges to u ∈ X.
Then, for every t ∈ [, K], the sequence of real numbers u(t) ≤ u(t) ≤ · · · ≤ un(t) ≤ · · ·
converges to u(t). Moreover, since the normed map is continuous, we can deduce that
‖u‖ ≤  provided ‖un‖ ≤  for all n. Therefore, for every t ∈ [, K], n ∈ N, un(t) ≤ u(t).
Hence un ≤ u, for all n ∈N.

Similarly, we can verify that the limit v(t) of a monotone non-increasing sequence vn(t)
in X is a lower bound for all elements in the sequence. That is, v ≤ vn for all n. Hence, the
condition (b) in Corollary . holds.

For x ∈ X, we defined ‖x‖τ = maxt∈[,K ] |x(t)|e–τ t , where τ ≥  is chosen arbitrarily. It is
easy to check that ‖ · ‖τ is a norm equivalent to the maximum norm in X and X endowed
with the metric dτ defined by

dτ (x, y) = ‖x – y‖τ = max
t∈[,K ]

{∣∣x(t) – y(t)
∣∣e–τ t}

for all x, y ∈ X is a complete metric space.
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Now, consider X endowed with the partial metric given by

pτ (x, y) =

⎧
⎨

⎩
dτ (x, y) if ‖x‖τ ≤ ,‖y‖τ ≤ ,

dτ (x, y) + τ otherwise.
()

It is easy to see that (X, pτ ) is a -complete partial metric space but is not complete (see
[]). We recall that T : X × X → X by

T(x, y)(t) = h(t) +
∫ t


K(t, s)

(
f
(
s, x(s)

)
+ g

(
s, y(s)

))
ds

+
∫ t


K(t, s)

(
f
(
s, y(s)

)
+ g

(
s, x(s)

))
ds

for all t ∈ [, K].
Next, we show that T has the mixed monotone property. Indeed, for x, x ∈ C([, K])

and x ≤ x, that is, x(t) ≤ x(t), for every t ∈ [, K], we have

T(x, y)(t) – T(x, y)(t) =
∫ t


K(t, s)

[
f
(
s, x(s)

)
+ g

(
s, y(s)

)]
ds

+
∫ t


K(t, s)

[
f
(
s, y(s)

)
+ g

(
s, x(s)

)]
ds + h(t)

–
∫ t


K(t, s)

[
f
(
s, x(s)

)
+ g

(
s, y(s)

)]
ds

–
∫ t


K(t, s)

[
f
(
s, y(s)

)
+ g

(
s, x(s)

)]
ds – h(t)

=
∫ t


K(t, s)

[
f
(
s, x(s)

)
– f

(
s, x(s)

)]
ds

+
∫ t


K(t, s)

[
g
(
s, x(s)

)
– g

(
s, x(s)

)]
ds ≤ ,

for every t ∈ [, K], by Assumption .. This yields T(x, y)(t) ≤ T(x, y)(t), for every t ∈
[, K], that is, T(x, y) ≤ T(x, y). By the same computation, we arrive at T(x, y) ≤ T(x, y)
if y ≥ y. Hence, T has the mixed monotone property.

Now, for x ≥ u and y ≤ v, we have

∣∣T(x, y)(t) – T(u, v)(t)
∣∣

=
∣
∣∣
∣

[∫ t


K(t, s)

(
f
(
s, x(s)

)
+ g

(
s, y(s)

))
ds

+
∫ t


K(t, s)

(
f
(
s, y(s)

)
+ g

(
s, x(s)

))
ds + h(t)

]

–
[∫ t


K(t, s)

(
f
(
s, u(s)

)
+ g

(
s, v(s)

))
ds

+
∫ t


K(t, s)

(
f
(
s, v(s)

)
+ g

(
s, u(s)

))
ds + h(t)

]∣
∣∣∣

=
∣∣
∣∣

∫ t


K(t, s)

[(
f
(
s, x(s)

)
– f

(
s, u(s)

))
+

(
g
(
s, y(s)

)
– g

(
s, v(s)

))]
ds
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+
∫ t


K(t, s)

[(
f
(
s, y(s)

)
– f

(
s, v(s)

))
+

(
g
(
s, x(s)

)
– g

(
s, u(s)

))]
ds

∣
∣∣
∣

=
∣∣
∣∣

∫ t


K(t, s)

[(
f
(
s, x(s)

)
– f

(
s, u(s)

))
–

(
g
(
s, v(s)

)
– g

(
s, y(s)

))]
ds

–
∫ t


K(t, s)

[(
f
(
s, v(s)

)
– f

(
s, y(s)

))
–

(
g
(
s, x(s)

)
– g

(
s, u(s)

))]
ds

∣
∣∣
∣

≤
∣∣
∣∣

∫ t


K(t, s)τe–τ

[
x(s) – u(s)


+

v(s) – y(s)


]
ds

–
∫ t


K(t, s)τe–τ

[
v(s) – y(s)


+

x(s) – u(s)


]
ds

∣∣
∣∣

≤ τe–τ

∫ t



∣
∣∣
∣
[
K(t, s) – K(t, s)

]
[

x(s) – u(s)


+
v(s) – y(s)



]∣
∣∣
∣ds

= τe–τ

∫ t



∣
∣K(t, s) – K(t, s)

∣
∣eτ s

[ |x(s) – u(s)|e–τ s


+

|x(s) – u(s)|e–τ s



]
ds

≤ τe–τ

∫ t


max

t,s∈[,K ]

∣∣K(t, s) – K(t, s)
∣∣eτ s

[‖x – u‖τ


+

‖y – v‖τ



]
ds

≤ τe–τ eτ t

τ

[‖x – u‖τ


+

‖y – v‖τ



]
.

It follows that

∣
∣T(x, y)(t) – T(u, v)(t)

∣
∣e–τ t ≤ e–τ

[‖x – u‖τ


+

‖y – v‖τ



]
.

Hence, for all x, y, u, v ∈ X such that x ≥ u and y ≤ v, since ‖x‖τ ,‖y‖τ ,‖u‖τ ,‖v‖τ ≤ , we
have

pτ

(
T(x, y), T(u, v)

) ≤ e–τ 

[
pτ (x, u) + pτ (y, v)

]
.

By passing to logarithms, we arrive at

τ + ln pτ

(
T(x, y), T(u, v)

) ≤ ln

(
pτ (x, u) + pτ (y, v)



)
.

Since F(x) = ln x ∈ F , we conclude that T satisfies the condition (). Now, let (α,β) be a
coupled normal lower and normal upper solution of the integral equation of (). Then
we have α � β ,

α � T(α,β) and β � T(β ,α).

Finally, applying Corollary ., we can conclude that T has a fixed point x. Hence T(x, x) =
x and x is an unique solution of (). �
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