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1 Introduction
For a real number k, a CAT(k) space is a geodesic metric space whose geodesic triangle is
thinner than the corresponding comparison triangle in a model space with curvature k.
The precise definition is given below. The term ‘CAT(k)’ was coined by Gromov ([], p.).
The initials are in honor of Cartan, Alexandrov and Toponogov, each of whom considered
similar conditions in varying degrees of generality.

Fixed point theory in CAT(k) spaces was first studied by Kirk (see [, ]). His works were
followed by a series of new works by many authors, mainly focusing on CAT() spaces (see,
e.g., [–]). It is worth mentioning that the results in CAT() spaces can be applied to any
CAT(k) space with k ≤  since any CAT(k) space is a CAT(m) space for every m ≥ k (see
[], ‘Metric spaces of non-positive curvature’).

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk
[] in , as an important generalization of the class of nonexpansive mappings, and
they proved that if C is a nonempty closed and bounded subset of a uniformly convex
Banach space, then every asymptotically nonexpansive self-mapping of C has a fixed point.

There are many papers dealing with the approximation of fixed points of asymptotically
nonexpansive mappings and asymptotically quasi-nonexpansive mappings in uniformly
convex Banach spaces, using modified Mann, Ishikawa and three-step iteration processes
(see, e.g., [–]; see also [–]).

The concept of �-convergence in a general metric space was introduced by Lim []. In
, Kirk and Panyanak [] used the notion of �-convergence introduced by Lim []
to prove in the CAT() space and analogous of some Banach space results which involve
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weak convergence. Further, Dhompongsa and Panyanak [] obtained �-convergence
theorems for the Picard, Mann and Ishikawa iterations in a CAT() space. Since then, the
existence problem and the �-convergence problem of iterative sequences to a fixed point
for nonexpansive mapping, asymptotically nonexpansive mapping, nearly asymptotically
nonexpansive mapping, asymptotically nonexpansive mapping in the intermediate sense,
asymptotically quasi-nonexpansive mapping in the intermediate sense, total asymptot-
ically nonexpansive mapping and asymptotically quasi-nonexpansive mapping through
Picard, Mann [], Ishikawa [], modified Agarwal et al. [] have been rapidly devel-
oped in the framework of CAT() spaces and many papers have appeared in this direction
(see, e.g., [, , –]).

The aim of this article is to establish �-convergence and strong convergence of a modi-
fied three-step iteration process which contains a modified S-iteration process for a class
of mappings which is wider than that of asymptotically nonexpansive mappings in CAT(k)
spaces. Our results extend and improve the corresponding results of Abbas et al. [],
Dhompongsa and Panyanak [], Khan and Abbas [] and many other results of this
direction.

2 Preliminaries
Let F(T) = {x ∈ K : Tx = x} denote the set of fixed points of the mapping T . We begin with
the following definitions.

Definition . Let (X, d) be a metric space and K be its nonempty subset. Then the map-
ping T : K → K is said to be:

() nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ K ;
() asymptotically nonexpansive if there exists a sequence {un} ⊂ [,∞), with

limn→∞ un = , such that d(Tnx, Tny) ≤ ( + un)d(x, y) for all x, y ∈ K and n ≥ ;
() asymptotically quasi-nonexpansive if F(T) 	= ∅, and there exists a sequence

{un} ⊂ [,∞), with limn→∞ un = , such that d(Tnx, p) ≤ ( + un)d(x, p) for all x ∈ K ,
p ∈ F(T) and n ≥ ;

() uniformly L-Lipschitzian if there exists a constant L >  such that
d(Tnx, Tny) ≤ Ld(x, y) for all x, y ∈ K and n ≥ ;

() semi-compact if for a sequence {xn} in K , with limn→∞ d(xn, Txn) = , there exists a
subsequence {xnk } of {xn} such that xnk → p ∈ K as k → ∞;

() a sequence {xn} in K is called approximate fixed point sequence for T (AFPS, in
short) if limn→∞ d(xn, Txn) = .

The class of nearly Lipschitzian mappings is an important generalization of the class of
Lipschitzian mappings and was introduced by Sahu [].

Definition . Let K be a nonempty subset of a metric space (X, d) and fix a sequence
{an} ⊂ [,∞) with limn→∞ an = . A mapping T : K → K is said to be nearly Lipschitzian
with respect to {an} if, for all n ≥ , there exists a constant kn ≥  such that

d
(
Tnx, Tny

) ≤ kn
[
d(x, y) + an

]
for all x, y ∈ K .

The infimum of the constants kn, for which the above inequality holds, is denoted by
η(Tn) and is called nearly Lipschitz constant of Tn.
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A nearly Lipschitzian mapping T with sequence {an,η(Tn)} is said to be:
(i) nearly nonexpansive if η(Tn) =  for all n ≥ ;

(ii) nearly asymptotically nonexpansive if η(Tn) ≥  for all n ≥  and limn→∞ η(Tn) = ;
(iii) nearly uniformly k-Lipschitzian if η(Tn) ≤ k for all n ≥ .
Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly,

a geodesic from x to y) is a map c from a closed interval [, l] ⊂ R to X such that c() = x,
c(l) = y and d(c(t), c(t′)) = |t – t′| for all t, t′ ∈ [, l]. In particular, c is an isometry, and
d(x, y) = l. The image α of c is called a geodesic (or metric) segment joining x and y. We
say that X is (i) a geodesic space if any two points of X are joined by a geodesic, and (ii)
uniquely geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X, which
we will denote by [x, y], called the segment joining x to y. This means that z ∈ [x, y] if and
only if there exists α ∈ [, ] such that d(x, z) = ( – α)d(x, y) and d(y, z) = αd(x, y).

In this case, we write z = αx ⊕ ( – α)y. The space (X, d) is said to be a geodesic space
(D-geodesic space) if every two points of X (every two points of distance smaller than D)
are joined by a geodesic, and X is said to be uniquely geodesic (D-uniquely geodesic) if
there is exactly one geodesic joining x and y for each x, y ∈ X (for x, y ∈ X with d(x, y) < D).
A subset K of X is said to be convex if K includes every geodesic segment joining any two
of its points. The set K is said to be bounded if diam(K) := sup{d(x, y) : x, y ∈ K} < ∞.

The model spaces M
k are defined as follows.

Given a real number k, we denote by M
k the following metric spaces:

(i) if k = , then M
k is an Euclidean space E

n;
(ii) if k > , then M

k is obtained from the sphere S
n by multiplying the distance

function by √
k

;
(iii) if k < , then M

k is obtained from a hyperbolic space H
n by multiplying the

distance function by √
–k

.
A geodesic triangle �(x, x, x) in a geodesic metric space (X, d) consists of three points

in X (the vertices of �) and a geodesic segment between each pair of vertices (the edges
of �). A comparison triangle for the geodesic triangle �(x, x, x) in (X, d) is a triangle
�(x, x, x) := �(x, x, x) in M

k such that d(x, x) = dM
k
(x, x), d(x, x) = dM

k
(x, x)

and d(x, x) = dM
k
(x, x). If k ≤ , then such a comparison triangle always exists in M

k .
If k > , then such a triangle exists whenever d(x, x) + d(x, x) + d(x, x) < Dk , where
Dk = π/

√
k. A point p̄ ∈ [x̄, ȳ] is called a comparison point for p ∈ [x, y] if d(x, p) = dM

k
(x̄, p̄).

A geodesic triangle �(x, x, x) in X is said to satisfy the CAT(k) inequality if for any
p, q ∈ �(x, x, x) and for their comparison points p̄, q̄ ∈ �(x̄, x̄, x̄), one has d(p, q) =
dM

k
(p, q).

Definition . If k ≤ , then X is called a CAT(k) space if and only if X is a geodesic space
such that all of its geodesic triangles satisfy the CAT(k) inequality.

If k > , then X is called a CAT(k) space if and only if X is Dk-geodesic and any geodesic
triangle �(x, x, x) in X with d(x, x) + d(x, x) + d(x, x) < Dk satisfies the CAT(k)
inequality.

Notice that in a CAT() space (X, d) if x, y, z ∈ X, then the CAT() inequality implies

(CN) d
(

x,
y ⊕ z



)
≤ 


d(x, y) +




d(x, z) –



d(y, z).
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This is the (CN) inequality of Bruhat and Tits []. This inequality is extended by Dhom-
pongsa and Panyanak in [] as

(
CN∗) d(z,αx ⊕ ( – α)y

) ≤ αd(z, x) + ( – α)d(z, y) – α( – α)d(x, y)

for all α ∈ [, ] and x, y, z ∈ X. In fact, if X is a geodesic space, then the following state-
ments are equivalent:

(i) X is a CAT() space;
(ii) X satisfies the (CN) inequality;

(iii) X satisfies the (CN∗) inequality.
Let R ∈ (, ]. Recall that a geodesic space (X, d) is said to be R-convex for R (see []) if

for any three points x, y, z ∈ X, we have

d(z,αx ⊕ ( – α)y
) ≤ αd(z, x) + ( – α)d(z, y)

–
R


α( – α)d(x, y). (.)

It follows from (CN∗) that a geodesic space (X, d) is a CAT() space if and only if (X, d) is
R-convex for R=.

In the sequel we need the following lemma.

Lemma . ([], p.) Let k >  and (X, d) be a complete CAT(k) space with diam(X) =
π/–ε√

k
for some ε ∈ (,π/). Then

d
(
( – α)x ⊕ αy, z

) ≤ ( – α)d(x, z) + αd(y, z)

for all x, y, z ∈ X and α ∈ [, ].

We now recall some elementary facts about CAT(k) spaces. Most of them are proved in
the framework of CAT() spaces. For completeness, we state the results in a CAT(k) space
with k > .

Let {xn} be a bounded sequence in a CAT(k) space (X, d). For x ∈ X, set

r
(
x, {xn}

)
= lim sup

n→∞
d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r
({xn}

)
= inf

{
r
(
x, {xn}

)
: x ∈ X

}
,

and the asymptotic center A({xn}) of {xn} is the set

A
({xn}

)
=

{
x ∈ X : r

({xn}
)

= r
(
x, {xn}

)}
.

It is known from Proposition . of [] that a CAT(k) space with diam(X) = π


√

k
, A({xn})

consists of exactly one point. We now give the concept of �-convergence and collect some
of its basic properties.



Saluja et al. Journal of Inequalities and Applications  (2015) 2015:156 Page 5 of 18

Definition . ([, ]) A sequence {xn} in X is said to �-converge to x ∈ X if x is the
unique asymptotic center of {xn} for every subsequence {un} of {xn}. In this case we write
�-limn xn = x and call x the �-limit of {xn}.

Lemma . Let k >  and (X, d) be a complete CAT(k) space with diam(X) = π/–ε√
k

for some
ε ∈ (,π/). Then the following statements hold:

(i) ([], Corollary .) Every sequence in X has a �-convergent subsequence.
(ii) ([], Proposition .) If {xn} ⊆ X and �-limn→∞ xn = x, then

x ∈ ⋂∞
k= conv{xk , xk+, . . . },

where conv(A) =
⋂{B : B ⊇ A and B is closed and convex}.

By the uniqueness of asymptotic center, we can obtain the following lemma in [].

Lemma . ([], Lemma .) Let k >  and (X, d) be a complete CAT(k) space with
diam(X) = π/–ε√

k
for some ε ∈ (,π/). If {xn} is a bounded sequence in X with A({xn}) = {x}

and {un} is a subsequence of {xn} with A({un}) = {u} and the sequence {d(xn, u)} converges,
then x = u.

Lemma . (see []) Let {pn}∞n=, {qn}∞n= and {rn}∞n= be sequences of nonnegative numbers
satisfying the inequality

pn+ ≤ ( + qn)pn + rn, ∀n ≥ .

If
∑∞

n= qn < ∞ and
∑∞

n= rn < ∞, then limn→∞ pn exists.

Proposition . ([], Proposition .) Let {xn} be a bounded sequence in a CAT()
space X, and let C be a closed convex subset of X which contains {xn}. Then

(i) �-limn→∞ xn = x implies that {xn} ⇀ x,
(ii) the converse is true if {xn} is regular.

Algorithm  The sequence {xn} defined by x ∈ K and

yn = ( – βn)xn ⊕ βnTnxn,

xn+ = ( – αn)Tnxn ⊕ αnTnyn, n ≥ ,
(.)

where {αn}∞n= and {βn}∞n= are appropriate sequences in (, ), is called a modified S-
iterative sequence (see []).

If Tn = T for all n ≥ , then Algorithm  reduces to the following.

Algorithm  The sequence {xn} defined by x ∈ K and

yn = ( – βn)xn ⊕ βnTxn,

xn+ = ( – αn)Txn ⊕ αnTyn, n ≥ ,
(.)

where {αn}∞n= and {βn}∞n= are appropriate sequences in (, ), is called an S-iterative se-
quence (see []).
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Algorithm  The sequence {xn} defined by x ∈ K and

yn = ( – βn)xn ⊕ βnTnxn,

xn+ = ( – αn)xn ⊕ αnTnyn, n ≥ ,
(.)

where {αn}∞n= and {βn}∞n= are appropriate sequences in [, ], is called an Ishikawa iterative
sequence (see []).

If βn =  for all n ≥ , then Algorithm  reduces to the following.

Algorithm  The sequence {xn} defined by x ∈ K and

xn+ = ( – αn)xn ⊕ αnTnxn, n ≥ , (.)

where {αn}∞n= is a sequence in (, ), is called a Mann iterative sequence (see []).

Motivated and inspired by [] and some others, we modify iteration scheme (.) as
follows.

Algorithm  The sequence {xn} defined by x ∈ K and

zn = ( – γn)xn ⊕ γnTnxn,

yn = ( – βn)xn ⊕ βnTnzn,

xn+ = ( – αn)Tnxn ⊕ αnTnyn, n ≥ ,

(.)

where {αn}∞n=, {βn}∞n=, {γn}∞n= are appropriate sequences in (, ), is called a modified
three-step iterative sequence. Iteration scheme (.) is independent of modified Noor it-
eration, modified Ishikawa iteration and modified Mann iteration schemes.

If γn =  for all n ≥ , then Algorithm  reduces to Algorithm .
Iteration procedures in fixed point theory are led by considerations in summability the-

ory. For example, if a given sequence converges, then we do not look for the convergence
of the sequence of its arithmetic means. Similarly, if the sequence of Picard iterates of any
mapping T converges, then we do not look for the convergence of other iteration proce-
dures.

The three-step iterative approximation problems were studied extensively by Noor [,
], Glowinski and Le Tallec [], and Haubruge et al. []. The three-step iterations lead
to highly parallelized algorithms under certain conditions. They are also a natural general-
ization of the splitting methods for solving partial differential equations. It has been shown
[] that a three-step iterative scheme gives better numerical results than the two-step and
one-step approximate iterations. Thus we conclude that a three-step scheme plays an im-
portant and significant role in solving various problems which arise in pure and applied
sciences. These facts motivated us to study a class of three-step iterative schemes in the
setting of CAT(k) spaces with k > .

In this paper, we study a newly defined modified three-step iteration scheme to approx-
imate a fixed point for nearly asymptotically nonexpansive mappings in the setting of a
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CAT(k) space with k >  and also establish �-convergence and strong convergence results
for the above mentioned iteration scheme and mappings.

3 Main results
Now, we shall introduce existence theorems.

Theorem . Let k >  and (X, d) be a complete CAT(k) space with diam(X) = π/–ε√
k

for
some ε ∈ (,π/). Let K be a nonempty closed convex subset of X, and let T : K → K be a
continuous nearly asymptotically nonexpansive mapping. Then T has a fixed point.

Proof Fix x ∈ K . We can consider the sequence {Tnx}∞n= as a bounded sequence in K . Let
φ be a function defined by

φ : K → [,∞), φ(u) = lim sup
n→∞

d
(
Tnx, u

)
for all u ∈ K .

Then there exists z ∈ K such that φ(z) = inf{�(u) : u ∈ K}. Since T is a nearly asymptot-
ically nonexpansive mapping, for each n, m ∈N, we have

d
(
Tn+mx, Tmz

) ≤ η
(
Tm)(

d
(
Tnx, z

)
+ am

)
.

On taking limit as n → ∞, we obtain

φ
(
Tmz

) ≤ η
(
Tm)

φ(z) + η
(
Tm)

am (.)

for any m ∈N. This implies that

lim
m→∞φ

(
Tmz

) ≤ φ(z). (.)

In view of inequality (.), we obtain

d
(

Tnx,
Tmz ⊕ Thz



)

≤ 


d
(
Tnx, Tmz

) +



d
(
Tnx, Thz

)

–
R


d
(
Tmz, Thz

),

which, on taking limit as n → ∞, gives

φ(z) ≤ �

(
Tmz ⊕ Thz



)

≤ 

φ
(
Tmz

) +


φ
(
Thz

) –
R


d
(
Tmz, Thz

). (.)

The above inequality yields

R


d
(
Tmz, Thz

) ≤ 

φ
(
Tmz

) +


φ
(
Thz

) – φ(z). (.)
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By (.) and (.), we have lim supm,h→∞ d(Tmz, Thz) ≤ . Therefore, {Tnz}∞n= is a Cauchy
sequence in K and hence converges to some point v ∈ K . Since T is continuous,

Tv = T
(

lim
n→∞ Tnz

)
= lim

n→∞ Tn+z = v.

This shows that T has a fixed point in K . This completes the proof. �

From Theorem . we shall now derive a result for a CAT() space as follows.

Corollary . Let (X, d) be a complete CAT() space and K be a nonempty bounded, closed
convex subset of X. If T : K → K is a continuous nearly asymptotically nonexpansive map-
ping, then T has a fixed point.

Proof It is well known that every convex subset of a CAT() space, equipped with the
induced metric, is a CAT(k) space (see []). Then (K , d) is a CAT() space and hence it is
a CAT(k) space for all k > . Also note that K is R-convex for R = . Since K is bounded,
we can chose ε ∈ (,π/) and k >  so that diam(K) ≤ π/–ε√

k
. The conclusion follows from

Theorem .. This completes the proof. �

Theorem . Let k >  and (X, d) be a complete CAT(k) space with diam(X) = π/–ε√
k

for
some ε ∈ (,π/). Let K be a nonempty closed convex subset of X, and let T : K → K be a
uniformly continuous nearly asymptotically nonexpansive mapping. If {xn} is an AFPS for
T such that �-limn→∞ xn = z, then z ∈ K and z = Tz.

Proof By Lemma ., we get that z ∈ K . As in Theorem ., we define

φ(u) = lim sup
n→∞

d(xn, u)

for each u ∈ K . Since limn→∞ d(xn, Txn) = , by induction we can show that

lim
n→∞ d

(
xn, Tmxn

)
= 

for some m ∈N. This implies that

φ(u) = lim sup
n→∞

d
(
Tmxn, u

)
for each u ∈ K and m ∈N. (.)

Taking u = Tmz in (.), we have

φ
(
Tmz

)
= lim sup

n→∞
d
(
Tmxn, Tmz

)

≤ lim sup
n→∞

[
η
(
Tm)(

d(xn, z) + am
)]

. (.)

Hence

lim sup
m→∞

φ
(
Tmz

) ≤ φ(z). (.)
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In view of inequality (.), we have

d
(

xn,
z ⊕ Tmz



)

≤ 


d(xn, z) +



d
(
xn, Tmz

) –
R


d
(
z, Tmz

),

where R = (π – ε) tan(ε). Since �-limn→∞ xn = z, letting n → ∞, we get

φ(z) ≤ �

(
z ⊕ Tmz



)

≤ 

φ(z) +



φ
(
Tmz

) –
R


d
(
z, Tmz

). (.)

This yields

d
(
z, Tmz

) ≤ 
R

[
φ
(
Tmz

) – φ(z)]. (.)

By (.) and (.), we have limm→∞ d(z, Tmz) = . Since T is continuous,

Tz = T
(

lim
m→∞ Tmz

)
= lim

n→∞ Tm+z = z.

This shows that T has a fixed point in K . This completes the proof. �

From Theorem . we can derive the following result as follows.

Corollary . Let (X, d) be a complete CAT() space, K be a nonempty bounded, closed
convex subset of X and T : K → K be a uniformly continuous nearly asymptotically non-
expansive mapping. If {xn} is an AFPS for T such that �-limn→∞ xn = z, then z ∈ K and
z = Tz.

Now, we prove the following lemma using iteration scheme (.) needed in the sequel.

Lemma . Let k >  and (X, d) be a complete CAT(k) space with diam(X) = π/–ε√
k

for
some ε ∈ (,π/). Let K be a nonempty closed and convex subset of X, and let T : K →
K be a uniformly continuous nearly asymptotically nonexpansive mapping with sequence
{(an,η(Tn))} such that

∑∞
n= an < ∞ and

∑∞
n=(η(Tn) – ) < ∞. Let {xn} be a sequence in K

defined by (.). Then limn→∞ d(xn, p) exists for each p ∈ F(T).

Proof It follows from Theorem . that F(T) 	= ∅. Let p ∈ F(T) and since T is nearly asymp-
totically nonexpansive, by (.) and Lemma ., we have

d(zn, p) = d
(
( – γn)xn ⊕ γnTnxn, p

)

≤ ( – γn)d(xn, p) + γnd
(
Tnxn, p

)

≤ ( – γn)d(xn, p) + γn
[
η
(
Tn)(d(xn, p) + an

)]

≤ η
(
Tn)[( – γn)d(xn, p) + γnd(xn, p)

]
+ γnη

(
Tn)an

≤ η
(
Tn)d(xn, p) + η

(
Tn)an. (.)
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Again using (.), (.) and Lemma ., we have

d(yn, p) = d
(
( – βn)xn ⊕ βnTnzn, p

)

≤ ( – βn)d(xn, p) + βnd
(
Tnzn, p

)

≤ ( – βn)d(xn, p) + βn
[
η
(
Tn)(d(zn, p) + an

)]

≤ ( – βn)d(xn, p) + βnη
(
Tn)d(zn, p) + η

(
Tn)an

≤ ( – βn)d(xn, p) + βnη
(
Tn)[η

(
Tn)(d(xn, p) + η

(
Tn)an

)]
+ η

(
Tn)an

≤ η
(
Tn)[( – βn)d(xn, p) + βnd(xn, p)

]
+

(
η
(
Tn) + η

(
Tn))an

≤ η
(
Tn)d(xn, p) +

(
η
(
Tn) + η

(
Tn))an. (.)

Finally, using (.), (.) and Lemma ., we get

d(xn+, p) = d
(
( – αn)Tnxn ⊕ αnTnyn, p

)

≤ ( – αn)d
(
Tnxn, p

)
+ αnd

(
Tnyn, p

)

≤ ( – αn)
[
η
(
Tn)(d(xn, p) + an

)]
+ αn

[
η
(
Tn)(d(yn, p) + an

)]

= ( – αn)η
(
Tn)d(xn, p) + αnη

(
Tn)d(yn, p) + η

(
Tn)an

≤ ( – αn)η
(
Tn)d(xn, p) + αnη

(
Tn)

× [
η
(
Tn)d(xn, p) +

(
η
(
Tn) + η

(
Tn))an

]
+ η

(
Tn)an

≤ η
(
Tn)[( – αn)d(xn, p) + αnd(xn, p)

]

+ η
(
Tn)(η

(
Tn) + η

(
Tn))an + η

(
Tn)an

= η
(
Tn)d(xn, p) +

(
η
(
Tn) + η

(
Tn) + η

(
Tn))an

= ( + wn)d(xn, p) + vn, (.)

where wn = (η(Tn) – ) = (η(Tn) + η(Tn) + )(η(Tn) – ) and vn = (η(Tn) + η(Tn) +
η(Tn))an. Since

∑∞
n=(η(Tn) – ) < ∞ and

∑∞
n= an < ∞, it follows that

∑∞
n= wn < ∞ and

∑∞
n= vn < ∞. Hence, by Lemma ., we get that limn→∞ d(xn, p) exists. This completes the

proof. �

Lemma . Let k >  and (X, d) be a complete CAT(k) space with diam(X) = π/–ε√
k

for
some ε ∈ (,π/). Let K be a nonempty closed convex subset of X, and let T : K →
K be a uniformly continuous nearly asymptotically nonexpansive mapping with se-
quence {(an,η(Tn))} such that

∑∞
n= an < ∞ and

∑∞
n=(η(Tn) – ) < ∞. Let {xn} be a se-

quence in K defined by (.). Let {αn}, {βn} and {γn} be sequences in (, ) such that
lim infn→∞ αn( – αn) > , lim infn→∞ βn( – βn) >  and lim infn→∞ γn( – γn) > . Then
limn→∞ d(xn, Txn) = .

Proof It follows from Theorem . that F(T) 	= ∅. Let p ∈ F(T). From Lemma ., we obtain
that limn→∞ d(xn, p) exists for each p ∈ F(T). We claim that limn→∞ d(Txn, xn) = .
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Since {xn} is bounded, there exists R >  such that {xn}, {yn}, {zn} ⊂ B′
R(p) for all n ≥ 

with R′ < Dk/. In view of (.), we have

d(zn, p) = d
(
( – γn)xn ⊕ γnTnxn, p

)

≤ γnd
(
Tnxn, p

) + ( – γn)d(xn, p) –
R


γn( – γn)d
(
Tnxn, xn

)

≤ γn
[
η
(
Tn)(d(xn, p) + an

)] + ( – γn)d(xn, p) –
R


γn( – γn)d
(
Tnxn, xn

)

≤ η
(
Tn)d(xn, p) + Pan –

R


γn( – γn)d
(
Tnxn, xn

)
(.)

for some P > . This implies that

d(zn, p) ≤ η
(
Tn)d(xn, p) + Pan. (.)

Again from (.) and using (.), we have

d(yn, p) = d(( – βn)xn ⊕ βnTnzn, p
)

≤ βnd
(
Tnzn, p

) + ( – βn)d(xn, p)

–
R


βn( – βn)d
(
Tnzn, xn

)

≤ βn
[
η
(
Tn)(d(zn, p) + an

)] + ( – βn)d(xn, p)

–
R


βn( – βn)d
(
Tnzn, xn

)

≤ η
(
Tn)

βnd(zn, p) + Qan + ( – βn)d(xn, p)

–
R


βn( – βn)d
(
Tnzn, xn

)

≤ η
(
Tn)

βn
[
η
(
Tn)d(xn, p) + Pan

]
+ Qan

+ ( – βn)d(xn, p) – βn( – βn)d
(
Tnzn, xn

)

≤ η
(
Tn)d(xn, p) + (L + Q)an

–
R


βn( – βn)d
(
Tnzn, xn

) (.)

for some L, Q > .
This implies that

d(yn, p) ≤ η
(
Tn)d(xn, p) + (L + Q)an. (.)

Finally, from (.) and using (.), we have

d(xn+, p) = d
(
( – αn)Tnxn ⊕ αnTnyn, p

)

≤ αnd
(
Tnyn, p

) + ( – αn)d
(
Tnxn, p

)

–
R


αn( – αn)d
(
Tnxn, Tnyn

)
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≤ αn
[
η
(
Tn)(d(yn, p) + an

)] + ( – αn)
[
η
(
Tn)d(xn, p) + an

]

–
R


αn( – αn)d
(
Tnxn, Tnyn

)

≤ αnη
(
Tn)d(yn, p) + Man + ( – αn)η

(
Tn)d(xn, p)

+ Nan –
R


αn( – αn)d
(
Tnxn, Tnyn

)

≤ αnη
(
Tn)[

η
(
Tn)d(xn, p) + (L + Q)an

]

+ (M + N)an + ( – αn)η
(
Tn)d(xn, p)

–
R


αn( – αn)d
(
Tnxn, Tnyn

)

≤ η
(
Tn)d(xn, p) + (L + Q + M + N)an

–
R


αn( – αn)d
(
Tnxn, Tnyn

)

=
[
 +

(
η
(
Tn) – 

)]
d(xn, p) + (L + Q + M + N)an

–
R


αn( – αn)d
(
Tnxn, Tnyn

)

=
[
 +

(
η
(
Tn) – 

)
ρ
]
d(xn, p) + (L + Q + M + N)an

–
R


αn( – αn)d
(
Tnxn, Tnyn

) (.)

for some M, N ,ρ > .
This implies that

αn( – αn)d
(
Tnxn, Tnyn

) ≤ d(xn, p) – d(xn+, p) +
(
η
(
Tn) – 

)
ρd(xn, p)

+ (L + Q + M + N)an.

Since
∑∞

n= an < ∞,
∑∞

n=(η(Tn) – ) < ∞ and d(xn, p) < R′, we have

R


αn( – αn)d
(
Tnxn, Tnyn

) < ∞.

Hence by the fact that lim infn→∞ αn( – αn) > , we have

lim
n→∞ d

(
Tnxn, Tnyn

)
= . (.)

Now, consider (.), we have

d(yn, p) ≤ [
 +

(
η
(
Tn) – 

)]
d(xn, p) + (L + Q)an

–
R


βn( – βn)d
(
Tnzn, xn

)

≤ [
 +

(
η
(
Tn) – 

)
μ

]
d(xn, p) + (L + Q)an

–
R


βn( – βn)d
(
Tnzn, xn

) (.)

for some μ > .
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Equation (.) yields

R


βn( – βn)d
(
Tnzn, xn

) ≤ d(xn, p) – d(yn, p) +
(
η
(
Tn) – 

)
μd(xn, p) + (L + Q)an.

Since
∑∞

n= an < ∞,
∑∞

n=(η(Tn) – ) < ∞, d(xn, p) < R′ and d(yn, p) < R′, we have

R


βn( – βn)d
(
Tnzn, xn

) < ∞.

Thus by the fact that lim infn→∞ βn( – βn) > , we have

lim
n→∞ d

(
Tnzn, xn

)
= . (.)

Next, consider (.), we have

d(zn, p) ≤ η
(
Tn)d(xn, p) + Pan –

R


γn( – γn)d
(
Tnxn, xn

)

≤ [
 +

(
η
(
Tn) – 

)
ν
]
d(xn, p) + Pan –

R


γn( – γn)d
(
Tnxn, xn

)
(.)

for some ν > .
Equation (.) yields

R


γn( – γn)d
(
Tnxn, xn

) ≤ d(xn, p) – d(zn, p) +
(
η
(
Tn) – 

)
νd(xn, p) + Pan.

Since
∑∞

n= an < ∞,
∑∞

n=(η(Tn) – ) < ∞, d(xn, p) < R′ and d(zn, p) < R′, we have

R


γn( – γn)d
(
Tnxn, xn

) < ∞.

Hence by the fact that lim infn→∞ γn( – γn) > , we have

lim
n→∞ d

(
Tnxn, xn

)
= . (.)

Now, we have

d
(
Tnyn, xn

) ≤ d
(
Tnyn, Tnxn

)
+ d

(
Tnxn, xn

)

→  as n → ∞. (.)

Again, note that

d(xn, yn) ≤ βnd
(
xn, Tnzn

) →  as n → ∞. (.)

By the definitions of xn+ and yn, we have

d(xn, xn+) ≤ d
(
xn, Tnyn

)

≤ d
(
xn, Tnxn

)
+ d

(
Tnxn, Tnyn

)
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≤ d
(
xn, Tnxn

)
+ η

(
Tn)(d(xn, yn) + an

)

→  as n → ∞. (.)

By (.), (.) and the uniform continuity of T , we have

d(xn, Txn) ≤ d(xn, xn+) + d
(
xn+, Tn+xn+

)

+ d
(
Tn+xn+, Tn+xn

)
+ d

(
Tn+xn, Txn

)

≤ d(xn, xn+) + d
(
xn+, Tn+xn+

)

+ η
(
Tn+)d(xn+, xn) + an+ + d

(
Tn+xn, Txn

)

=
(
 + η

(
Tn+))d(xn, xn+) + d

(
xn+, Tn+xn+

)

+ d
(
Tn+xn, Txn

)
+ an+ →  as n → ∞. (.)

This completes the proof. �

Now, we are in a position to prove the �-convergence and strong convergence theorems.

Theorem . Let k >  and (X, d) be a complete CAT(k) space, with diam(X) = π/–ε√
k

, for
some ε ∈ (,π/). Let K be a nonempty closed convex subset of X, and let T : K → K
be a uniformly continuous nearly asymptotically nonexpansive mapping with sequence
{(an,η(Tn))} such that

∑∞
n= an < ∞ and

∑∞
n=(η(Tn) – ) < ∞. Let {xn} be a sequence in

K defined by (.). Let {αn}, {βn} and {γn} be sequences in (, ) such that lim infn→∞ αn( –
αn) > , lim infn→∞ βn( – βn) >  and lim infn→∞ γn( – γn) > . Then {xn} �-converges to
a fixed point of T .

Proof Let ωw(xn) :=
⋃

A({un}) where the union is taken over all subsequences {un} of {xn}.
We can complete the proof by showing that ωw(xn) ⊆ F(T) and ωw(xn) consists of ex-
actly one point. Let u ∈ ωw(xn), then there exists a subsequence {un} of {xn} such that
A({un}) = {u}. By Lemma ., there exists a subsequence {vn} of {un} such that �-limn vn =
v ∈ K . Hence v ∈ F(T) by Lemma . and Lemma .. Since limn→∞ d(xn, v) exists, so by
Lemma ., v = u, i.e., ωw(xn) ⊆ F(T).

To show that {xn} �-converges to a fixed point of T , it is sufficient to show that ωw(xn)
consists of exactly one point.

Let {wn} be a subsequence of {xn} with A({wn}) = {w} and let A({xn}) = {x}. Since w ∈
ωw(xn) ⊆ F(T) and by Lemma ., limn→∞ d(xn, w) exists. Again by Lemma ., we have
x = w ∈ F(T). Thus ωw(xn) = {x}. This shows that {xn} �-converges to a fixed point of T .
This completes the proof. �

Theorem . Let k >  and (X, d) be a complete CAT(k) space with diam(X) = π/–ε√
k

for
some ε ∈ (,π/). Let K be a nonempty closed convex subset of X, and let T : K → K
be a uniformly continuous nearly asymptotically nonexpansive mapping with sequence
{(an,η(Tn))} such that

∑∞
n= an < ∞ and

∑∞
n=(η(Tn) – ) < ∞. Let {xn} be a sequence in

K defined by (.). Let {αn}, {βn} and {γn} be sequences in (, ) such that lim infn→∞ αn( –
αn) > , lim infn→∞ βn( – βn) >  and lim infn→∞ γn( – γn) > . Suppose that Tm is semi-
compact for some m ∈N. Then the sequence {xn} converges strongly to a fixed point of T .
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Proof By Lemma ., limn→∞ d(xn, Txn) = . Since T is uniformly continuous, we have

d
(
xn, Tmxn

) ≤ d(xn, Txn) + d
(
Txn, Txn

)
+ · · · + d

(
Tm–xn, Tmxn

) → ,

as n → ∞. That is, {xn} is an AFPS for Tm. By the semi-compactness of Tm, there exists
a subsequence {xnj} of {xn} and p ∈ K such that limj→∞ xnj = p. Again, by the uniform
continuity of T , we have

d(Tp, p) ≤ d(Tp, Txnj ) + d(Txnj , xnj ) + d(xnj , p) →  as j → ∞.

That is, p ∈ F(T). By Lemma ., d(xn, p) exists, thus p is the strong limit of the sequence
{xn} itself. This shows that the sequence {xn} converges strongly to a fixed point of T . This
completes the proof. �

Remark . Since T is completely continuous, the image of Tm, for some m ∈N, is semi-
compact, {xn} is a bounded sequence and d(xn, Tmxn) →  as n → ∞. Thus Tm, for some
m ∈ N, is semi-compact, that is, the continuous image of a semi-compact space is semi-
compact.

Example . ([]) Let X = K = [, ], with the usual metric, and

T : K → K , T(x) =

{
x
 if x 	= ,
 if x = .

Then T is not continuous. However, T is semi-compact. In fact, if {xn} is a bounded se-
quence in K such that |xn – Txn| →  as n → ∞, then by Balzano-Weierstrass theorem, it
follows that {xn} has a convergent subsequence.

The following example shows that there is a semi-compact mapping that is not compact.

Example . ([]) Let X = � and K = {e, e, . . . , en, . . .} be the usual orthonormal basis
for �. Define

T : K → K , T(ei) = ei+, i ∈ N.

Then T is continuous (in fact, an isometry) but not compact. However, T is semi-compact.
Indeed, if {ei}i∈N is a bounded sequence in K such that ei – Tei converges, {ei}i∈N must be
finite.

From Theorem . we can derive the following result as a corollary.

Corollary . Let (X, d) be a complete CAT() space, K be a nonempty bounded, closed
convex subset of X and T : K → K be a uniformly continuous nearly asymptotically nonex-
pansive mapping with sequence {(an,η(Tn))} such that

∑∞
n= an < ∞ and

∑∞
n=(η(Tn) – ) <

∞. Let {xn} be a sequence in K defined by (.). Let {αn}, {βn} and {γn} be sequences in (, )
such that lim infn→∞ αn( –αn) > , lim infn→∞ βn( –βn) >  and lim infn→∞ γn( –γn) > .
Suppose that Tm is semi-compact for some m ∈N. Then the sequence {xn} converges strongly
to a fixed point of T .
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Example . ([]) Let E = R, C = [, ] and T be a mapping defined by

T : C → C, T(x) =

{

 if x ∈ [, 

 ],
 if x ∈ ( 

 , ].

Here F(T) = { 
 }. Clearly, T is a discontinuous and non-Lipschitzian mapping. However, it

is a nearly nonexpansive mapping and hence a nearly asymptotically nonexpansive map-
ping with sequence {an,η(Tn)} = { 

n , }. Indeed, for a sequence {an} with a = 
 and

an → , we have

d(Tx, Ty) ≤ d(x, y) + a for all x, y ∈ C

and

d
(
Tnx, Tny

) ≤ d(x, y) + an for all x, y ∈ C and n ≥ ,

since

Tnx =



for all x ∈ [, ] and n ≥ .

Example . Let X = K = [, ] with the usual metric d, {xn} = { 
n }, {unk } = { 

kn }, for all
n, k ∈ N are sequences in K . Then A({xn}) = {} and A({unk }) = {}. This shows that {xn}
�-converges to , that is, �-limn→∞ xn = . The sequence {xn} also converges strongly
to , that is, |xn – | →  as n → ∞. Also it is weakly convergent to , that is, xn ⇀  as
n → ∞, by Proposition .. Thus, we conclude that

strong convergence ⇒ �-convergence ⇒ weak convergence,

but the converse is not true in general.

The following example shows that, if the sequence {xn} is weakly convergent, then it is
not �-convergent.

Example . ([]) Let X = R, d be the usual metric on X, K = [–, ], {xn} = {, –, , –,
. . .}, {un} = {–, –, –, . . . } and {vn} = {, , , . . . }. Then A({xn}) = AK ({xn}) = {}, A({un}) =
{–} and A({vn}) = {}. This shows that {xn} ⇀  but it does not have a �-limit.

4 Conclusions
. We proved strong and � convergence theorems of a modified three-step iteration

process which contains a modified S-iteration process in the framework of CAT(k)
spaces.

. Theorem . extends Theorem . of Dhompongsa and Panyanak [] to the case
of a more general class of nonexpansive mappings which are not necessarily
Lipschitzian, a modified three-step iteration scheme and from a CAT() space to a
CAT(k) space considered in this paper.
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. Theorem . also extends Theorem . of Niwongsa and Panyanak [] to the case
of a more general class of asymptotically nonexpansive mappings which are not
necessarily Lipschitzian, a modified three-step iteration scheme and from a CAT()
space to a CAT(k) space considered in this paper.

. Our results extend the corresponding results of Xu and Noor [] to the case of a
more general class of asymptotically nonexpansive mappings, a modified three-step
iteration scheme and from a Banach space to a CAT(k) space considered in this
paper.

. Our results also extend and generalize the corresponding results of [, , –]
for a more general class of non-Lipschitzian mappings, a modified three-step
iteration scheme and from a uniformly convex metric space, a CAT() space to a
CAT(k) space considered in this paper.
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51. Şahin, A, Başarir, M: On the strong convergence of SP-iteration on CAT(0) space. J. Inequal. Appl. 2013, Article ID 311

(2013)
52. Saluja, GS: Strong and �-convergence of new three-step iteration process in CAT(0) spaces. Nonlinear Anal. Forum

20, 43-52 (2015)

http://dx.doi.org/10.1007/978-0-387-75818-3

	Convergence of three-step iterations for nearly asymptotically nonexpansive mappings in CAT(k) spaces
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Conclusions
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


