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Abstract
In this paper, we propose a descent direction method for solving variational
inequalities. A new iterate is obtained by searching the optimal step size along a new
descent direction which is obtained by the linear combination of two descent
directions. Under suitable conditions, the global convergence of the proposed
method is studied. Two numerical experiments are presented to illustrate the
efficiency of the proposed method.

MSC: 49J40; 65N30

Keywords: variational inequalities; self-adaptive rules; pseudomonotone operators;
projection method

1 Introduction
The theory of variational inequalities is a well-established subject in nonlinear analysis
and optimization. It was started during early sixties by the pioneering work of Fichera []
and Stampacchia [] (see also []). Since then it has been extended and studied in several
directions. One of the most important aspects of the theory of variational inequalities is
the solution method. Several solution methods were proposed and analyzed in the litera-
ture (see, for example, [–] and the references therein). The fixed point theory plays an
important role in developing various kinds of algorithms for solving variational inequali-
ties. By using the projection operator technique, one can easily establish the equivalence
between variational inequalities and fixed point problems. This alternative equivalent for-
mulation provides an elegant solution method, known as projection gradient method,
for solving variational inequalities. The convergence of this method requires the strong
monotonicity and Lipschitz continuity of the underlying operator. Many applications do
not have these strong conditions. As a result, the projection gradient method is not ap-
plicable for such problems. Korpelevich [] modified the projection gradient method to
overcome these difficulties and introduced the so-called extragradient method. It gener-
ates the iterates according to the following recursion:

uk+ = PK
[
uk – ρT

(
ūk)],

where

ūk = PK
[
uk – ρT

(
uk)],
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and ρ >  is a fixed parameter. This method overcomes the difficulties arising in the project
gradient method by performing an additional forward step and a projection at each iter-
ation according to double projection. It was proved in [] that the extragradient method
is globally convergent if T is monotone and Lipschitz continuous on K and  < ρ < /L,
where L is the Lipschitz constant of T . When the operator T is not Lipschitz continu-
ous, or it is Lipschitz but the constant L is not known, the fixed parameter ρ must be
replaced by the step size computed through an Armijo-like line search procedure with a
new projection needed for each trial point (see, e.g., [, ]), and this can be computa-
tionally very expensive. To overcome these difficulties, several modified projection and
extragradient-type methods [–] have been suggested and developed for solving vari-
ational inequalities. It was shown in [, ] that three-step method performs better than
two-step and one-step methods for solving variational inequalities.

The aim of this paper is to develop an algorithm, inspired by Fu [], for solving varia-
tional inequalities. More precisely, in the first method, a new iterate is obtained by search-
ing the optimal step size along the integrated descent direction from the linear combi-
nation of two descent directions, and another optimal step length is employed to reach
substantial progress in each iteration for the second method. It is proved theoretically that
the lower-bound of the progress is greater when obtained by the second method than by
the first one. Under certain conditions, the global convergence of the proposed methods
is proved. Our results can be viewed as significant extensions of the previously known re-
sults.

2 Preliminaries
Let K ⊂ R

n be a nonempty closed convex set and T : K → R
n be an operator. A classical

variational inequality problem, denoted by VI(T , K), is to find a vector u∗ ∈ K such that
〈
T

(
u∗), v – u∗〉 ≥ , ∀v ∈ K . ()

It is worth to mention that the solution set S∗ of VI(T , K) is nonempty if T is continuous
and K is compact.

It is well known that if K is a closed convex cone, then VI(T , K) is equivalent to the
nonlinear complementarity problem of finding u∗ ∈ K such that

T
(
u∗) ∈ K∗ and

〈
T

(
u∗), u

〉
= , ()

where K∗ := {y ∈R
n : 〈y, x〉 ≥  for all x ∈ K}. For further details on variational inequalities

and complementarity problems, we refer to [–] and the references therein.
In what follows, we always assume that the underlying operator T is continuous and

pseudomonotone, that is,
〈
T(u), v – u

〉 ≥  ⇒ 〈
T(v), v – u

〉 ≥ , ∀u, v ∈ K ,

and the solution set of problem (), denoted by S∗, is nonempty.
The following results will be used in the sequel.

Lemma  [] Let K ⊂R
n be a nonempty closed convex set and PK (·) denote the projection

on K under the Euclidean norm, that is, PK (z) = arg min{‖z – x‖ : x ∈ K}. Then the following
statements hold:

(a) 〈z – PK (z), PK (z) – v〉 ≥ , ∀z ∈R
n, v ∈ K .
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(b) ‖PK (z) – v‖ ≤ ‖z – v‖ – ‖z – PK (z)‖, ∀z ∈R
n, v ∈ K .

(c) ‖PK (w) – PK (v)‖ ≤ 〈w – v, PK (w) – PK (v)〉, ∀v, w ∈R
n.

Lemma  [] u∗ is a solution of problem () if and only if

u∗ = PK
[
u∗ – ρT

(
u∗)], where ρ > . ()

From Lemma , it is clear that u is a solution of () if and only if u is a zero point of the
function

e(u,ρ) := u – PK
[
u – ρT(u)

]
.

The next lemma shows that ‖e(u,ρ)‖ is a non-decreasing function, while ‖e(u,ρ)‖
ρ

is a
non-increasing one with respect to ρ .

Lemma  [–] For all u ∈ R
n and ρ ′ > ρ > ,

∥
∥e

(
u,ρ ′)∥∥ ≥ ∥

∥e(u,ρ)
∥
∥ ()

and

‖e(u,ρ ′)‖
ρ ′ ≤ ‖e(u,ρ)‖

ρ
. ()

3 Algorithm and convergence results
In this section, we suggest and analyze two new methods for solving variational inequal-
ities (). For given uk ∈ K and ρk > , each iteration of the first method consists of three
steps, the first step offers ũk , the second step makes ūk and the third step produces the
new iterate uk+.

Algorithm 
Step . Given u ∈ K , ε > , ρ = , ν > , μ ∈ (,

√
), σ ∈ (, ), ζ ∈ (, ), η ∈ (, ζ ),

η ∈ (ζ ,ν) and let k = .
Step . If ‖e(uk ,ρk)‖ ≤ ε, then stop. Otherwise, go to Step .
Step . () For a given uk ∈ K , calculate the two predictors

ũk = PK
[
uk – ρkT

(
uk)], (a)

ūk = PK
[
ũk – ρkT

(
ũk)]. (b)

() If ‖e(ũk ,ρk)‖ ≤ ε, then stop. Otherwise, continue.
() If ρk satisfies both

r :=
|ρk[〈ũk – ūk , T(uk) – T(ũk)〉 – 〈uk – ūk , T(ũk) – T(ūk)〉]|

‖ũk – ūk‖ ≤ μ ()

and

r :=
‖ρk(T(ũk) – T(ūk))‖

‖ũk – ūk‖ ≤ ν, ()

then go to Step ; otherwise, continue.
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() Perform an Armijo-like line search via reducing ρk ,

ρk := ρk ∗ σ

max(r, )
()

and go to Step .
Step . Take the new iteration uk+ by setting

uk+(αk) = PK
[
uk – αkd

(
ũk , ūk)], ()

where

d
(
ũk , ūk) = βd

(
ũk , ūk) + βρkF

(
ūk) ()

and

d
(
ũk , ūk) :=

(
ũk – ūk) – ρk

(
T

(
ũk) – T

(
ūk)). ()

Step . Adaptive rule of choosing a suitable ρk+ as the start prediction step size for the
next iteration.
() Prepare a proper ρk+,

ρk+ :=

⎧
⎪⎨

⎪⎩

ρk ∗ ζ /r if r ≤ η,
ρk ∗ ζ /r if r ≥ η,
ρk otherwise.

() Return to Step , with k replaced by k + .

Remark  (a) The proposed method can be viewed as a refinement and improvement of
the method of He et al. [] by performing an additional projection step at each itera-
tion and another optimal step length is employed to reach substantial progress in each
iteration.

(b) If β =  and β = , we obtain the method proposed in [].
(c) If β =  and β = , we obtain a descent method, the new iterate is obtained along a

descent direction d(ũk , ūk).

Remark  In (), if σ > max(r, ), it indicates that ρk will be too large for the next iteration
and will increase the number of Armijo-like line searches. So, we choose ρk for the next
iteration to be only modestly smaller than ρk to avoid expensive implementations in the
next iteration.

We now consider the criteria for αk , which ensures that uk+(αk) is closer to the solution
set than uk . For this purpose, we define

Θk(αk) :=
∥
∥uk – u∗∥∥ –

∥
∥uk+(αk) – u∗∥∥. ()

Theorem  Let u∗ ∈ S∗. Then we have

Θ(αk) ≥ Φ(αk) ≥ Ψ (αk), ()
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where

Φ(αk) =
∥∥uk – uk+(αk)

∥∥ + αk
〈
uk+(αk) – ūk , d

(
ũk , ūk)〉, ()

and

Ψ (αk) = αk(β + β)
〈
uk – ūk , d

(
ũk , ūk)〉 – α

k (β + β)∥∥d
(
ũk , ūk)∥∥.

Proof Since u∗ ∈ K , setting v = u∗ and z = uk – αkd(ũk , ūk) in (b), we have

∥
∥uk+(αk) – u∗∥∥ ≤ ∥

∥uk – u∗ – αkd
(
ũk , ūk)∥∥ –

∥
∥uk – uk+(αk) – αkd

(
ũk , ūk)∥∥.

Using the definition of Θ(αk), we get

Θ(αk) ≥ ∥∥uk – uk+(αk)
∥∥ + αk

〈
uk – u∗, d

(
ũk , ūk)〉

– αk
〈
uk – uk+(αk), d

(
ũk , ūk)〉

=
∥
∥uk – uk+(αk)

∥
∥ + αk

〈
uk+(αk) – u∗, d

(
ũk , ūk)〉. ()

For any solution u∗ ∈ S∗ of problem (), we have

〈
ρkT

(
u∗), ūk – u∗〉 ≥ .

By the pseudomonotonicity of T , we obtain

〈
ρkT

(
ūk), ūk – u∗〉 ≥ . ()

Substituting z = ũk – ρkT(ũk) and v = u∗ into (a), we get

〈
ũk – ρkT

(
ũk) – ūk , ūk – u∗〉 ≥ . ()

Adding () and (), and using the definition of d(ũk , ūk), we have

〈
d

(
ũk , ūk), ūk – u∗〉 ≥ . ()

Multiplying () by αkβ and () by αkβ, then adding the resultants with (), we obtain

Θ(αk) ≥ ∥
∥uk – uk+(αk)

∥
∥ + αk

〈
uk+(αk) – ūk , d

(
ũk , ūk)〉

= Φ(αk)

=
∥∥uk – uk+(αk)

∥∥ + αkβ
〈
uk+(αk) – ūk , d

(
ũk , ūk)〉

+ αkβ
〈
uk+(αk) – ūk ,ρkT

(
ūk)〉. ()

Note that ūk = PK [ũk – ρkT(ũk)]. We can apply (a) with v = uk+, to obtain

〈
uk+(αk) – ūk , ũk – ρkT

(
ũk) – ūk 〉 ≤ . ()
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Multiplying () by αkβ and then adding the resultant to () and using the definition
of d(ũk , ūk), we have

Φ(αk) ≥ ∥
∥uk – uk+(αk)

∥
∥ + αkβ

〈
uk+(αk) – ūk , d

(
ũk , ūk)〉

+ αkβ
〈
uk+(αk) – ūk , d

(
ũk , ūk)〉

=
∥∥uk – uk+(αk)

∥∥ + αk(β + β)
〈
uk+(αk) – ūk , d

(
ũk , ūk)〉

=
∥∥uk – uk+(αk) – αk(β + β)d

(
ũk , ūk)∥∥

+ αk(β + β)
〈
uk – ūk , d

(
ũk , ūk)〉

– α
k (β + β)∥∥d

(
ũk , ūk)∥∥

≥ αk(β + β)
〈
uk – ūk , d

(
ũk , ūk)〉 – α

k (β + β)∥∥d
(
ũk , ūk)∥∥

= Ψ (αk),

and the theorem is proved. �

Proposition  Assume that T is continuously differentiable, then we have
(i) Φ ′(α) = 〈uk+(α) – ūk , d(ũk , ūk)〉;

(ii) Φ ′(α) is a non-increasing function with respect to α ≥ , and hence, Φ(α) is concave.

Proof For given uk , ũk , ūk ∈ K , let

h(α, y) =
∥
∥y –

[
uk – αd

(
ũk , ūk)]∥∥ – α∥∥d

(
ũk , ūk)∥∥ – α

〈
ūk – uk , d

(
ũk , ūk)〉. ()

It easy to see that the solution of the following problem

min
y

{
h(α, y) : y ∈ K

}

is y∗ = PK [uk – αd(ũk , ūk)]. By substituting y∗ into () and simplifying it, we obtain

Φ(α) = h(α, y)|y=PK [uk –αd(ũk ,ūk )] = min
y

{
h(α, y) : y ∈ K

}
.

Φ(α) is differentiable and its derivative is given by

Φ ′(α) =
∂h(α, y)

∂α

∣∣∣
∣
y=PK [uk –αd(ũk ,ūk )]

= 
〈
uk+(α) – uk + αd

(
ũk , ūk), d

(
ũk , ūk)〉 – α

∥∥d
(
ũk , ūk)∥∥

– 
〈
ūk – uk , d

(
ũk , ūk)〉

= 
〈
uk+(α) – ūk , d

(
ũk , ūk)〉,

and hence (i) is proved. We now establish the proof of the second assertion. Let ᾱ > α ≥ .
We show that

Φ ′(ᾱ) ≤ Φ ′(α),
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that is,

〈
uk+(ᾱ) – uk+(α), d

(
ũk , ūk)〉 ≤ . ()

By setting z := uk – ᾱd(ũk , ūk), v := uk+(α) and z := uk – αd(ũk , ūk), v := uk+(ᾱ) in (a), re-
spectively, we get

〈
uk – ᾱd

(
ũk , ūk) – uk+(ᾱ), uk+(α) – uk+(ᾱ)

〉 ≤  ()

and

〈
uk – αd

(
ũk , ūk) – uk+(α), uk+(ᾱ) – uk+(α)

〉 ≤ . ()

By adding () and (), we obtain

〈
uk+(ᾱ) – uk+(α), uk+(ᾱ) – uk+(α) + (ᾱ – α)d

(
ũk , ūk)〉 ≤ ,

that is,

∥∥uk+(ᾱ) – uk+(α)
∥∥ + (ᾱ – α)

〈
uk+(ᾱ) – uk+(α), d

(
ũk , ūk)〉 ≤ .

It follows that

〈
uk+(ᾱ) – uk+(α), d

(
ũk , ūk)〉 ≤ –

(ᾱ – α)
∥∥uk+(ᾱ) – uk+(α)

∥∥ ≤ .

We obtain inequality () and complete the proof. �

Now for the same kth approximate solution uk , let

α∗
k = arg max

α

{
Ψ (α) | α > 

}

and

α∗
k = arg max

α

{
Φ(α) | α > 

}
.

Since Ψ (α) is a quadratic function of α and it reaches its maximum at

α∗
k =

〈uk – ūk , d(ũk , ūk)〉
(β + β)‖d(ũk , ūk)‖ ()

and

Ψ
(
α∗

k

)
= α∗

k (β + β)
〈
uk – ūk , d

(
ũk , ūk)〉. ()

In order to make α∗
k

to be obtained more easily, we approximately compute α∗
k

by solving
the following simple optimization problem:

α∗
k = arg max

α

{
Φ(α) |  < α ≤ mα

∗
k

}
, ()

where m ≥ .
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Based on Theorem  and Proposition , the following result can be proved easily.

Proposition  Let α∗
k

and α∗
k

be defined by () and (), respectively, and let T be pseu-
domonotone and continuously differentiable. Then

(i) ‖uk – u∗‖ – ‖uk+(α∗
k

) – u∗‖ ≥ Φ(α∗
k

);
(ii) ‖uk – u∗‖ – ‖uk+(α∗

k
) – u∗‖ ≥ Ψ (α∗

k
);

(iii) Φ(α∗
k

) ≥ Ψ (α∗
k

);
(iv) if Φ ′(α∗

k
) = , then ‖uk – u∗‖ – ‖uk+(α∗

k
) – u∗‖ ≥ ‖uk – uk+(α∗

k
)‖.

Remark  Let

uk+
I

(
α∗

k

)
= PK

[
uk – α∗

k d
(
uk ,ρk

)]

and

uk+
II

(
α∗

k

)
= PK

[
uk – α∗

k d
(
uk ,ρk

)]

represent the new iterates generated by the proposed method with αk = α∗
k

and αk = α∗
k

,
respectively. Let

ΘI
(
α∗

k

)
=

∥
∥uk – u∗∥∥ –

∥
∥uk+

I
(
α∗

k

)
– u∗∥∥

and

ΘII
(
α∗

k

)
=

∥∥uk – u∗∥∥ –
∥∥uk+

II
(
α∗

k

)
– u∗∥∥

measure the progresses made by the new iterates, respectively. By using Proposition , it
is easy to show that

ΘI
(
α∗

k

) ≥ Ψ
(
α∗

k

)
,

ΘII
(
α∗

k

) ≥ Φ
(
α∗

k

)

and

Φ
(
α∗

k

) ≥ Ψ
(
α∗

k

)
.

The above inequalities show that the proposed method with αk = α∗
k

is expected to make
more progress than the proposed method with αk = α∗

k
at each iteration, and so it explains

theoretically that the proposed method with αk = α∗
k

outperforms the proposed method
with αk = α∗

k
.

In the next theorem, we show that α∗
k

and Ψ (α∗
k

) are lower bounded away from zero,
and it is one of the keys to prove the global convergence results.

Theorem  Let u∗ be a solution of problem (). For given uk ∈ K , let ũk , ūk be the predictors
produced by (a) and (b). Then

α∗
k ≥  – μ

(β + β)( + ν) ()
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and

Ψ
(
α∗

k

) ≥ ( – μ)

( + ν)

∥∥ũk – ūk∥∥. ()

Proof Note that ũk = PK [uk – ρkT(uk)], ūk = PK [ũk – ρkT(ũk)]. We can apply (c) with v =
uk – ρkT(uk), w = ũk – ρkT(ũk) to obtain

〈
uk – ρkT

(
uk) –

(
ũk – ρkT

(
ũk)), ũk – ūk 〉 ≥ ∥∥ũk – ūk∥∥.

By some manipulations, we obtain

〈
uk – ũk , ũk – ūk 〉 ≥ ∥∥ũk – ūk∥∥ + ρk

〈
ũk – ūk , T

(
uk) – T

(
ũk)〉.

Then we have

〈
uk – ũk , d

(
ũk , ūk)〉 =

〈
uk – ũk , ũk – ūk 〉 – ρk

〈
uk – ũk , T

(
ũk) – T

(
ūk)〉

≥ ∥∥ũk – ūk∥∥ + ρk
〈
ũk – ūk , T

(
uk) – T

(
ũk)〉

– ρk
〈
uk – ũk , T

(
ũk) – T

(
ūk)〉. ()

By using (), () and the definition of d(ũk , ūk), we get

〈
uk – ūk , d

(
ũk , ūk)〉 =

〈
uk – ũk , d

(
ũk , ūk)〉 +

〈
ũk – ūk , d

(
ũk , ūk)〉

≥ ∥
∥ũk – ūk∥∥ + ρk

〈
ũk – ūk , T

(
uk) – T

(
ũk)〉

– ρk
〈
uk – ũk , T

(
ũk) – T

(
ūk)〉 +

∥
∥ũk – ūk∥∥

– ρk
〈
ũk – ūk , T

(
ũk) – T

(
ūk)〉

≥ (
 – μ)∥∥ũk – ūk∥∥. ()

Recalling the definition of d(ũk , ūk) (see ()) and applying criterion (), it is easy to see
that

∥
∥d

(
ũk , ūk)∥∥ ≤ (∥∥ũk – ūk∥∥ +

∥
∥ρk

(
T

(
ũk) – T

(
ūk))∥∥) ≤ ( + ν)∥∥ũk – ūk∥∥. ()

Moreover, by using () together with (), we get

α∗
k =

〈uk – ūk , d(ũk , ūk)〉
(β + β)‖d(ũk , ūk)‖ ≥  – μ

(β + β)( + ν) > , μ ∈ (,
√

). ()

By substituting () in (), we get the assertion of this theorem and the proof is com-
pleted. �

From the computational point of view, a relaxation factor γ ∈ (, ) is preferable in the
correction. We are now in the position to prove the contractive property of the iterative
sequence.
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Lemma  Let u∗ be a solution of problem () and let uk+(γαk) be the sequence generated
by Algorithm  with αk = α∗

k
or αk = α∗

k
. Then uk is bounded and

∥∥uk+(γαk) – u∗∥∥ ≤ ∥∥uk – u∗∥∥ – c
∥∥uk – ũk∥∥, ()

where

c :=
( – μ)

( + ν) > .

Proof If αk = α∗
k

. It follows from (), () and () that

∥∥uk+(γα∗
k

)
– u∗∥∥ ≤ ∥∥uk – u∗∥∥ – Φ

(
α∗

k

)

≤ ∥∥uk – u∗∥∥ – Ψ
(
α∗

k

)

≤ ∥
∥uk – u∗∥∥ –

( – μ)

( + ν)

∥
∥ũk – ūk∥∥.

If αk = α∗
k

, then we have

∥∥uk+(γα∗
k

)
– u∗∥∥ ≤ ∥∥uk – u∗∥∥ – Ψ

(
α∗

k

)

≤ ∥∥uk – u∗∥∥ –
( – μ)

( + ν)

∥∥ũk – ūk∥∥.

Since μ ∈ (,
√

), we have
∥
∥uk+(γαk) – u∗∥∥ ≤ ∥

∥uk – u∗∥∥ ≤ · · · ≤ ∥
∥u – u∗∥∥.

From the above inequality, it is easy to verify that the sequence uk is bounded. �

We now present the convergence result of Algorithm .

Theorem  If inf∞k= ρk := ρ > , then any cluster point of the sequence {ũk} generated by
Algorithm  is a solution of problem ().

Proof It follows from () that

∞∑

k=

c
∥
∥uk – ũk∥∥ < +∞,

which means that

lim
k→∞

∥∥ũk – ūk∥∥ = .

Since the sequence uk is bounded, {ũk} is too, and it has at least a cluster point. Let u∞

be a cluster point of {ũk} and the subsequence {ũkj} converges to u∞. By the continuity of
e(u,ρ) and inequality (), it follows that

∥∥e
(
u∞,ρ

)∥∥ = lim
kj→∞

∥∥e
(
ũkj ,ρ

)∥∥ ≤ lim
kj→∞

∥∥e
(
ũkj ,ρkj

)∥∥ = lim
kj→∞

∥∥ũkj – ūkj
∥∥ = .

This means that u∞ is a solution of problem ().
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We now prove that the sequence {uk} has exactly one cluster point. Assume that ũ is
another cluster point and satisfies

δ :=
∥∥ũ – u∞∥∥ > .

Since u∞ is a cluster point of the sequence {uk}, there is k >  such that

∥∥uk – u∞∥∥ ≤ δ


.

On the other hand, since u∞ ∈ S∗ and from (), we have

∥
∥uk – u∞∥

∥ ≤ ∥
∥uk – u∞∥

∥ for all k ≥ k,

it follows that

∥∥uk – ũ
∥∥ ≥ ∥∥ũ – u∞∥∥ –

∥∥uk – u∞∥∥ ≥ δ


∀k ≥ k.

This contradicts the assumption that ũ is a cluster point of {uk}. Thus, the sequence {uk}
converges to u∞ ∈ S∗. �

4 Numerical experiments
In order to verify the theoretical assertions, we consider the nonlinear complementarity
problems

u ≥ , T(u) ≥ , u�T(u) = , ()

where T(u) = D(u) + Mu + q, D(u) and Mu + q are the nonlinear part and linear part of
T(u), respectively. Problem () is equivalent to problem () by taking K = R

n
+.

Example  We form the linear part in the test problems as

M =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

   · · · 
   · · · 
   · · · 
...

...
...

. . .
...

   · · · 

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

n×n

and q =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

–
–
–
...

–

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

n×

.

In D(u), the nonlinear part of T(u), the components are chosen to be Dj(u) = dj ∗arctan(uj),
where dj is a random variable in (, ).

In all tests we take ρ = , ζ = ., η = ., η = ., μ = ., ν = ., γ = ., β = .,
and β = .. We employ ‖e(uk ,ρk)‖ ≤ – as the stopping criterion and choose u = 
as the initial iterative points. All codes were written in Matlab. We compare Algorithm 
with αk = α∗

k
, with Algorithm  with αk = α∗

k
and the method in []. The test results for

problem () with different dimensions are reported in Tables  and . k is the number of
iterations and l denotes the number of evaluations of mapping T .
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Table 1 Numerical results for problem (36) with σ = 0.8 (see (9))

Dimension of
the problem

The method in [14] Algorithm 1 with α∗
k1

Algorithm 1 with α∗
k2

k l CPU (sec.) k l CPU (sec.) k l CPU (sec.)

n = 100 228 465 0.024 138 447 0.023 73 240 0.06
n = 300 259 540 0.04 185 580 0.03 103 332 0.09
n = 500 531 1,109 0.15 227 700 0.10 128 403 0.16
n = 600 520 1,160 0.22 225 701 0.13 135 419 0.20
n = 800 568 1,236 0.51 244 779 0.34 157 520 0.40

Table 2 Numerical results for problem (36) with σ = 0.4 (see (9))

Dimension of
the problem

The method in [14] Algorithm 1 with α∗
k1

Algorithm 1 with α∗
k2

k l CPU (sec.) k l CPU (sec.) k l CPU (sec.)

n = 100 228 465 0.02 142 439 0.01 99 309 0.06
n = 300 259 540 0.04 180 553 0.03 97 302 0.08
n = 500 531 1,109 0.15 226 699 0.09 189 579 0.23
n = 600 520 1,160 0.23 251 768 0.14 129 400 0.18
n = 800 568 1,236 0.48 246 754 0.31 197 603 0.48

Table 3 Numerical results for problem (36) with σ = 0.8 (see (9))

Dimension of
the problem

The method in [14] Algorithm 1 with α∗
k1

Algorithm 1 with α∗
k2

k l CPU (sec.) k l CPU (sec.) k l CPU (sec.)

n = 100 318 676 0.03 93 312 0.01 68 235 0.05
n = 300 435 936 0.07 127 404 0.03 111 356 0.09
n = 500 489 1,035 0.15 146 491 0.07 129 416 0.17
n = 600 406 877 0.18 117 378 0.08 92 299 0.15
n = 800 386 832 0.64 110 359 0.29 76 249 0.28

Table 4 Numerical results for problem (36) with σ = 0.4 (see (9))

Dimension of
the problem

The method in [14] Algorithm 1 with α∗
k1

Algorithm 1 with α∗
k2

k l CPU (sec.) k l CPU (sec.) k l CPU (sec.)

n = 100 318 676 0.02 157 793 0.02 84 298 0.06
n = 300 435 995 0.06 199 936 0.07 164 613 0.16
n = 500 489 1,035 0.14 190 769 0.12 155 550 0.22
n = 600 406 877 0.20 129 402 0.08 89 300 0.14
n = 800 386 832 0.35 169 714 0.32 89 309 0.26

Example  We form the linear part in the test problems similarly as in Harker and Pang
[]. The matrix M = A�A + B, where A is an n × n matrix whose entries are randomly
generated in the interval (–, +), and a skew-symmetric matrix B is generated in the same
way. The vector q is generated from a uniform distribution in the interval (–, ). In
D(u), the nonlinear part of T(u), the components are chosen to be Dj(u) = dj ∗ arctan(uj),
where dj is a random variable in (, ). A similar type of problem was tested in [] and [].
In all tests we take ρ = , ζ = ., η = ., η = ., μ = ., ν = ., γ = ., β = .,
β = .. We employ ‖e(uk ,ρk)‖ ≤ – as the stopping criterion and choose u =  as
the initial iterative points. The test results for problem () with different dimensions are
reported in Tables  and .

Tables - show that Algorithm  with αk = α∗
k

is very efficient even for large-scale clas-
sical nonlinear complementarity problems. Moreover, it demonstrates computationally
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that Algorithm  with αk = α∗
k

is more effective than the method presented in [] and Al-
gorithm  with αk = α∗

k
in the sense that Algorithm  with αk = α∗

k
needs fewer iterations

and less evaluation numbers of T , which clearly illustrates its efficiency.
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