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Abstract

In this paper, the authors obtain the strong approximations, the laws of the single
logarithm, the functional laws of the single logarithm, and the limit law of the single
logarithm for linear processes generated by arrays of independent and identically
distributed random variables, and they show that they are all equivalent under the
same moment conditions.
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1 Introduction and main result

Throughout the paper, we assume that {g;, —00 < i < 00} (or {g,;,—c0 <i<oo,n>1})isa
sequence (or an array) of independent and identically distributed (i.i.d.) random variables
with the same distribution as the random variable ¢, {a;, —00 < i < 0o} is a sequence of real
constants with

o0 o0
Z|ai|<oo, a:Zaﬁ!O.
i=—00 i=—00

Define

o0 o0
X, = Z aign-i, n=>1 <or Xk = Z Aignj-irk >1,n> 1>. (1.1)
i=—00 i

1=—00

We call {X,,n > 1} (or {X,x,k > 1,n > 1}) the linear process of {g;,—0c0 < i < oo} (or
{€4i,—00 < i < 00,n > 1}). In particular if a; = 0 for i = -1,-2,..., we call {X,,,n > 1} (or
{Xuk, k > 1,n > 1}) the one-side linear processes. Denote by K the set of all absolutely
continuous f on [0, 1] with f(0) = 0 and fol(f’(x))z dx < 1; it is well known that /C is a com-
pact, convex, and symmetric subset of the Banach space C[0,1], which is the set of real
continuous functions on [0, 1] with the uniform norm.

For the one-side linear processes, Philipps and Solo [1] established the strong law of
large numbers and the law of the iterated logarithm, Wang et al. [2] established the strong
approximation to a Gaussian process. Lu and Qiu [3] obtained the functional law of the
iterated logarithm for the one-side linear processes as follows.
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Theorem A Suppose that Ee = 0, Ee* =1, and )y . ila;| < 0o. Then the stochastic pro-

cess sequence {% 0 <t <1,n> 1} converges to and clusters throughout K in the

A/ 2a2nloglogn ’

uniform norm with probability 1, that is,

. . s
lim,,, o infrec SUPg<;<1 |ﬁ -f®1=0 as. and

.. S
liminf,,, o SUPy<,<; |\/ﬁﬁ —ft)|=0 as. foreveryfelk,

where

[nt]
S(nt) =Y X; + (nt = [nt]) Xpy, 0<t<Ln>1,
j=1

[-] is the greatest integer function, and log x = In(max{e, x}) for x > 0.

By the same argument as Strassen [4], Theorem A implies the classical Hartman-
Wintner law of the iterated logarithm (c¢f Hartman and Wintner [5])

X X
lim sup Zlfl ! =1 as. and liminf Zj*l ! =-1 as.

n—soo +/2a*nloglogn - n—oo  /2a2nloglogn

Recently, Tan et al. [6] proved the above-mentioned conclusions without the condition
Yorilai < oo.

There is a substantial difference between the a.s. limiting behavior for sequences of i.i.d.
random variables and arrays of i.i.d. random variables. For example, if Ec = 0, Ec? = 1,
E&* < 00, Hu and Weber [7] proved the following law of the single logarithm:

n n
i1 Enj i-1€nyj
Z]_l Y _1 as. and liminfM =-1 as. (1.2)

nsoo «/2nlogn o n—>oo \/2nlogn
Hence the classical Hartman-Wintner law of the iterated logarithm (¢f Hartman and
Wintner [5]) does not hold for arrays. The above result was improved by Li et al. [8] and
by Qi [9] who simultaneously and independently proved that

le|*

Ee=0, E¢®=1, and E—
log” |¢]

<00

are necessary and sufficient for (1.2) to hold.
Afterwards, using the strong approximations for partial sums of i.i.d. random variables,
Li et al. [10] obtained more general results as follows.

Theorem B Let « > 0. On a suitable probability space one can redefine {¢,¢,;1 < i <
[n*],n > 1} without changing the distribution, and there exist a sequence of independent
real standard Wiener processes {W,(t),0 <t <1,n > 1} and a sequence of independent

standard normal random variables {Z,,n > 1}, such that the following are equivalent:

2p
£
Ec=0, Ee?=1, and i

13
log” |¢| ) (13)
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limsup —2—"" -1 as. and liminf—2—>" -_1 as., 1.4
n—)ocp A/ 2}’10‘ IOng n— 00 4/2}’1(1 logn ( )
3 1 Un(t) —
lim,, . o infrefc SUP) << |W -f®)=0 as. and 15)
liminf,,, o SUPy<,<; |% —f@®)|=0 as. foreveryf ek,
[n*]
D1 Eny
’ 1}1&/2 ~Z,| =o((logn)'?)  a.s., (1.6)
U, (t) 12
Sup |~ o7 -W, (t)‘ =0 (log n) ) a.s., (1.7)
where p =1+ 1/a and
[[n*]e]
Ut)= > enj+ ([n]t = [[n*]e)) entrn, 0<t<Lnm>1. (1.8)
j=1

Remark 1.1 Theorem B also holds if (1.4) is replaced by

. maxi<m<(ne) | 37 €n,jl
lim sup =1 as. (1.9)

n—00 A/ 2n“ log n

In fact, by the equivalence of (1.3) and (1.4), E¢ = 0, Es? =1. By Markov’s inequality, for

fixed § > 0, when # is large enough,

(%]
2 e

j=m+1

> (8/2)/2n* logn} <287*(Elel*)(logn) ™" <1/2.

max P{
1<m=<[n%]-1

Hence, by Ottaviani’s inequality (see Lemma 6.2 in Ledoux and Talagrand [11]), when # is

large enough,

: max E Enj| > (1+5)\/2n°‘logn}

1<m<[n¥]
{ maf< : E enj| > (L +68/2)y/2n* logn + (8/2)\/2n* logn
1<m<[n%

Py Zl.”l enjl > (L+8/2)/2n*Togn}
<
1 — max;<<fne)-1 P 21"m]+1 enjl > (8/2)+/2n*log n}

[n*]
§2P{ >(1+8/2),/2n“10gn}.

D
By the Borel-Cantelli lemma, (1.4) implies that

j=1

ZP{ S e

n=1

>(1+68/2)\/2n logn] < 00.
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Hence
oo m
ZP max ZS"J >(1+8)y/2n%logn < oo.
o | 1sm=n] =)

By the Borel-Cantelli lemma again

maxi <m<pne] | 37 nyl

lirllilsolip JaTogn <1+§ as.
Note that § > 0 is arbitrary and
lim sup TR smlr] |Z;:1 Enjl > lim sup Z - 8n}| =1 as,
00 J2n*logn n—>00 W
(1.9) holds.

Very few results for a moving average process of an array of i.i.d. random variables are
known. In this paper, we will extend Theorem B to the linear processes as follows.

Theorem 1.1 Let o > 0. On a suitable probability space one can redefine {¢,¢&,,;,—00 < i <
oo, n > 1} without changing the distribution, and there exist a sequence of independent
real standard Wiener processes {W,(t),0 <t <1,n > 1} and a sequence of independent
standard normal random variables {Z,,n > 1}, such that the following are equivalent:

2 e |
Esc =0, Ee® =1, < 00, (1.10)
log? ||
[n*]
) X, y
lim sup Z]_l Y -1 as. and hmmfzi =-1 a.s., (1.11)

n—soo +/2a*n*logn n—00  /2a2n*logn

lim,_, o lnffelc SUPg<¢<1 | o )72 _f(t)| =0 as and

o (112)
liminf,,_, o SUPy<;<; |#(0;nm —f@®)|=0 as. foreveryf ek,

l na/2 —aZ,, = o((log n)l/z) a.s., (1.13)
Sq(t

sup ) —aWn(t)‘ = o((log n)m) a.s., (1.14)
0<t<1 na/2

[m*]
1 Ximjl
lim max Z L =1 a.s., (1.15)

n—00 /2612 IOgl’l 1<m<n ma/2

where p =1+ 1/a and
[[n*]¢]
t) = Z X,,,j + ([I’la]t— [[I’la]t])Xn,[[na]t]A, 0<t<l,mn>1

Remark 1.2 We call (1.15) the limit law of the single logarithm, an analog of the limit law
of the iterated logarithm which is due to Chen [12] and developed by Li and Liang [13].
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2 Proof of main result

To prove our main result, the following lemmas are needed.

Lemma2.1 Leta >0and(Y,Y,;,1 <j<[n"],n>1} bean array of identically distributed
Y|
log? Y]

random variables (without independence assumption) with EY =0 and E
1+1/a. Then

<00, p=

1

TarTogn 15 Yl = 0 as. 1)

2,
Proof Note that E kgp‘ ‘l;l < 00 is equivalent to

oo
Zn"P{|Y| > 8./2n logn} <00, V8>0.
n=1

Hence Vé > 0

o0 o0
Z:P{1 ma}x | | Y] > 6+/2n® logn} < Zn"‘P{|Y| > 84/ 2n% logn} < 00,
Y sj<[n*

n=1

which implies that (2.1) holds by the Borel-Cantelli lemma. d

Lemma2.2 Leta >0and{Y,Y,;,1<j<[n"],n>1}beanarrayofi.id.random variables

with EY =0 andEl(gp'Ti,‘ <00, p=1+1/a. Then

maxi <m<[ue] | 2;21 Yl
Esup

n>1 /2n%logn

(2.2)

Proof Let {Y,,n > 1} be a sequence of independent random variables with common dis-
tribution as Y. By the same argument as Theorem 4 in Li and Spataru [14] or Theorem 1.2
in Chen and Wang [15],

[

holds for some large enough M > 0. For all x > 2M, by Markov ’s inequality, when # is large

n%]

Y,
=1

> ¥/ 2n% logn} dy < o0

J

enough,
[n*]
ma[lx] P{ E Y,j| > xy/2n% logn} < M)?(E|Y)?)(2logn)™ <1/2.
1<m<[n%]-1
- j=m+1

Hence by Ottaviani’s inequality (see Lemma 6.2 in Ledoux and Talagrand [11]), for all
x > 2M, when # is large enough,

(n*]

D Yy

Jj=1

m

R

1<m<[n*]

P{ max

> X4/ 2n% logn} < 2P{

> x4/2n* logn/Z].
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Then

maxi<m<[ue] | Z]m=1 Yol
Esup

n>1 V2n%logn

/OOP maxj<m<(ne] | Z;Zl Yol d
= su >x¢dx
0 nzll) V/2n*logn

0o 00 m
< 2M+/ ZP max Z Yj| >%/2n%logn ¢ dx
w 1<m=<[n%] )

Z

0o [n¥]
ELM+2AM2;P:§:Y

> x./2n* log n/2} dx

oo 0 [n*]
=mw+4/ }:P{E:
My j=1

< 00. O

Y| > yy/2n” logn} dy (x=2y)

Proof of Theorem 1.1 We only prove that (1.10) = (1.14), (1.11) = (1.10) and (1.13) = (1.15)
= (1.10), the proofs of (1.14) = (1.13) = (1.11), (1.14) = (1.12) = (1.11) are similar to those
in Li et al. [10].

(1.10) = (1.14). Note that

[[n*]e]
sup |U,(t) — &njl < max |g,,|
0<t121 121: " 1<j<[n¥] 1
and
[[n*]e]
sup |S,,(¢) - Xl < max |X l,
Ogtlg)l 121: M= gisee

where U,(t) is as Theorem B, and

Su(2)

na/Z

sup —aW,( t)‘

1<t<1

= sup

[[n*]¢] [[n*]e] [[n*]¢]
nalz [(S (t) Z X}’l]) + ( Z Xn,j —-a Z 871,]’)
j=1 j=1

[[n*1¢]
+ a( Z Enj— U,,(t))] + ﬂ(izg) _ W,,(t)) ‘
j=1

[[n*]t] [[n*]e]
= jor2 1<]<[n"‘] | n1| + Z Xn} —a Z Enj
|a n(t)

el + lal SUP’

nel2 1<}<[ )
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Therefore, to prove (1.14), by Lemma 2.1 and Theorem B it is enough to prove that

1 n®]t] [[n*]e]

_— —a &nil >0 as. (2.3)

/2n%logn 0<t<1 Zl " ; "
Given m > 0, set

[n*]t] m
Yum(t) = Z Z AiEnj-is
j=1 i=—m
m
dn=0, &=y a, i=0,..,m-1,
k=i+1
i-1
a_, =0, Zi,-:Zak, i=-m+1,-m+2,...,0,
k=—m
m 0
gn] = alsn]—i’ Sn] = Ziisn/—z
i=1 i=—m
Then
m [[n*]t] N N
Ynm(t) = Z a; Z 8n,j + Gn() _Z‘In,[[n"‘]t] +gn,[[n°‘]t]+1 _gnl) (24)
i=—m j=1

and

[[n*]e] [[n*]e]

Z Xnj= = Yum(t) Z Z Ai€pji- (2.5)
j=1 lil>m

For every i, by Lemma 2.1,

lenm—il > 0 as.

1 1
—_— En[[n® ———— ma
V2n%*logn o<tp Enttea-il < J/2n*logn 0<m<[n"‘]

So
. oty — 0
—————— sup €[l = a.s.
/2n%logn 0<tI<) el
and
= eyl — 0
_— il — a.s.
V2n*logn o<tl<)1 el
Furthermore

€0l . €l

lim = lim
ioo o logn  noo N2 log i

=0 a.s.
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Hence

Sup (€40 — € fneys + an ()61 — an1| — 0 a.s. (2.6)

1
A/ 2n% 10g no<t<1
By (2.4)-(2.6) and Remark 1.2

([n*]] ([n*]]

Z Xpj—a Z Enj

[[n*]] [[n*]e]

Za, Z Enj-i — Za, Z Enyj

|i|>m |i|>m

lim sup

1
n—oo A/ 2n” logl’l 0<t<1

= lim sup

n—soo A/21% logn 0<z<1

[[n*]¢]

E a; E Enj-i

|i|>m

< limsup

1
n—-o0 A/ 2n® log n O<t<1

[[»*1¢]

P 2 e

li|l>m

+ limsup

1
n—oo A/ 2n% log n 0<t<1

+ (2.7)

Zen/ :

2 a

li|>m

< a;| su
Z il V,>I1) 2n* logn 1<m<[n0t

li|>m

By the stationarity of {¢, €,;, —00 < i < 00,n > 1} and Lemma 2.2

E Enj-i

E a;| su
Z i n>I1) V2n* logn 1<m<[n“]

E Enj—i

< a;|Esu
Z ld n>11) «/2}1"‘ logn 1<m<[n"]

E Enj

a;| | Esu
(Z la: ) n>11) V/2n* logn l<m<[na]

< OoQ.

Hence

§ Enj-i

<00 a.s.

Z |az| SUP lzna logn 1<m< n"‘]

Therefore letting m — o0 in (2.7)

[[n*]e] [[n*]e]

ZX,,, aan,

lim sup

1
n—-oo A/ 2n” log n 0<t<1

= a.s.,

i.e. (2.3) holds.
(1.11) = (1.10). Set a,,; = Z}[ 1 aj-;. Note that 21 1 Xnj =D i o Ani€nir and {Z Xoj»

n > 1} is a sequence of independent random variables, thus by the Borel-Cantelli lemma,
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(1.11) implies that

oo oo
E P E an,ign,i
n=1 i

1=—00

> M/ 2a%n” logn} <00 (2.8)

holds forany M > 1. Let {¢/, &, ;, —00 < i < 00, n > 1} be an independent copy of {g, &5, —00 <
i < 00,n > 1}, Hence by (2.8), for {¢', ¢/ ., —00 < i< 00,n > 1}

ni’

00
/
An,i€y,;

1=—00

>

n=1

> My/2a’n? logn} <00 (2.9)

s
ni’

also holds. Set & = ¢ —¢" and ¢}, ; = &,,; — €, ;, it is clear that {&°, ¢}, —00 < i < 00,n > 1} is

an array of independent symmetrical, identically distributed random variables. Then by

(2.8) and (2.9)
oo oo
ZP: Z anigy, ;| > 2M/2a’*n® logn} < 00. (2.10)
n=1 i=—00
By the comparison principle (see Lemma 6.5 of Ledoux and Talagrand [11]), (2.10) implies
that
00 [n*/2]
ZP: Z ani€y, ;| > 2M/2a*n® logn} < 00. (2.11)
n=1 i=[n*/3]

Note that Y ;> _a; = a # 0, then for n large enough, |a,,| > |a|/2 holds uniformly for
[n%/3] <i < [n*/2]. By (2.11) and the comparison principle (see Lemma 6.5 of Ledoux
[11]) again

oo [n* /2]
ZP{ Z &yl > 4My/2n” logn} < 00, (2.12)
n=1 i=[n%/3]

Then by the same argument as Li et al. (p.175 in [10]), (2.12) implies that El(lZ;‘T:SI < 00, and
consequently E k‘);'f‘ps‘ < 00 holds. By (1.10) = (1.11), we have
[o¢]
; (e, —Eg,;
lim sup | 2 iz o0 @nieni — Eend)l =1 as. (2.13)

n—oo +/2a2E(e — E¢)?n® logn
Consequently

hm Z?:o—oo ﬂn,i(sn,i - Egn,i)

n—00 ne

=0 a.s.

By (1.11), we also have

o0
lim Zi:-oo An,i€n,i

=0 as,
n—00 ne

then Ee = 0. Comparing (2.13) and (1.11), we get Es? = 1 immediately.
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(1.13) = (1.15). By Embrechts et al. ([16], p.176, line 10),

. maxlgmgn Zm
Iim ———— =1 a.s.,

n—oo /2logn

which with (1.13) implies (1.15) immediately.
(1.15) = (1.10). By (1.15),

(n¥]
1255 Xujl
limsup#<1 a.s.

n—ooo +/2a’n%logn

The rest proof is similar to that of (1.11) = (1.10). The proof of the theorem is completed.
O
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