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Abstract
In this paper, the authors obtain the strong approximations, the laws of the single
logarithm, the functional laws of the single logarithm, and the limit law of the single
logarithm for linear processes generated by arrays of independent and identically
distributed random variables, and they show that they are all equivalent under the
same moment conditions.
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1 Introduction and main result
Throughout the paper, we assume that {εi, –∞ < i < ∞} (or {εn,i, –∞ < i < ∞, n ≥ }) is a
sequence (or an array) of independent and identically distributed (i.i.d.) random variables
with the same distribution as the random variable ε, {ai, –∞ < i < ∞} is a sequence of real
constants with

∞∑

i=–∞
|ai| < ∞, a =

∞∑

i=–∞
ai �= .

Define

Xn =
∞∑

i=–∞
aiεn–i, n ≥ 

(
or Xnk =

∞∑

i=–∞
aiεn,k–i, k ≥ , n ≥ 

)
. (.)

We call {Xn, n ≥ } (or {Xnk , k ≥ , n ≥ }) the linear process of {εi, –∞ < i < ∞} (or
{εni, –∞ < i < ∞, n ≥ }). In particular if ai =  for i = –, –, . . . , we call {Xn, n ≥ } (or
{Xnk , k ≥ , n ≥ }) the one-side linear processes. Denote by K the set of all absolutely
continuous f on [, ] with f () =  and

∫ 
 (f ′(x)) dx ≤ ; it is well known that K is a com-

pact, convex, and symmetric subset of the Banach space C[, ], which is the set of real
continuous functions on [, ] with the uniform norm.

For the one-side linear processes, Philipps and Solo [] established the strong law of
large numbers and the law of the iterated logarithm, Wang et al. [] established the strong
approximation to a Gaussian process. Lu and Qiu [] obtained the functional law of the
iterated logarithm for the one-side linear processes as follows.
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Theorem A Suppose that Eε = , Eε = , and
∑∞

i= i|ai| < ∞. Then the stochastic pro-
cess sequence { S(nt)√

an log log n
,  ≤ t ≤ , n ≥ } converges to and clusters throughout K in the

uniform norm with probability , that is,

⎧
⎪⎨

⎪⎩

limn→∞ inff ∈K sup≤t≤ | S(nt)√
an log log n

– f (t)| =  a.s. and

lim infn→∞ sup≤t≤ | S(nt)√
an log log n

– f (t)| =  a.s. for every f ∈K,

where

S(nt) =
[nt]∑

j=

Xj +
(
nt – [nt]

)
X[nt]+,  ≤ t ≤ , n ≥ ,

[·] is the greatest integer function, and log x = ln(max{e, x}) for x > .

By the same argument as Strassen [], Theorem A implies the classical Hartman-
Wintner law of the iterated logarithm (cf. Hartman and Wintner [])

lim sup
n→∞

∑n
j= Xj

√
an log log n

=  a.s. and lim inf
n→∞

∑n
j= Xj

√
an log log n

= – a.s.

Recently, Tan et al. [] proved the above-mentioned conclusions without the condition
∑∞

i= i|ai| < ∞.
There is a substantial difference between the a.s. limiting behavior for sequences of i.i.d.

random variables and arrays of i.i.d. random variables. For example, if Eε = , Eε = ,
Eε < ∞, Hu and Weber [] proved the following law of the single logarithm:

lim sup
n→∞

∑n
j= εn,j√

n log n
=  a.s. and lim inf

n→∞

∑n
j= εn,j√

n log n
= – a.s. (.)

Hence the classical Hartman-Wintner law of the iterated logarithm (cf. Hartman and
Wintner []) does not hold for arrays. The above result was improved by Li et al. [] and
by Qi [] who simultaneously and independently proved that

Eε = , Eε = , and E
|ε|

log |ε| < ∞

are necessary and sufficient for (.) to hold.
Afterwards, using the strong approximations for partial sums of i.i.d. random variables,

Li et al. [] obtained more general results as follows.

Theorem B Let α > . On a suitable probability space one can redefine {ε, εn,i,  ≤ i ≤
[nα], n ≥ } without changing the distribution, and there exist a sequence of independent
real standard Wiener processes {Wn(t),  ≤ t ≤ , n ≥ } and a sequence of independent
standard normal random variables {Zn, n ≥ }, such that the following are equivalent:

Eε = , Eε = , and E
|ε|p

logp |ε| < ∞, (.)
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lim sup
n→∞

∑[nα ]
j= εn,j√

nα log n
=  a.s. and lim inf

n→∞

∑[nα ]
j= εn,j√

nα log n
= – a.s., (.)

⎧
⎨

⎩
limn→∞ inff ∈K sup≤t≤ | Un(t)

(nα log n)/ – f (t)| =  a.s. and

lim infn→∞ sup≤t≤ | Un(t)
(nα log n)/ – f (t)| =  a.s. for every f ∈K,

(.)

∣∣∣∣

∑[nα ]
j= εn,j

nα/ – Zn

∣∣∣∣ = o
(
(log n)/) a.s., (.)

sup
≤t≤

∣∣∣∣
Un(t)
nα/ – Wn(t)

∣∣∣∣ = o
(
(log n)/) a.s., (.)

where p =  + /α and

Un(t) =
[[nα ]t]∑

j=

εn,j +
([

nα
]
t –

[[
nα

]
t
])

εn,[[nα ]t]+,  ≤ t ≤ , n ≥ . (.)

Remark . Theorem B also holds if (.) is replaced by

lim sup
n→∞

max≤m≤[nα ] |∑m
j= εn,j|√

nα log n
=  a.s. (.)

In fact, by the equivalence of (.) and (.), Eε = , Eε = . By Markov’s inequality, for
fixed δ > , when n is large enough,

max
≤m≤[nα ]–

P

{∣∣∣∣∣

[nα ]∑

j=m+

εn,j

∣∣∣∣∣ > (δ/)
√

nα log n

}
≤ δ–(E|ε|)(log n)– < /.

Hence, by Ottaviani’s inequality (see Lemma . in Ledoux and Talagrand []), when n is
large enough,

P

{
max

≤m≤[nα ]

∣∣∣∣∣

m∑

j=

εn,j

∣∣∣∣∣ > ( + δ)
√

nα log n

}

= P

{
max

≤m≤[nα ]

∣∣∣∣∣

m∑

j=

εn,j

∣∣∣∣∣ > ( + δ/)
√

nα log n + (δ/)
√

nα log n

}

≤ P{|∑[nα ]
j= εn,j| > ( + δ/)

√
nα log n}

 – max≤m≤[nα ]– P{|∑[nα ]
j=m+ εn,j| > (δ/)

√
nα log n}

≤ P

{∣∣∣∣∣

[nα ]∑

j=

εn,j

∣∣∣∣∣ > ( + δ/)
√

nα log n

}
.

By the Borel-Cantelli lemma, (.) implies that

∞∑

n=

P

{∣∣∣∣∣

[nα ]∑

j=

εn,j

∣∣∣∣∣ > ( + δ/)
√

nα log n

}
< ∞.
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Hence

∞∑

n=

P

{
max

≤m≤[nα ]

∣∣∣∣∣

m∑

j=

εn,j

∣∣∣∣∣ > ( + δ)
√

nα log n

}
< ∞.

By the Borel-Cantelli lemma again

lim sup
n→∞

max≤m≤[nα ] |∑m
j= εn,j|√

nα log n
≤  + δ a.s.

Note that δ >  is arbitrary and

lim sup
n→∞

max≤m≤[nα ] |∑m
j= εn,j|√

nα log n
≥ lim sup

n→∞

|∑[nα ]
j= εn,j|√

nα log n
=  a.s.,

(.) holds.

Very few results for a moving average process of an array of i.i.d. random variables are
known. In this paper, we will extend Theorem B to the linear processes as follows.

Theorem . Let α > . On a suitable probability space one can redefine {ε, εn,i, –∞ < i <
∞, n ≥ } without changing the distribution, and there exist a sequence of independent
real standard Wiener processes {Wn(t),  ≤ t ≤ , n ≥ } and a sequence of independent
standard normal random variables {Zn, n ≥ }, such that the following are equivalent:

Eε = , Eε = , and E
|ε|p

logp |ε| < ∞, (.)

lim sup
n→∞

∑[nα ]
j= Xn,j

√
anα log n

=  a.s. and lim inf
n→∞

∑[nα ]
j= Xn,j

√
anα log n

= – a.s., (.)

⎧
⎨

⎩
limn→∞ inff ∈K sup≤t≤ | Sn(t)

(anα log n)/ – f (t)| =  a.s. and

lim infn→∞ sup≤t≤ | Sn(t)
(anα log n)/ – f (t)| =  a.s. for every f ∈K,

(.)

∣∣∣∣

∑[nα ]
j= Xn,j

nα/ – aZn

∣∣∣∣ = o
(
(log n)/) a.s., (.)

sup
≤t≤

∣∣∣∣
Sn(t)
nα/ – aWn(t)

∣∣∣∣ = o
(
(log n)/) a.s., (.)

lim
n→∞

√
a log n

max
≤m≤n

|∑[mα ]
j= Xm,j|
mα/ =  a.s., (.)

where p =  + /α and

Sn(t) =
[[nα ]t]∑

j=

Xn,j +
([

nα
]
t –

[[
nα

]
t
])

Xn,[[nα ]t]+,  ≤ t ≤ , n ≥ .

Remark . We call (.) the limit law of the single logarithm, an analog of the limit law
of the iterated logarithm which is due to Chen [] and developed by Li and Liang [].
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2 Proof of main result
To prove our main result, the following lemmas are needed.

Lemma . Let α >  and {Y , Yn,j,  ≤ j ≤ [nα], n ≥ } be an array of identically distributed
random variables (without independence assumption) with EY =  and E |Y |p

logp |Y | < ∞, p =
 + /α. Then

√
nα log n

max
≤j≤[nα ]

|Yn,j| →  a.s. (.)

Proof Note that E |Y |p

logp |Y | < ∞ is equivalent to

∞∑

n=

nαP
{|Y | > δ

√
nα log n

}
< ∞, ∀δ > .

Hence ∀δ > 

∞∑

n=

P
{

max
≤j≤[nα ]

|Ynj| > δ
√

nα log n
}

≤
∞∑

n=

nαP
{|Y | > δ

√
nα log n

}
< ∞,

which implies that (.) holds by the Borel-Cantelli lemma. �

Lemma . Let α >  and {Y , Yn,j,  ≤ j ≤ [nα], n ≥ } be an array of i.i.d. random variables
with EY =  and E |Y |p

logp |Y | < ∞, p =  + /α. Then

E sup
n≥

max≤m≤[nα ] |∑m
j= Yn,j|√

nα log n
< ∞. (.)

Proof Let {Yn, n ≥ } be a sequence of independent random variables with common dis-
tribution as Y . By the same argument as Theorem  in Li and Spǎtaru [] or Theorem .
in Chen and Wang [],

∫ ∞

M

∞∑

n=

P

{∣∣∣∣∣

[nα ]∑

j=

Yj

∣∣∣∣∣ > y
√

nα log n

}
dy < ∞

holds for some large enough M > . For all x ≥ M, by Markov ’s inequality, when n is large
enough,

max
≤m≤[nα ]–

P

{∣∣∣∣∣

[nα ]∑

j=m+

Yn,j

∣∣∣∣∣ > x
√

nα log n

}
≤ (M)–(E|Y |)( log n)– ≤ /.

Hence by Ottaviani’s inequality (see Lemma . in Ledoux and Talagrand []), for all
x ≥ M, when n is large enough,

P

{
max

≤m≤[nα ]

∣∣∣∣∣

m∑

j=

Yn,j

∣∣∣∣∣ > x
√

nα log n

}
≤ P

{∣∣∣∣∣

[nα ]∑

j=

Ynj

∣∣∣∣∣ > x
√

nα log n/

}
.
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Then

E sup
n≥

max≤m≤[nα ] |∑m
j= Yn,j|√

nα log n

=
∫ ∞


P
{

sup
n≥

max≤m≤[nα ] |∑m
j= Yn,j|√

nα log n
> x

}
dx

≤ M +
∫ ∞

M

∞∑

n=

P

{
max

≤m≤[nα ]

∣∣∣∣∣

m∑

j=

Yn,j

∣∣∣∣∣ > x
√

nα log n

}
dx

≤ M + 
∫ ∞

M

∞∑

n=

P

{∣∣∣∣∣

[nα ]∑

j=

Ynj

∣∣∣∣∣ > x
√

nα log n/

}
dx

= M + 
∫ ∞

M

∞∑

n=

P

{∣∣∣∣∣

[nα ]∑

j=

Yj

∣∣∣∣∣ > y
√

nα log n

}
dy (x = y)

< ∞. �

Proof of Theorem . We only prove that (.) ⇒ (.), (.) ⇒ (.) and (.) ⇒ (.)
⇒ (.), the proofs of (.) ⇒ (.) ⇒ (.), (.) ⇒ (.) ⇒ (.) are similar to those
in Li et al. [].

(.) ⇒ (.). Note that

sup
≤t≤

∣∣∣∣∣Un(t) –
[[nα ]t]∑

j=

εn,j

∣∣∣∣∣ ≤ max
≤j≤[nα ]

|εn,j|

and

sup
≤t≤

∣∣∣∣∣Sn(t) –
[[nα ]t]∑

j=

Xn,j

∣∣∣∣∣ ≤ max
≤j≤[nα ]

|Xn,j|,

where Un(t) is as Theorem B, and

sup
≤t≤

∣∣∣∣
Sn(t)
nα/ – aWn(t)

∣∣∣∣

= sup
≤t≤

∣∣∣∣∣


nα/

[(
Sn(t) –

[[nα ]t]∑

j=

Xn,j

)
+

([[nα ]t]∑

j=

Xn,j – a
[[nα ]t]∑

j=

εn,j

)

+ a

([[nα ]t]∑

j=

εn,j – Un(t)

)]
+ a

(
Un(t)
nα/ – Wn(t)

)∣∣∣∣∣

≤ 
nα/ max

≤j≤[nα ]
|Xn,j| +


nα/ sup

≤t≤

∣∣∣∣∣

[[nα ]t]∑

j=

Xn,j – a
[[nα ]t]∑

j=

εn,j

∣∣∣∣∣

+
|a|

nα/ max
≤j≤[nα ]

|εn,j| + |a| sup
≤t≤

∣∣∣∣
Un(t)
nα/ – Wn(t)

∣∣∣∣.
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Therefore, to prove (.), by Lemma . and Theorem B it is enough to prove that

√
nα log n

sup
≤t≤

∣∣∣∣∣

[[nα ]t]∑

j=

Xn,j – a
[[nα ]t]∑

j=

εn,j

∣∣∣∣∣ →  a.s. (.)

Given m > , set

Ynm(t) =
[[nα ]t]∑

j=

m∑

i=–m

aiεn,j–i,

ãm = , ãi =
m∑

k=i+

ak , i = , . . . , m – ,

˜̃a–m = , ˜̃ai =
i–∑

k=–m

ak , i = –m + , –m + , . . . , ,

ε̃nj =
m∑

i=

ãiεn,j–i, ˜̃εnj =
∑

i=–m

˜̃aiεn,j–i.

Then

Ynm(t) =

( m∑

i=–m

ai

) [[nα ]t]∑

j=

εn,j + (̃εn – ε̃n,[[nα ]t] +˜̃εn,[[nα ]t]+ –˜̃εn) (.)

and

[[nα ]t]∑

j=

Xn,j = Ynm(t) +
[[nα ]t]∑

j=

∑

|i|>m

aiεn,j–i. (.)

For every i, by Lemma .,

√
nα log n

sup
≤t≤

|εn,[[nα ]t]–i| ≤ √
nα log n

max
≤m≤[nα ]

|εn,m–i| →  a.s.

So

√
nα log n

sup
≤t≤

|̃εn,[[nα ]t]| →  a.s.

and

√
nα log n

sup
≤t≤

|̃̃εn,[[nα ]t]+| →  a.s.

Furthermore

lim
n→∞

|̃εn|√
nα log n

= lim
n→∞

|̃̃εn|√
nα log n

=  a.s.
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Hence

√
nα log n

sup
≤t≤

|̃εn – ε̃n,[[nα ]t] +˜̃εn,[[nα ]t]+ –˜̃εn| →  a.s. (.)

By (.)-(.) and Remark .

lim sup
n→∞

√
nα log n

sup
≤t≤

∣∣∣∣∣

[[nα ]t]∑

j=

Xn,j – a
[[nα ]t]∑

j=

εn,j

∣∣∣∣∣

= lim sup
n→∞

√
nα log n

sup
≤t≤

∣∣∣∣∣
∑

|i|>m

ai

[[nα ]t]∑

j=

εn,j–i –
∑

|i|>m

ai

[[nα ]t]∑

j=

εn,j

∣∣∣∣∣

≤ lim sup
n→∞

√
nα log n

sup
≤t≤

∣∣∣∣∣
∑

|i|>m

ai

[[nα ]t]∑

j=

εn,j–i

∣∣∣∣∣

+ lim sup
n→∞

√
nα log n

sup
≤t≤

∣∣∣∣∣
∑

|i|>m

ai

[[nα ]t]∑

j=

εn,j

∣∣∣∣∣

≤
∑

|i|>m

|ai| sup
n≥

√
nα log n

max
≤m≤[nα ]

∣∣∣∣∣

m∑

j=

εn,j–i

∣∣∣∣∣ +
∣∣∣∣
∑

|i|>m

ai

∣∣∣∣. (.)

By the stationarity of {ε, εn,i, –∞ < i < ∞, n ≥ } and Lemma .

E
∞∑

i=–∞
|ai| sup

n≥

√
nα log n

max
≤m≤[nα ]

∣∣∣∣∣

m∑

j=

εn,j–i

∣∣∣∣∣

≤
∞∑

i=–∞
|ai|E sup

n≥

√
nα log n

max
≤m≤[nα ]

∣∣∣∣∣

m∑

j=

εn,j–i

∣∣∣∣∣

=

( ∞∑

i=–∞
|ai|

)
E sup

n≥

√
nα log n

max
≤m≤[nα ]

∣∣∣∣∣

m∑

j=

εn,j

∣∣∣∣∣

< ∞.

Hence

∞∑

i=–∞
|ai| sup

n≥

√
nα log n

max
≤m≤[nα ]

∣∣∣∣∣

m∑

j=

εn,j–i

∣∣∣∣∣ < ∞ a.s.

Therefore letting m → ∞ in (.)

lim sup
n→∞

√
nα log n

sup
≤t≤

∣∣∣∣∣

[[nα ]t]∑

j=

Xn,j – a
[[nα ]t]∑

j=

εn,j

∣∣∣∣∣ =  a.s.,

i.e. (.) holds.
(.) ⇒ (.). Set an,i =

∑[nα ]
j= aj–i. Note that

∑[nα ]
j= Xn,j =

∑∞
i=–∞ an,iεn,i, and {∑[nα ]

j= Xn,j,
n ≥ } is a sequence of independent random variables, thus by the Borel-Cantelli lemma,
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(.) implies that

∞∑

n=

P

{∣∣∣∣∣

∞∑

i=–∞
an,iεn,i

∣∣∣∣∣ > M
√

anα log n

}
< ∞ (.)

holds for any M > . Let {ε′, ε′
n,i, –∞ < i < ∞, n ≥ } be an independent copy of {ε, εn,i, –∞ <

i < ∞, n ≥ }, Hence by (.), for {ε′, ε′
n,i, –∞ < i < ∞, n ≥ }

∞∑

n=

P

{∣∣∣∣∣

∞∑

i=–∞
an,iε

′
n,i

∣∣∣∣∣ > M
√

anα log n

}
< ∞ (.)

also holds. Set εs = ε – ε′ and εs
n,i = εn,i – ε′

n,i, it is clear that {εs, εs
n,i, –∞ < i < ∞, n ≥ } is

an array of independent symmetrical, identically distributed random variables. Then by
(.) and (.)

∞∑

n=

P

{∣∣∣∣∣

∞∑

i=–∞
an,iε

s
n,i

∣∣∣∣∣ > M
√

anα log n

}
< ∞. (.)

By the comparison principle (see Lemma . of Ledoux and Talagrand []), (.) implies
that

∞∑

n=

P

{∣∣∣∣∣

[nα/]∑

i=[nα/]

an,iε
s
n,i

∣∣∣∣∣ > M
√

anα log n

}
< ∞. (.)

Note that
∑∞

i=–∞ ai = a �= , then for n large enough, |an,i| ≥ |a|/ holds uniformly for
[nα/] ≤ i ≤ [nα/]. By (.) and the comparison principle (see Lemma . of Ledoux
[]) again

∞∑

n=

P

{∣∣∣∣∣

[nα/]∑

i=[nα/]

εs
n,i

∣∣∣∣∣ > M
√

nα log n

}
< ∞. (.)

Then by the same argument as Li et al. (p. in []), (.) implies that E |εs|p

logp |εs| < ∞, and

consequently E |ε|p

logp |ε| < ∞ holds. By (.) ⇒ (.), we have

lim sup
n→∞

|∑∞
i=–∞ an,i(εn,i – Eεn,i)|√

aE(ε – Eε)nα log n
=  a.s. (.)

Consequently

lim
n→∞

∑∞
i=–∞ an,i(εn,i – Eεn,i)

nα
=  a.s.

By (.), we also have

lim
n→∞

∑∞
i=–∞ an,iεn,i

nα
=  a.s.,

then Eε = . Comparing (.) and (.), we get Eε =  immediately.
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(.) ⇒ (.). By Embrechts et al. ([], p., line ),

lim
n→∞

max≤m≤n Zm√
 log n

=  a.s.,

which with (.) implies (.) immediately.
(.) ⇒ (.). By (.),

lim sup
n→∞

|∑[nα ]
j= Xn,j|√

anα log n
≤  a.s.

The rest proof is similar to that of (.) ⇒ (.). The proof of the theorem is completed.
�
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