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Abstract
In this work, we utilize a scalarization method to introduce a system of nonsmooth
vector quasi-variational inequalities. We also study their relationship to Debreu type
vector equilibrium problems. Then we establish some existence results for solutions
of these systems by using maximal element theorems for a family of set-valued maps.
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1 Introduction
A system of vector quasi-equilibrium problems (SVQEP, for short) is one where we find
x̄ ∈ K such that, for each i ∈ I ,

x̄i ∈ Ai(x̄) and ϕi(x̄, yi) /∈ – int
(
Ci(x̄)

)
for all yi ∈ Ai(x̄), (SVQEP)

where I is an index set, K =
∏

i∈I Ki with Ki nonempty convex subsets of a Hausdorff locally
convex topological vector space Xi, and for each i ∈ I , Ai : K → Ki is a set-valued map
with nonempty values (Ki represents the set of all subsets of Ki), ϕi : K × Ki → Yi, with
Yi another Hausdorff locally convex topological vector space, is a bifunction and Ci : K →
Y

i is a set-valued map such that, for each x ∈ K , Ci(x) is a closed, convex, and pointed
(Ci(x) ∩ (–Ci(x)) = {}) cone in Yi with a nonempty topological interior, int(Ci(x)).

This concept of a system of vector quasi-equilibrium problems was first introduced
and studied by Ansari et al. []. It generalizes the vector equilibrium problem (VEP, for
short) which has received a lot of attention by many researchers in recent years [–].
This problem is important because it serves as a unified framework for many problems in
optimization, such as vector variational inequalities, vector variational-like inequalities,
vector complementarity problems, and vector optimization problems. Particularly, vector
equilibrium problems are successful in expressing optimality conditions for constrained
extremum problems and equilibrium conditions for network flow and economic prob-
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lems; see [, ] and the references therein. For more on this topic and its applications, we
refer the reader to the review paper [].

This paper is concerned with the study of existence of solutions to an important class of
(SVQEP); namely, the Debreu type equilibrium problem for vector-valued functions (DVEP,
for short) which seeks to find an x̄ ∈ K such that, for each i ∈ I , x̄i ∈ Ai(x̄), and

fi
(
x̄i, yi

)
– fi(x̄) /∈ – int

(
Ci(x̄)

)
for all yi ∈ Ai(x̄), (DVEP)

where fi : K = Ki × Ki → Yi is a vector-valued function and

Ki =
∏

j∈I,j �=i

Kj.

Here, we write x = (xi, xi) for each x ∈ K = Ki × Ki and x̄ is said to be a solution of (DVEP).
The following system of problems, called a system of nonsmooth vector quasi-variational

inequality problems (SNVQVI, for short), is essential as a tool to study (DVEP). In this
system one is interested in finding x̄ ∈ K such that, for each i ∈ I ,

x̄i ∈ Ai(x̄) and hi(x̄; yi – x̄i) /∈ – int
(
Ci(x̄)

)
for all yi ∈ Ai(x̄); (SNVQVI)

here hi : K × Ki → Yi are bifunctions.
In this paper, we introduce a bilinear form that is suitable for the data in (DVEP) and

we use it to write (SNVQVI) in a scalarized form. Considering the data of (DVEP), the
scalarization method we used is one where we choose a continuous linear functional from
a set in the dual space of Yi that is closely related to the ordering cone in Yi, then we pair
this functional with the range of fi. The resulting function, which is nonsmooth, is used
to define a bilinear form; namely Clarke’s generalized directional derivative. This bilinear
form helps finally write a scalarized version of (SNVQVI). Utilizing this method, we are
able to establish some existence results for the scalarized version of (SNVQVI) that unify
and improve many results in the literature [–].

The rest of the paper is organized as follows. Section  presents the necessary back-
ground needed. In Section , we describe the scalarization method and introduce a scalar-
ized system of nonsmooth quasi-variational inequality problems. We also introduce the
scalarized Debreu type equilibrium problem for a vector-valued function and investigate
its relations to (DVEP) and to the scalarized system of nonsmooth quasi-variational in-
equality problems. In Section , we establish the main results concerning the existence of
solutions of the scalarized system of nonsmooth quasi-variational inequality problems.

2 Definitions and preliminaries
In this section, we lay out the basic definitions and necessary background required in what
follows.

Throughout this section, unless stated otherwise, X and Y are two normed space and Y ∗

is the topological dual of Y . Suppose that K is a nonempty subset of X and that C : K → Y

is a set-valued map such that, for each x ∈ K , C(x) is a closed, convex, and pointed cone
in Y with nonempty interior, i.e. int(C(x)) �= ∅, the positive dual of C is a set-valued map
C∗ : K → Y∗ defined as

C∗(x) =
{

w ∈ Y ∗ : 〈w, y〉 ≥  for all y ∈ C(x)
}

for x ∈ K . ()
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Although the following result is generally accepted, we include the proof for complete-
ness.

Lemma . Suppose that C : K → Y is a set-valued map such that, for each x ∈ K , C(x)
is a closed, convex, and pointed cone in Y with int(C(x)) �= ∅, then

x ∈ int
(
C(x̄)

)
iff

〈
w∗, x

〉
>  for all w∗ ∈ C∗(x̄) \ {}.

Proof Assume that x ∈ int(C(x̄)) then there exists ε >  such that x + εe ∈ C(x̄) for all e ∈ B

where B is the unit ball. Now assume, to the contrary, that there exists w∗
 ∈ C∗(x̄) \ {}

such that 〈w∗
, x〉 = , then

〈
w∗, x + εe

〉 ≥  for all w∗ ∈ C∗(x̄) \ {} and for all e ∈ B,

and, in particular, we have

〈
w∗

, e
〉 ≥  for all e ∈ B,

which implies that w∗
 = ; a contradiction.

Conversely, assume that 〈w∗, x〉 >  for all w∗ ∈ C∗(x̄) \ {} and that x /∈ int(C(x̄)). Since
int(C(x̄)) is a nonempty convex set, then, by the strong separation theorem, there exists a
nonzero w∗

 ∈ Y ∗ such that

〈
w∗

, x
〉 ≤ 〈

w∗
, y

〉
for all y ∈ int

(
C(x̄)

)
.

It is now clear that 〈w∗
, y〉 ≥  for all y ∈ int(C(x̄)). Because, otherwise, if 〈w∗

, y〉 <  for
some y ∈ int(C(x̄)) and since C(x̄) is a cone, we can find large enough λ > , such that
〈w∗

, x〉 > 〈w∗
,λy〉. Since C(x̄) is closed and by the continuity of w∗

, we have 〈w∗
, y〉 ≥ 

for all y ∈ C(x̄); which shows that w∗
 ∈ C∗(x̄) \ {}. Now if 〈w∗

, x〉 >  then we can find
z ∈ int(C(x̄)) and small enough μ >  such that 〈w∗

, x〉 > 〈w∗
,μz〉. Therefore 〈w∗

, x〉 ≤ .
This implies that 〈w∗

, x〉 =  because C(x̄) is pointed. This is a contradiction. �

We recall that a set-valued map ψ : X → Y is said to be locally Lipschitz at x ∈ X, see [],
if there exist a positive constant l and a neighborhood U ⊂ Dom(ψ) := {y ∈ X : ψ(y) �= ∅}
of x such that

ψ(y) ⊂ ψ(y) + l‖y – y‖BY for all y, y ∈ U ,

where BY is the unit ball in Y . If ψ is locally Lipschitz at every x ∈ K with K being a
nonempty subset of X, we say that ψ is locally Lipschitz on K . We, also, recall that a real-
valued function φ : X → R from a normed space to the real number line R is said to be
upper semicontinuous on a subset E of X if

φ(x) ≥ lim sup
y→x (y∈E)

φ(y) for all x ∈ E.

It is called positively homogeneous on X if φ(tx) = tφ(x) for all x ∈ X and any positive
scalar t. It is, also, called subadditive on X if for every x, y ∈ X, φ(x + y) ≤ φ(x) + φ(y).
A positively homogeneous function is clearly subadditive if and only if it is convex.
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Definition . (see []) Let φ : X →R be locally Lipschitz at x ∈ X. The Clarke general-
ized directional derivative of φ at x ∈ X in the direction of another vector d ∈ X, denoted
by φ◦(x; d), is defined as

φ◦(x; d) := lim sup
y→x,t→+

φ(y + td) – φ(y)
t

,

where y ∈ X and t is a positive number.

The next lemma summarizes the basic properties of the Clarke generalized directional
derivative.

Lemma . (see []) Let φ : X →R be locally Lipschitz at x ∈ X. The following assertions
hold true.

(i) The function φ◦(x; ·) is finite, positively homogeneous, and subadditive on X .
(ii) The function φ◦(·; ·) is upper semicontinuous.

Definition . For an index set I , let X =
∏

i∈I Xi with each Xi a normed space and let
φi : X →R be locally Lipschitz at x ∈ X. The Clarke generalized partial directional deriva-
tive of φ at x in the direction of di ∈ Xi, denoted by φ◦

i (x; di), is defined to be a Clarke
generalized directional derivative of the function g : Xi →R defined as

g(yi) = φ
(
xi, yi

)
for all yi ∈ Xi,

at xi in the direction of di, where xi is the ith component of x and

xi ∈ Xi =
∏

j∈I,j �=i

Xj.

Remark . It is clear from the previous definition that the Clarke generalized partial di-
rectional derivative inherits all properties of the Clarke generalized directional derivative
listed in Lemma ..

Definition . Let K be a nonempty subset of X and let φ : K →R be a locally Lipschitz
function at x ∈ K . We say that φ is Clarke-pseudoconvex at x if

φ◦(x; y – x) ≥  implies φ(y) ≥ φ(x) for all y ∈ K .

The function φ is said to be Clarke-pseudoconvex on K if it is Clarke-pseudoconvex at
every point in K .

We shall recall the definition of a strictly compactly Lipschitz function. This concept is
very essential for scalarizing (SNVQVI).

Definition . (see []) Let K be a nonempty subset of X, a function ψ : K → Y is said
to be strictly compactly Lipschitz at x̄ ∈ K if there exist

. a set-valued map R : K → Comp(Y ), where Comp(Y ) is the set of all compact subset
of Y ,
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. a function r : (, ] × K × K → Y ,
. a neighborhood U of x̄, and
. a neighborhood O of  in X ,

satisfying the following:
(i) limt→+,x→x̄ r(t, x; v) =  for each v ∈O and

lim
t→+
x→x̄
v→

r(t, x; v) = ;

(ii) for all x ∈ U , v ∈O and t ∈ (, ], we have

ψ(x + tv) – f (x)
t

∈R(v) + r(t, x; v);

(iii) R() = {} and the set-valued map R is upper semicontinuous at the origin (that is,
for each neighborhood of R() in Y there exists a neighborhood U of  in X such
that, for each x ∈ U , R(x) ∈ W ).

Moreover, we say that ψ is strictly compactly Lipschitz on K if it is strictly compactly
Lipschitz on all x̄ ∈ K .

Remark . In the previous definition, we have the following:
(i) If Y is finite dimensional, then ψ is strictly compactly Lipschitz at x̄ if and only if it

is locally Lipschitz at x̄.
(ii) If ψ is strictly compactly Lipschitz on K , then the function w∗ ◦ ψ : K →R defined

as

(
w∗ ◦ ψ

)
(x) =

〈
w∗,ψ(x)

〉
for all x ∈ K

is locally Lipschitz for all w∗ ∈ Y ∗.

Definition . Let K be a nonempty subset of X, ψ : K → Y be a strictly compactly
Lipschitz function on K , and w∗ ∈ Y ∗. We say that ψ is w∗-Clarke-pseudoconvex if the
real-valued function w∗ ◦ψ : K →R is Clarke-pseudoconvex on K , where 〈·, ·〉 is the pair-
ing of Y ∗ and Y .

We end this section by giving the mayor tools to establish existence of solutions for
(DVEP). Theorem ., due to Deguire et al. [], is a particular form of a maximal element
theorem for a family of set-valued maps.

Definition . (see []) If E is a lattice with a minimal element, denoted by , then a
mapping � : Z → E, with Z a Hausdorff topological vector space, is called a measure of
noncompactness of Z if the following conditions hold for any A, B ∈ Z :

(i) �(A) =  if and only if A is relatively compact.
(ii) �(conv(A)) = �(A), where conv(A) stands for the convex closure of A.

(iii) �(A ∪ B) = max {�(A),�(B)}.

Definition . (see []) Let L and Z be as in Definition .. Suppose � : Z → L is a
measure of noncompactness of Z and D ⊂ Z. An upper semicontinuous (see [] for a



Alshahrani Journal of Inequalities and Applications  (2015) 2015:130 Page 6 of 10

definition) set-valued map T : D → Z is said to be �-condensing if the following implica-
tion holds:

if E ⊆ D and �
(
T(E)

) ≥ �(E), then E is relatively compact.

Remark . It should be noted that
(i) (iii) in Definition . implies that if A ⊆ B, then �(A) ≤ �(B);

(ii) any set-valued map defined on a compact set is �-condensing;
(iii) if Z is, also, locally convex, then any compact set-valued map is �-condensing for

every measure of noncompactness �;
(iv) if T : D → Z is �-condensing and T ′ : D → Z is a set-valued map such that

T ′(x) ⊆ T(x) for all x ∈ D, then T ′ is also �-condensing.

Theorem . Let I be an index set. For each i ∈ I , let Ki be a nonempty convex subset of a
Hausdorff topological vector space Xi, and let Gi : K =

∏
i∈I Ki → Ki be a set-valued map.

Assume that the following conditions hold:
(i) Gi(x) is convex, for all i ∈ I and all x ∈ K ;

(ii) xi /∈ Gi(x) for all i ∈ I and all x ∈ K , where xi is the ith component of x;
(iii) G–(yi) is open for all i ∈ I and for all yi ∈ Ki, and
(iv) there exist a nonempty and compact subset N of K and a nonempty, compact, and

convex subset Bi of Ki for each i ∈ I such that, for all x ∈ K \ N , there exists i ∈ I
satisfying Gi (x) ∩ Bi �= ∅.

Then there exists x̄ ∈ K such that Gi(x̄) = ∅ for all i ∈ I .

Remark . If we replace condition (iv) in Theorem . by the following condition:

(iv)′ the set-valued map G : K → K , defined as G(x) :=
∏

i∈I Gi(x) for all x ∈ K , is �-con-
densing;

then Theorem . remains true (see Corollary  in []) provided that we assume, for
each i ∈ I , that Ki is nonempty, closed, and convex, and Xi is locally convex Hausdorff
topological vector space.

3 Scalarization
In this section, we utilize the scalarization method introduced by Alshahrani et al. []
to present scalarized problems of (DVEP) and (SNVQVI) and establish some relations
among them. To this end, let I be an index set, K =

∏
i∈I Ki with Ki nonempty convex

subsets of a normed space Xi. Furthermore, we consider, for each i ∈ I , a set-valued map
Ai : K → Ki with nonempty values, a bifunction fi : Ki ×Ki → Yi, with Yi another normed
space, and Ci : K → Ki is a set-valued map such that Ci(x) is a closed, convex, and pointed
cone in Yi with nonempty interior for each x ∈ K . We write x = (xi, xi) ∈ K = Ki × Ki, with

xi ∈ Ki =
∏

j∈I,j �=i

Kj.

The scalarized Debreu type equilibrium problem for vector-valued functions (denoted
by w-DVEP) is to find x̄ ∈ K such that, for each i ∈ I , x̄i ∈ Ai(x̄) and

(
w∗

i ◦ fi
)
(x̄) ≤ (

w∗
i ◦ fi

)(
x̄i, yi

)

for all yi ∈ Ai(x̄) and for some w∗
i ∈ C∗

i (x̄) \ {}. (w∗-DVEP)
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Proposition . Every solution of (w∗-DVEP) is a solution of (DVEP).

Proof Suppose that x̄ is a solution of (w∗-DVEP) and assume, to the contrary, that it is not
a solution of (DVEP); which means that there exists a i ∈ I such that

fi
(
x̄i , ŷi

)
– fi (x̄) ∈ – int

(
Ci (x̄)

)
for some ŷi ∈ Ai (x̄).

By Lemma ., we have

〈
w∗, fi (x̄)

〉
>

〈
w∗, fi

(
x̄i , ŷi

)〉
for all w∗ ∈ C∗

i (x̄) \ {},

which is a contradiction. �

The scalarized system of nonsmooth quasi-variational inequality problems (SSNQVI,
for short) is to find x̄ ∈ K such that, for each i ∈ I , x̄i ∈ Ai(x̄), and

(
w∗

i ◦ fi
)◦

i (x̄; yi – x̄i) ≥  for all yi ∈ Ai(x̄) and for some w∗
i ∈ C∗

i (x̄) \ {}. (SSNQVI)

Proposition . Let fi : K → Yi be strictly compactly Lipschitz at x̄ ∈ K and the function
f (x̄i, ·) is w∗-Clarke-pseudoconvex for all w∗ ∈ C∗

i (x̄) \ {}. If x̄ is a solution to (SSNQVI),
then it is a solution to (w∗-DVEP).

Proof The proof is immediate from the definition of w∗-Clarke-pseudoconvexity of f in
the second argument. �

4 Main results
From this point onward, we assume that I is any index set, countable or uncountable, and
for each i ∈ I , Ki is a nonempty convex subset of a Hausdorff topological vector space Xi,
Yi is a real locally convex topological vector space, K =

∏
i∈I Ki, Ci : K → Yi is a set-valued

map such that, for all x ∈ K , Ci(x) is a closed, convex, and pointed cone with nonempty
interior and C∗

i (x) is its positive dual, as defined in (). Furthermore, we assume that, for
each i ∈ I , Ai : K → Ki is a set-valued map such that, for all x ∈ K , Ai(x) is nonempty and
convex, A–

i (yi) is open in K for all yi ∈ Ki and the set Fi := {x ∈ K : xi ∈ Ai(x)} is closed in
K , where xi is the ith component of x.

Theorem . For each i ∈ I , let fi : K → Yi be strictly compactly Lipschitz on K . Assume
that there exist a nonempty and compact subset N of K and a nonempty, compact, and
convex subset Bi of Ki for all i ∈ I such that, for all x ∈ K \ N , there exist i ∈ I and yi ∈ Bi ,
satisfying yi ∈ Ai (x) and

(
w∗

i ◦ fi
)◦

xi
(x; yi – xi ) <  for some w∗

i ∈ C∗
i (x) \ {}.

Then (SSNQVI) has a solution.

Proof For every x ∈ K and every i ∈ I , define two set-valued maps Wi : K → Ki and Gi :
K → Ki as follows:

Wi(x) :=
{

yi ∈ Ki :
(
w∗

i ◦ fi
)◦

xi
(x; yi – xi) <  for some w∗

i ∈ C∗
i (x) \ {}},
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Gi(x) :=

{
Ai(x) ∩ Wi(x), if x ∈ Fi,
Ai(x), if x ∈ K \ Fi.

Because (w∗
i ◦ fi)◦xi

(x; ·) is positively homogeneous and subadditive, it follows that (w∗
i ◦

fi)◦xi
(x; ·) is convex and, therefore, Wi(x) is a convex set, which in turn shows that Gi(x)

is also convex for all x ∈ K and all i ∈ I . Furthermore, xi /∈ Wi(x) for all x ∈ K and all
i ∈ I , with xi the ith component of x, because the Clarke generalized partial directional
derivative vanishes in the direction of the zero vector. This also shows that xi /∈ Gi(x) for
all x ∈ K and all i ∈ I .

For each i ∈ I and all yi ∈ Ki, the inverse of Gi(x) can be written as

G–
i (yi) = A–

i (x) ∩ (
W –

i (yi) ∪ (K \ Fi)
)
.

Obviously, A–
i (yi) and K \ Fi are open. To see that W –

i (yi) is open, note that the comple-
ment of the inverse map of Wi in K ,

[
W –

i (yi)
]c =

{
x ∈ K :

(
w∗

i ◦ fi
)◦

xi
(x; yi – xi) ≥  for some w∗

i ∈ C∗
i (x) \ {}}

for all yi ∈ Ki,

is closed due to the upper semicontinuity of the Clarke generalized partial directional
derivative in both arguments. Thus G–

i (yi) is open for all i ∈ I and all yi ∈ Ki. Therefore by
Theorem ., there exists x̄ ∈ K such that Gi(x̄) = ∅ for all i ∈ I . Since for each i ∈ I and all
x ∈ K , Ai(x) is assumed to be nonempty, we must have Gi(x̄) = Ai(x̄) ∩ Wi(x̄) = ∅. In other
words, x̄ satisfies, for all i ∈ I , the following:

x̄i ∈ Ai(x̄) and
(
w∗

i ◦ fi
)◦

x̄i
(x̄; yi – x̄i) ≥  for all yi ∈ Ai(x̄) and for some w∗

i ∈ C∗
i (x̄) \ {}.

Thus x̄ is a solution of (SSNQVI). �

Corollary . For each i ∈ I , let fi : K → Yi be strictly compactly Lipschitz on K and the
function fi(x̄i, ·) is w∗

i -Clarke-pseudoconvex for all w∗
i ∈ C∗

i (x) \ {} and all x ∈ K . Assume
that there exist a nonempty and compact subset N of K and a nonempty, compact, and
convex subset Bi of Ki for all i ∈ I such that, for all x ∈ K \ N , there exist i ∈ I and yi ∈ Bi ,
satisfying yi ∈ Ai (x) and

(
w∗

i ◦ fi
)◦

xi
(x; yi – xi ) <  for some w∗

i ∈ C∗
i (x) \ {}.

Then (DVEP) has a solution.

Proof The proof follows from Theorem . and Propositions . and .. �

The following result establishes the existence of solutions to (SSNQVI) in the presence
of �-condensing maps.



Alshahrani Journal of Inequalities and Applications  (2015) 2015:130 Page 9 of 10

Theorem . For each i ∈ I , let fi : K → Yi be strictly compactly Lipschitz on K and let the
set-valued map A : K → K , defined as

A(x) =
∏

i∈I

Ai(x) for x ∈ K ,

be �-condensing. Then (SSNQVI) has a solution.

Proof In light of Remark ., we only need to show that the set-valued map G : K → K ,
defined by

G(x) =
∏

i∈I

Gi(x) for x ∈ K ,

where the Gi are as defined in the proof of Theorem ., is �-condensing. From the def-
inition of Gi, we have Gi(x) ⊆ Ai(x) for all i ∈ I and all x ∈ K and therefore G(x) ⊆ A(x)
for all x ∈ K . Because A is �-condensing, it follows from (iv) and Remark . that G is
�-condensing as well. �

Remark . Theorem . and Theorem . improve and generalize many existence re-
sults in the literature; see for example Theorem  in [], Theorem . in [], Theorem 
in [] and Theorem  in [].
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