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Abstract

By introducing a mixed kernel function and the proper parameters, a new
Hilbert-type integral inequality with a best constant factor in the whole plane is
derived. As an application, the operator expressions, reverse inequalities, and
Hardy-type inequalities are considered.
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1 Introduction

o b= (b2, € P (P = o = {2y 20 % < 00)),
lall = >, afn}% > 0, |||l > 0, we have the following well-known discrete Hilbert in-

Suppose that @,,,b, > 0, a = {a,,}

equality [1]:

Mg

<ﬂ||d||||bII, 1)

R

Il
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n

where the constant factor 7 is the best possible. Moreover, for f(x),g(y) > 0, f,g € L*(R,),
If1l = ( fo f2(x) dx) 250, llgll > 0, we still have the following Hilbert integral inequality:

/ f T@8O) ey < 2 lf el (2)
0 0 xX+Yy

with the same best constant factor 7. Inequalities (1) and (2) are important in analysis and
applications (cf. [2-12]).

All of the above integral inequalities are built in the quarter plane of the first quadrant.
For some special kernel functions, it is meaningful to establish inequalities in the whole
plane. In 2008, Yang [13] gave an inequality as follows:

/ > fe0)

|1+xy|A

1/, 1/
</<x{/ JcfP0- 3117 () }p{f |y|“2“‘f(y>dy} q, 3)
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where the constant factor k; := B(%, %) +2B(1 -2, %) is the best possibleand 0 <A <1,p>1,
(1/p) + (1/g) = 1. In 2010, Zeng and Xie [14] got the following inequality: If p > 1, (1/p) +
(1/9) =1, r € (-1,0), 0 <@ < B <7, f(x) and g(y) are nonnegative measurable functions,
satisfying 0 < [ |x|p(l‘%)‘1f1’(x) dx<00,0< [* |y|‘7(1‘%)‘1g’1(y) dy < 0o, then

00 o0 x% +2xycosa + y*
[/ f(x)g(y)‘ln YOSALT | g

x2 + 2xycos B + y?

dy
0 1/ 00 1/
< [Cwrropmad L [~ pmaop) @)

where the constant factor

k= 4 sin[r(B — a)/2] cos[(r/2)(m —a — B)]
N rcos(rm/2)

is the best possible. Subsequently, many scholars began to study the inequalities of this
type (¢f. [15-19]).

In 1934, Hardy [1] published the following Hardy integral inequality: If p > 1, f(x) > 0,
FelP®R), IIfll, = (/s fP(x)dx}P > 0, F(x) = [; f(£)dt, then

00 V4 p
/ (@) dx<(i) 12, (5)
0 X p—l

where the constant factor [p/(p —1)]? is the best possible. From Theorem 328, [1], it follows
that

/ h FP(x)dx < p” f h (xf )" dx, (6)
0 0

where the constant factor p? is still the best possible and F(x) = fx “f(t)dt. In 2009, Yang
[20] gave the following best extensions of (6) by introducing an independent parameter A.

IfO0<p<1,r>0,f>0,0< foooxp(“¥)‘lfp(x)dx <oo (A #1), F(x) = [y f(t)dt (A > 1),
F(x)= [ f(t)dt (» <1), then

* 2(1-2)-1 r i 2(1-2)-1 P
/0 x Fp(x)dx>(—|1_k|)fo x (A @) d, (7)

where the constant factor (ﬁ)"’ is the best possible.
The main objective of this paper is to establish inequalities in the whole plane, as well
as the corresponding operator expression, the equivalent form, and the reverse inequality.

Special emphasis is placed on a Hardy-type inequality with the best possible constant.

2 Some lemmas
In what follows, o, ap will be real numbers suchthat 0 < oy <oy < 7,8 € {-1,1}, A1, A2 <0,
A+ Ay =—A, and

h(x’sy) = min min{l, [ x’sy|y + (x‘sy)y cosai])‘/y},

ie{1,2}

o . . y y ) My
kk(x,y).—igllllyrzl}m1n{|x|,[|y| +y sgnxcosa,] }
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Lemmal IfC(}):= ﬁ - 22217 [(cos )27 + (sin %)?%2V], the weight function

Goy) = [ B bre ®)
ws 2,)/ = . (xy)|x|1——5?»2 X,

o) s |x|5A2
)= [ (s ) s ©)

then for all x,y # 0, we have
ws(r2,y) = ms(h,x) = C(R). (10)

Proof (i) For § =1, setting u = xy, we find for y # 0,

0102 y) = / () el du

o0
= min min{l, u*(1 + cos )" }u“_l du
o ie(l2)
oo
+ min min{l, w*(1 - cosay)” }u”’l du
o ie12)

1 o .
== |: min (1 + cos ;)2 v*2* L min{1, v} dv
0

A ie{1,2)
oo
+ min (1 — cos a;)**” v*2* I min{1, v} dv]
o i€l2)

1 o0
=5 [(1 +cosay)?”” + (1 -cos az)’\zl”] / V2 min{1, v} dv
0

A 2xoly 2021y
=—— .22 cos il + | sin e =C(p).
MAs 2 2

(ii) For 8 = -1, setting u = y/x, we still have w_;(A2,y) = C(A).
Setting u = x°y, we get

ws(Ao,x) = /ooh(u)|u|“_1 du=C().

oo

Hence we have (10).

Remark 1 Let o; = oy = «, then /() = min{1, [|u|” + (&)” cosa]*'?} and

N Doty Waly
C(r) = — - 27| cos « +(sin2 .
MAy 2 2

Lemma?2 Ifp>1, }g + é =1, f(x) is a nonnegative measurable function in R, then

(i) for p>1, we have
[e9) %) »
J:= / |y[Pre=t |:‘/. h(x‘sy)f(x) dx] dy
< C’(n) f h |[PI=2)71 £ () (11)

o0

(ii) for 0 < p <1, we have the reverse of (11).
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Proof For p > 1, by the Holder inequality with weight [21], we have

9] p
|:/ h(x‘sy)f(x) dx:|
0 (1-8xr2)/q (1-A2)/p V4
) s (14 bl
) Uoo Koty )< i m) ( 07 )
00 5 |x|(1—5k2)(p—1) ) o0 s |y|(1—)»z)(q—1) p-1
< /_oc h(x’y) BT P (x) dx[/_ooh(x y) NP dx]

[ws(ha, )PE [ o | [x|-922)e-D
:W/:oo ( )W—,pr(x)dx. (12)

Then by (10) and the Fubini theorem [22], it follows that

J <Pl ” ooh 5, 134020 p
< m (% y)wf (x)dx | dy

= CP(n) / oow,s(xg,x)|x|f’“-“2>-1ff’(x) dx

oo

o0
- o0 / P2 ()

and so (11) is proved.
(ii) For 0 < p < 1, by the reverse Holder inequality [21], in view of the assumptions and
with the same way, we obtain the reverse of (11). O

3 Main results and applications
In this section, we set the functions and spaces as follows:

P() = %P1 (xeR), Yy = yi (yeR),

o) 1/p
Lpy(R):= {f: I llp = {/ q)(x)[f(x)|pdx} < oo},

[ee) 1/q
Lq,w(R)::{g:ngnq,w:{/ tlf(y)|g(y)|qdy} <oo}.

Theorem 1 If p > 1, 117 + %1 =1, f(x),g(y) = 0, satisfying f(x) € Ly,(R), g) € Ly y(R),
flpps Igllgy > O, then we have the following equivalent inequalities:

I:= f / h(xBy)f(x)g(y) dxdy < C()u)|lf||p,<p”g”q,1/f’ (13)
o0 oo p
1= [Cor] [ neds] dy <, 1

where the constant factors C(A) and CP()) in the above inequalities are the best possible.

Proof If (12) takes the form of equality for a y # 0, then there exist constants A and B, such
that they are not all zero, and

|x|(175)»z)(p71) |y|(14»2)(q71)

i fP(x)=B a.e.inR.

|x|l—5}»2
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We confirm that A ## 0 (otherwise B = A = 0), from which

B
|PU-8%2)-Lep () = |y|q<1—*2)m a.e. inR,
X

in view of f oo Tl L dx = 0o, which contradicts the fact that ||f|| pe > 0. Hence (12) takes a

strict inequality, so does (11), thus (14) is valid.
By the Holder inequality with weight [21], we obtain

o0 o0

]:/: |:|y|k2—11’ /: h(x‘;y)f(x) dxil(b]'},—/\zg(y) dy) fll/p”gnq,d/' (15)

By (14), we have (13). On the other hand, suppose that (13) is valid, setting

1% p-1
e = o [T aywas] rero)

oo

then we find J = ||g||Z,¢,. By (11), we have J < oco. If J = 0, then (14) is valid trivially; if
0 <J < 00, then by (13), it follows that

0<lgl?, =T =1<CA)IIfllpyligllgy < oo, (16)
JU2 = Igl 25 < COINS lpgs (17)

and then (14) follows which is equivalent to (13).

For any n > p\kzl (n € N), setting Es := {x € R: |x|® > 1} and
T = x*027, x e E, 20 = 2, yel-11)
0, x € R\Ej, 0, y € (—00,-1) U (1, 00),
then

- o~ , Up( el 1/q
I =uf||p,¢||g||q,l,,={ | lenldx} { / Wldy}
Es -1
s Up( r1 lq
= 2{/ x‘ﬁ‘ldx} {/ yrldy} =2n.
{x>0:x521} 0

Suppose that /() := fjl h(9c5y)|y|'\2+%f1 dy, we confirm that

[ 8

s [l
I(x) = |x| "> 77 /0 (h(v) + h(=v))V">* 70 dy,

In fact, for x > 0,

0 1
I(x) = [ R(xy) (=) 2 7 dy + /O h(xay)yA2+ tdy

1
3

8
X X
—Shg—L Jot k-1 —Shg—L Jot k-1
=x " ”q/ h(=v)V'"2 7 dy 4 x°? "’I/ h(v)v** 1 dy
0 0

3

=g / (h(v) + h(=v))V">* 71 dy,

0
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Similarly, we get

0 1
[ =/ h(xay)(—y)'\2+%1_ldy+/ h(xy)y’> 77 dy

8

- (—x)f‘s’\ff_q /(—%) (h(v) +h(—v))v’\2"%1’1 dv
0

for x < 0.

Applying the Fubini theorem [22],

~': o0 o] 5\~
I: / N / N h(x*y)f W)Z(y) dx dy

1
= lemzﬁ“< / h(x‘sy)lylk”%qldy>dx
-1

Es

s ER .
= [ Ja? < / () + h(—w))u’>* 7 du> dx
0

Es

8 1 1
= |x|‘ﬁ-l( /0 (h(u)+h(—u))u”+nq'ldu) dx

Es

8 S 1
o < / () + h(=w))u?* ! du) dx
1

Es

1 1
=2n | (h(w) + h(-w))u’> " dy
X )

9] 1
_%_1 _ A2+%I—1
+/1 (/{ |x] dx)(h(u)+h( u))u du

x:|x|0>u)

1

1 o0 1
= 2n [/ (h(u) + h(—u))uw'@‘l du + f (h(w) + h(—u))u“‘@‘l du].
0 1

If there exists a constant K < C(A), such that (13) is still valid when replacing C() by K,
and f(x), g(») byf(x), g(y), respectively, then it gives

/l(h(u) * h(_”))ukﬁ%{rl du+ /oo(h(u) + h(—u))u’\""ﬁ‘1 du
0 1

1~ 1 ~
=—T<—kL=K. (18)
2n  2n

1 _ S S . . .
Since {&"2" "} (0 <u < 1) and {«’>" %} (u > 1) are nonnegative, monotonically increas-

ing, by the Levi theorem [22],

1 [e'e}
C() = / Tim (() + hi(—)) > 7 s + / tim () + h(~10))u’ 5 du
0 n—00 1 n—00

1 1 o 1
= lim [ / (@) + h(~w)) > 7™ duy + f (h(u) + h(-u))u’> ™ du] <K.
0 1

n—00

Hence C(A) = K in (13) is the best possible.
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By the equivalence, the constant factor C”(A) in (14) is still the best possible. Otherwise,
we would reach a contradiction by (15): that the constant in (13) is not the best possible.
a

Remark 2 (i) With the assumptions of Theorem 1, we define a Hilbert-type integral op-
erator T': L, ,(R) — L, ,1-»(R) as follows: For any f € L, ,(R), there exists a T, satisfying,
for any y #0,

oo

(T0) = [ h(y)f () dx.

—00

By (14), we obtain

1T Nl y1-r < CAIf Nlpgr

from which Tf € L,, ,1»(R). Hence T is a bounded linear operator with || 7'|| < C(). Since

the constant factor in (14) is the best possible, we have

l Tf”p,\plm

1T :=
0Ly, ® I llpe

= C().

(ii) For 8 =1, (13) and (14) are reduced to the following inequalities with non-homoge-
neous kernel and the best possible constant factors:

/, : / : h(xy)f (x)g(y) dx dy

00 1/p 00 1/q
<C(A){/ |x|”(1‘*2)‘1fp(x)dx} {/ |y|q(1‘A2)‘1gq(y)dy} ,

(o¢] o]

o0 o0 P o0
/ |y|“2-1[ / h(xy)f(x)dx] dy < C° () / xPU21 () di

(iii) For § = -1 in (13) and (14), replacing |x|*f(x) by f(x) gives the following in-
equalities with homogeneous kernel and the best possible constant factors (k(x,y) :=

min;e o) min{|x|, [|y|” +y” sgnxcos ;] }):

/ ko (3 9)f () (y) dxdy
00 1/p 00 1/q
< C(k){/ |x|p(1‘“)‘lf"(x)dx} {/ |y|‘7(1‘“)‘1gq(y)dy} ,

[e’e] [e%e] P [e'e]
/ |y|“2-1[ / h(m)f(x)dx} dy < C(0) / (wPU071 12 (3) .

Theorem 2 With the assumptions of Theorem 1, replacing p >1 by 0 < p < 1, we have the

following equivalent reverse inequalities:

I= / / h(x*y)f ®)g(y) dxdy > CO)I|f lp gl g0 (19)



Huang et al. Journal of Inequalities and Applications (2015) 2015:129 Page 8 of 10

00 e} p
J= / P2t [ / h(xy)f (x) dx} dy > C*O)If 115, (20)
—-00 —00
where the constant factors C(A) and CP()) in the above inequalities are the best possible.

Proof The proofis similar to the proof of Theorem 1 and hence by Lemma 2 with0 < p < 1,
we have the reverses of (13), (14), and (15), thus (19) and (20) are valid. On the other hand,
suppose that (19) is valid. Let g(y) be the same as in Theorem 1, then J > 0 with the reverse
of (11). If J = oo, then (20) is obviously valid; if 0 < J < oo, then by (19), we obtain the
reverses of (16) and (17). Hence we have (20), which is equivalent to (19).

If the constant factor C(A) in (19) is not the best possible, then there exists a positive
constant k, with k > C(1), such that (19) is still valid when replacing C(A) by k. There
exists 0 < @ < 2A,, such that n > %ql’ we have the reverse of (18):

1

1 [ee] 1
f (h(u) + h(-w)) > 70 du + f (h(w) + h(=w))u> %~ du > k.
0 1

Since

0 < (h(u) + h(—u))uh_"%’_1 < (h(u) + h(—u))ukz_wjl)lf ! (u € [1,00)),

then by the Levi theorem,

© 1

f () + h(-w)) > du
1
o0
_ / (h(w) + h(—)) > du + o)) (1 — 00).
1

In view of g < 0 and n > %q‘, we have

(h(w) + ()i 77" < ((u) + h(-w) w5 (ue (0,1]),

1 00
0< / (h(u) + h(—z,t))u“_%_1 du < / (h(u) + h(—u))u“_%_1 du
0 0

—4 2x2/ly 2x2/y
=" 2" cos il + | sin “ < 00.
(@+2x1)(a—2X,) 2 2

By the Lebesgue dominated convergence theorem [22], we have
1 . 1
/ (h(w) + h(~u))u’* 7~ dy = / (h(u) + h(~w)) > du + o(1)  (n— o).
0 0

Therefore, we get C(1) > K. Hence C(X) = K is the best possible constant factor of (19).
By the equivalence, the constant factor C?(1) in (20) is still the best possible. Otherwise,

we would reach a contradiction by the reverse of (15): that the constant in (19) is not the

best possible. O

As an application of Hilbert-type inequality, suppose that § =1,

_ . . ) My
h(xy) = min min{1, [|xy1” + (xy)” cose; )"},

i
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h(u) =0 (Jul > 1), i.e. h(xy) =0 (x| > ﬁ), then we have

1 1
Ch) =GA):= / h(u)|u)*> ™" du = / (h(w) + h(~w))u> ™" du,
1 0

and we get Hardy-type inequality with the non-homogeneous kernel as follows.

Corollary 1 If p > 1, }7 + é =1, (1) = ‘/‘_11}1(u)|u|’\2‘1 du, f(x),g(y) > 0, satisfying 0 <
L5 1alPU22 1P () dx < 00, 0 < [ |y|10-22)-1g4(y) dy < oo, then we have the following

equivalent inequalities:

/ ( [ 1@ h(xy)f(x)dx>g(3’)dy= / ( 71‘7‘ h(xy)g(y)dy)j(x)dx
oo\t e\

oo 1/p 00 1/q
<c1<x>{ f |x|1’<1-“>-vp(x)dx} { f |y|q<1*2>-1gq(y>dy} , 1)
[e%e] ‘yi‘ p e’}
[ e ([ s dy<ctoy [t (22)

]

where the constant factors C(A) and C¥ () in the above inequalities are the best possible.
If 0 < p <1, then we have the reverse equivalent inequalities with the same best possible
constant factors.

Similarly, if () = 0 (Ju| < 1), then h(xy) = 0 (|x| < ﬁ). Setting

1 1
Ex1={yeR:y§—— oryz—},
x| |

and we get another Hardy-type inequality with the non-homogeneous kernel as follows:

Corollary 2 Ifp>1, }7 +2=1,

1
q

Cy(A) = /oo(h(u) + h(—u))u“_1 du,
1

f(x),g(y) = 0, such that 0 < [ |x|P4=2D1fP(x) dx < o0,

o0
0< / Y1102 () dy < oo,

(o¢]

then we have the following equivalent inequalities with the best possible constant factors:

/: (/E )@ dx)g@) dy
B / : ( fE ) h(xy)g(y) d)’)/(x) dx

00 1/p 00 1/q
<c2(x){ / |x|ﬁ<l-“’-1ff’(x)dx} { / |y|q“-“)-lg"(y>dy} , (23)

(o] (o ¢]
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00

o0 V4
/ |y|“2-1( | kx(x,y)f(x)dx) dy

S I (24)

o0

If 0 < p <1, then we get the reverse equivalent inequalities with the same best possible

constant factors.
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