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Abstract
The augmented Zagreb index of a graph G is defined as

AZI(G) =
∑

uv∈E(G)

( dudv
du + dv – 2

)3
,

where E(G) is the edge set, and du, dv are the degrees of vertices u and v in G,
respectively. This new molecular structure descriptor, introduced by Furtula et al.
(J. Math. Chem. 48:370-380, 2010), has proven to be a valuable predictive index in the
study of the heat of formation in heptanes and octanes. In this paper, the n-vertex
unicyclic graphs with the minimal and the second minimal AZI indices and the
n-vertex bicyclic graphs with the minimal AZI index are determined.
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1 Introduction
Let G = (V , E) be a simple, finite and undirected graph of order n = |V | and size m = |E|.
For v ∈ V (G), the degree of v, denoted by dv, is the number of edges incident to v. A vertex
of degree one is said to be a pendent vertex. The maximum vertex degree is denoted by �,
the minimum vertex degree is denoted by δ, and the minimum non-pendent vertex degree
is denoted by δ. If u and v are two adjacent vertices of G, then the edge connecting them
will be denoted by uv []. Other notations used in this work are standard and mainly taken
from [–].

A description of the structure or shape of molecules is very helpful in predicting the ac-
tivity and properties of molecules in complex experiments. Molecular descriptors play
a significant role in mathematical chemistry, especially in QSPR/QSAR investigations.
Among them, topological indices [] play an important role. Today, many topological in-
dices exist that have various applications in chemistry [, , ]. Here, a relatively new topo-
logical index is considered. In , Furtula et al. [] proposed a new, vertex-degree-based
graph topological index called the augmented Zagreb index (AZI), defined as

AZI(G) =
∑

uv∈E(G)

(
dudv

du + dv – 

)

,
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and showed that it is a valuable predictive index in the study of the heat of formation
in heptanes and octanes. Moreover, Gutman and Tošovič [] recently tested the correla-
tion abilities of  vertex-degree-based topological indices for the case of standard heats
of formation and normal boiling points of octane isomers. They found that the AZI in-
dex yields the best results. Consequently, the AZI index should be preferred in designing
quantitative, structure-property relations.

Furtula et al. [] obtained several tight upper and lower bounds of the AZI index of a
chemical tree and showed that among all trees, the star graph has the minimal AZI value.
Huang et al. [] and Wang et al. [] provided particular bounds on the AZI indices of
connected graphs and characterized the corresponding extremal graphs. Ali et al. [] es-
tablished inequalities between AZI and several other vertex-degree-based topological in-
dices. Ali et al. [] proposed tight upper bounds for the AZI of chemical bicyclic and
unicyclic graphs and provided a Nordhaus-Gaddum-type result for the AZI index.

In this paper, the n-vertex unicyclic graphs are determined with the minimal and the
second minimal AZI indices. Additionally, the n-vertex bicyclic graphs in which the AZI
index attains its minimal value are obtained.

2 Preliminaries
Some of the auxiliary results provided below will be used in the main theorem proofs. For
convenience, let A(x, y) = ( xy

x+y– ) for x, y ≥  with x + y > . Obviously, A(x, y) = A(y, x).

Lemma . ([])
(i) A(, y) is decreasing for y ≥ .

(ii) A(, y) = .
(iii) If y ≥  is fixed, then A(x, y) is increasing for x ≥ .

Lemma . ([]) A(,�) ≤ A(, i) ≤ A(, ) = A(, j) < A(, ) ≤ A(k, l) ≤ A(�,�), where
 ≤ i, j ≤ � and  ≤ k ≤ l ≤ �.

Lemma . Let f (x) = xA(, x + ) – (x + )A(, x + ) with x > . Then f (x) increases in x.

Proof Let h(x) = xA(, x + ) = x(x+)

(x+) . Therefore, f (x) = h(x) – h(x + ).
Then

h′(x) =
(x + )(x + )

(x + )

and

h′′(x) = –
(x + )
(x + ) < .

Applying Lagrange’s mean value theorem, f ′(x) = h′(x) – h′(x + ) = –h′′(ξ ) >  with x ≤
ξ ≤ x + . Therefore, f (x) increases in x, which completes the proof. �

Lemma . Let g(x, y) = A(x, y) – A(x – , y), with x and y as positive integers, and y < x + .
Then g(x, y) strictly decreases in x for fixed y ≥ .
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Proof First, the partial derivative g(x, y) is considered with respect to x,

∂g(x, y)
∂x

= y(y – )
(

x
(x + y – ) +

x – 
(x + y – )

)(
x

(x + y – ) –
x – 

(x + y – )

)
.

Now, we will show that

x
(x + y – ) –

x – 
(x + y – ) < .

Let m(t) = t
(t+y–) for y – t < . Then the function m(t) decreases in t because

m′
(t) =

y –  – t
(t + y – ) < .

Therefore, ∂g(x,y)
∂x < , from which it follows that g(x, y) strictly decreases in x. �

Lemma . Let l(x) = A(x – , ) – A(x – , ) for x ≥ . Then l(x) > .

Proof From the definition of A(x, y), the following is obtained:

l(x) =  ×
(

(x – )

(x – ) –
(x – )

x

)
.

Therefore,

l′(x) =  × (
√

 – )x + ( – 
√

)x – x + 
(x – )x

×
(√

(x – )
(x – ) +

x – 
x

)
.

l′(x) >  must be demonstrated. Let m(t) = (
√

 – )t + ( – 
√

)t – t + , so m′
(t) =

(
√

 – )t + ( – 
√

)t – , which is positive for t ≥ , implying that m(t) is an in-
creasing function for t. Thus, m(t) ≥ m() > . Therefore, l′(x) >  and l(x) ≥ l() =
. > . �

Lemma . Let l(x) = ( (x+)
x+ ) + ( (n–x–)

n–x– ), where n ≥  and  ≤ x ≤ n – . Then l(x) ≥
( (n+)

n+ ) + ( (n–)
n+ ).

Proof Consider the derivative l(x) with respect to x,

l′(x) =  ×
(

(x + )(n – x – ) + (x + )(n – x – )
(x + )(n – x – )

)

×
(

(x + )(n – x – ) – (x + )(n – x – )

(x + )(n – x – )

)
.

Now, the expression (x + )(n – x – ) – (x + )(n – x – ) must be discussed. Let m(t) =
(t + )(n – t – ) with  ≤ t ≤ n – . Then m(t) – m(t + ) = (t + )(n – t – ) – (t + )(n –
t – ) and m′

(t) = (n – t – )(n – t – ). Obviously, n – t –  > .
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If t > n–
 , then m′

(t) < , implying that m(t) is decreasing for t. Therefore, l′(x) >  and
l(x) ≥ l( n–

 ).
If t < n–

 , then m′
(t) > , implying m(t) < m(t + ). Therefore, l′(x) <  and l(x) ≥

l( n–
 ).

Therefore, l(x) ≥ ( (n+)
n+ ) + ( (n–)

n+ ) for  ≤ x ≤ n – . �

Lemma . Let l(x) = ( (x+)
x+ ) – ( (x–)

x ), where x ≥ . Then l(x) ≥ l().

Proof We have

l′(x) =  ×
(√

(x + )
(x + ) +

x – 
x

)(√
(x + )x – (x – )(x + )

(x + )x

)
.

Let m(t) =
√

(t + )t – (t – )(t + ) for t ≥ . It is easily seen that m′
(t) = (

√
 –

)t + (
√

 – )t – . By simple calculation, m′
(t) >  for t ≥ . Then m(t) ≥ m() > 

and l′(x) > , implying that l(x) is increasing in x. Therefore, l(x) ≥ l() for x ≥ . �

3 On the AZI indices of unicyclic graphs
In this section, the n-vertex unicyclic graphs are determined with the minimal and the
second minimal AZI indices. The technique from [] is used for these determinations.

For r �= s, a graph G is said to be (r, s)-biregular if each vertex has degree r or s, and each
vertex of degree r is adjacent to some vertices of degree s and vice versa. Let φ be the
class of connected graphs whose pendent vertices are adjacent to the vertices of maximum
degree and all other edges have at least one end-vertex of degree two. Let φ be the class
of connected graphs with vertices that are of degree at least two. Additionally, all of the
edges have at least one end-vertex of degree two.

Lemma . ([]) Let G be a connected graph of order n ≥  with m edges, p pendent
vertices, maximum degree � and minimum non-pendent vertex degree δ. Then

AZI(G) ≥ p
(

�

� – 

)

+ (m – p)
(

δ


δ – 

)

with equality if and only if G is isomorphic to a (,�)-biregular graph or G is isomorphic
to a regular graph or G ∈ φ or G ∈ φ.

Let Un be the set of n-vertex unicyclic graphs. Let Un,p be the set of unicyclic graphs
with n vertices and p pendent vertices, and let Cn,p be the unicyclic graph formed from
Cn–p by attaching p pendent vertices to a vertex of the cycle Cn–p, where  ≤ p ≤ n – .
Clearly Cn–p, = Cn.

Lemma . ([]) Let G ∈ Un,p, where  ≤ p ≤ n – . Then

AZI(G) ≥ p
(

p + 
p + 

)

+ (n – p)

with equality if and only if G ∼= Cn,p.
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Lemma . For every positive integer n, graphs Cn,p with  ≤ p ≤ n – , it holds that

AZI(Cn,n–) < AZI(Cn,n–) < · · · < AZI(Cn,) < AZI(Cn,).

Proof Consider the function

f(x) = x
(

x + 
x + 

)

+ (n – x) for  ≤ x ≤ n – .

Then

f ′
 (x) = –

x(x + x + x + )
(x + ) <  as x ≥ .

Thus, f (x) is a decreasing function for  ≤ x ≤ n–. Because f() = n– 
 and f() = n,

then

AZI(Cn,n–) < AZI(Cn,n–) < · · · < AZI(Cn,) < AZI(Cn,). �

Theorem . Among all graphs in Un with n ≥ , Cn,n– is the unique graph with the
minimal AZI index, which is equal to (n–)(n–)

(n–) + .

Proof By Lemma . and Lemma ., Cn,p is attained and is the unique graph with the
minimal AZI index among all graphs in Un,p with  ≤ p ≤ n – . Applying Lemma .,
Cn,n– is the unique graph with the minimal AZI index in Un. It is clear that AZI(Cn,n–) =
(n–)(n–)

(n–) + . �

The vertices of C are consecutively labeled by v, v, v. Let Qn(n, n, n) be the uni-
cyclic graph formed by attaching ni pendent vertices to vi, where ni ≥  for i = , , ,
n ≥ n ≥ n, and

∑
i= ni = n – .

Lemma . Let G ∼= Qn(n, n, n) with n ≥ n ≥  and G′ ∼= Qn(n + , n – , n) (see
Figure ). Then AZI(G′) < AZI(G).

Proof Consider the transformation σ depicted in Figure . By applying the transformation
σ to G, a pendent edge is cut from v and attached to v. By Lemma . and Lemma .,

Figure 1 Transformation σ from Lemma 3.5.
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the change of the AZI index after applying this transformation is

AZI(G) – AZI
(
G′)

= nA(, n + ) + nA(, n + ) + A(n + , n + ) + A(n + , n + )

+ A(n + , n + ) –
[
(n + )A(, n + ) + (n – )A(, n + )

+ A(n + , n + ) + A(n + , n + ) + A(n + , n + )
]

=
[
nA(, n + ) – (n + )A(, n + )

]
–

[
(n – )A(, n + )

– nA(, n + )
]

+
[
A(n + , n + ) – A(n + , n + )

]

+
[
A(n + , n + ) – A(n + , n + )

]

–
[
A(n + , n + ) – A(n + , n + )

]

= f (n) – f (n – ) + A(n + , n + ) – A(n + , n + )

+ g(n + , n + ) – g(n + , n + ).

By Lemma ., the expression f (n) – f (n – ) is positive for n > n – . By Lemma .,
g(n +, n +) > g(n +, n +) for n ≥ n ≥ n. Note that (n +)(n +) > (n +)(n +),
so

(n + )(n + )

(n + n + ) >
(n + )(n + )

(n + n + ) ,

that is, A(n + , n + ) > A(n + , n + ). Thus, it has been shown that after the transfor-
mation σ , the AZI index of G decreases. �

Theorem . Among all graphs in Un with n ≥ .
(i) For n =  or n ≥ , Cn,n– is the unique graph with the second minimal AZI index,

which is equal to (n – )( n–
n+ ) + .

(ii) For n = , Q(, , ) is the unique graph with the second minimal AZI index, which is
equal to ,

 .

Proof By Lemma . and Lemma ., the second minimal AZI index of graphs in Un with
n ≥  is achieved by the graphs in Un,n– \ {Cn,n–} and Cn,n–. Now, two cases are consid-
ered.

Case . n = .
Obviously, C is the unique graph with the second minimal AZI index, which is equal

to .
Case . n ≥ .
Note that n ≥ , so n ≥ n ≥ . By Lemma ., it is determined that Qn(n – , , ) is

the unique graph with the minimal AZI index among all of the graphs in Un,n– \ {Cn,n–}.
Note that

AZI
(
Qn(n – , , )

)
= (n – )A(, n – ) + A(, ) + A(, n – )

+ A(, ) + A(, n – )
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and

AZI(Cn,n–) = (n – )A(, n – ) + A(, n – ) + A(, ).

Then

AZI
(
Qn(n – , , )

)
– AZI(Cn,n–) = A(, n – ) + A(, ) – 

= A(, n – ) –



.

By Lemma .(iii), A(, n – ) is increasing for n ≥ . Using a simple calculation, it can
be shown that AZI(Q(, , )) < AZI(C,) for n =  and AZI(Qn(n – , , )) > AZI(Cn,n–)
for n ≥ .

Thus, it follows that Q(, , ) for n =  is the unique graph with the second minimal
AZI index, which is equal to ,

 , and Cn,n– for n ≥  is the unique graph with the second
minimal AZI index, which is equal to (n – )( n–

n+ ) + . �

4 On the AZI indices of bicyclic graphs
In this section, the n-vertex bicyclic graphs are determined with the minimal AZI index
for n ≥ .

Let Bn,p be the set of bicyclic graphs with n vertices and p pendent vertices for  ≤
p ≤ n – . Let Dr,t

n,p be the n-vertex bicyclic graph by identifying one vertex of two cycles
Cr and Ct and attaching p pendent vertices to the common vertex, where r ≥ t ≥  and
 ≤ p ≤ n – .

Lemma . ([]) Let G be a bicyclic graph with n ≥  vertices and p pendent vertices, where
 ≤ p ≤ n – . Then

AZI(G) ≥ p(p + )

(p + ) + (n – p + )

with equality holding if and only if G ∼= Dr,t
n,p, where r ≥ t ≥ .

Let Dn,p be the set of graphs Dr,t
n,p with  ≤ t ≤ r ≤ n – p –  and r + t = n – p + . Let Dn,p

be any graph in Dn,p.

Lemma . For the graphs in Dn,p with  ≤ p ≤ n –  and n ≥ , it holds that

AZI(Dn,n–) < AZI(Dn,n–) < · · · < AZI(Dn,) < AZI(Dn,).

Proof Let H(x) = x(x+)

(x+) + (n – x + ), where  ≤ x ≤ n – .
Note that

H ′(x) =
(x + )(x + x + ) – (x + )

(x + ) < .

Thus, H(x) is decreasing for x. The result follows. �

Let C∗
 be the bicyclic graph obtained by adding an edge to the cycle C. Label the vertices

of C∗
 by v, v, v, v with dv = dv = , dv = dv = , respectively. Let Sn(n, n, n, n)
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Figure 2 Graph Sn(n1, n2, n3, n3).

Figure 3 Graphs B1
n , B2

n , B3
n , B4

n and B5
n .

be the graph formed from C∗
 by attaching ni pendent vertices to vi, where ni ≥  for i =

, , , , n ≥ n, n ≥ n and
∑

i= ni = n– (see Figure ). For convenience, let B
n
∼= Sn(n–

, , , ), B
n
∼= Sn(, n – , , ), B

n
∼= Sn(, k, , k) with k + k = n – , B

n
∼= Sn(k, , k, )

with k + k = n –  and B
n
∼= Sn(k, k, k, k) with k + k + k + k = n –  (see Figure ).

Lemma . Let G ∈ Bn,n– with n ≥ . Then

AZI(G) ≥ (n – )
(

n – 
n – 

)

+
(

(n – )
n

)

+ 

with equality if and only if G ∼= Sn(n – , , , ).

Proof For n = , G ∼= S(, , , ) or G ∼= S(, , , ).
From the definition of the AZI index, the following is obtained:

AZI
(
S(, , , )

)
= A(, ) + A(, ) + A(, ) + A(, )
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and

AZI
(
S(, , , )

)
= A(, ) + A(, ) + A(, ).

By simple calculation, AZI(S(, , , )) < AZI(S(, , , )). Lemma . obviously holds.
For n ≥ , G is isomorphic to one of the graphs B

n, B
n, B

n, B
n, B

n shown in Figure . By
the definition of the AZI index,

AZI
(
B

n
)

= (n – )A(, n – ) + A(, n – ) + A(, n – ) + A(, ),

AZI
(
B

n
)

= (n – )A(, n – ) + A(, n – ) + A(, ) + A(, ),

AZI
(
B

n
)

= kA(, k + ) + kA(, k + ) + A(, k + )

+ A(, k + ) + A(, ),

AZI
(
B

n
)

= kA(, k + ) + kA(, k + ) + A(, k + )

+ A(, k + ) + A(k + , k + )

and

AZI
(
B

n
)

= kA(, k + ) + kA(, k + ) + kA(, k + )

+ kA(, k + ) + A(k + , k + ) + A(k + , k + )

+ A(k + , k + ) + A(k + , k + ) + A(k + , k + ).

Claim  AZI(B
n) < AZI(B

n).

Using Lemma . and Lemma ., we get

AZI
(
B

n
)

– AZI
(
B

n
)

= (n – )
(
A(, n – ) – A(, n – )

)

+
(
A(n – , ) – A(n – , ) – A(, )

)

+
(
A(, ) – A(, )

)
> .

This proves Claim .

Claim  AZI(B
n) < AZI(B

n).

Note that k + k = n – . Using Lemma ., Lemma ., Lemma . and Lemma ., we
have

AZI
(
B

n
)

– AZI
(
B

n
)

= kA(, k + ) + kA(, k + ) – (n – )A(, n – ) + 
(
A(k + , )

+ A(k + , )
)

– A(n – , ) + A(, ) – A(, )

≥ kA(, n – ) + kA(, n – ) – (n – )A(, n – ) + 
(
A(k + , )

+ A(k + , )
)

– A(n – , ) + A(, ) – A(, )
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= (n – )
(
A(, n – ) – A(, n – )

)
+ 

(
A(k + , ) + A(k + , )

)

– A(n – , ) + A(, ) – A(, )

> 
(
A(k + , ) + A(k + , )

)
– A(n – , ) + A(, ) – A(, )

> 
(

(n + )
n + 

)

–
(

(n – )
n

)

+ 
(

(n – )
n + 

)

+
(




)

–  × 

≥ l() +  ×  ×
(

n – 
n + 

)

+
(




)

–  × .

Let q(x) = ( x–
x+ ), so q′(x) = (x–)

(x+) > , implying that q(x) is strictly increasing for x.
Then

AZI
(
B

n
)

– AZI
(
B

n
)

> 
(

 × 


)

–
(

 × 


)

+  ×  ×
(




)

+
(




)

–  ×  > .

This proves Claim .

Claim  AZI(B
n) < AZI(B

n).

Because k + k = n – , using Lemma . and Lemma ., we have

AZI
(
B

n
)

– AZI
(
B

n
)

= kA(, k + ) + kA(, k + ) – (n – )A(, n – )

+ A(k + , k + ) – A(n – , )

>
(

(k + )(k + )
k + k + 

)

–
(

(n – )
n

)

=
(

kk + (n – ) + 
n

)

–
(

(n – )
n

)

as k + k = n – 

> .

This proves Claim .

Claim  AZI(B
n) < AZI(B

n).

The following two cases are presented.
Case . k ≥ , k ≥ .
Using Lemma . and Lemma ., it follows that

AZI
(
B

n
)

> kA(, n – ) + kA(, n – ) + kA(, n – ) + kA(, n – )

+ A(, ) + A(, ) + A(, ) + A(, ) + A(, )
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> (n – )A(, n – ) +
(




)

+
(




)

+
(




)

+  × 

> (n – )A(, n – ) +  ×  +  +  × 

> (n – )A(, n – ) +  ×
(

n – 
n

)

+  × 

= (n – )A(, n – ) + A(, n – ) + A(n – , ) + A(, )

= AZI
(
B

n
)
.

Case . k = , k =  or k = , k =  or k = , k = .
If k =  and k = , then according to the definition of graph Sn(n, n, n, n), B

n
∼=

S(, , , ) or S(, , , ) or S(, , , ) or S(, , , ) or S(, , , ) or S(, , , ).
By the definition of the AZI index and some calculations, the following are obtained:

AZI
(
S(, , , )

) .= . > AZI
(
B


) .= .,

AZI
(
S(, , , )

) .= . > AZI
(
B


) .= .,

AZI
(
S(, , , )

) .= . > AZI
(
B


) .= .,

AZI
(
S(, , , )

) .= . > AZI
(
B


) .= .,

AZI
(
S(, , , )

) .= . > AZI
(
B


) .= .

and

AZI
(
S(, , , )

) .= . > AZI
(
B


) .= ..

In a similar way, we can verify the inequality AZI(B
n) < AZI(B

n) for each of the cases for
k = , k =  or k = , k = . The details are omitted. This proves Claim .

Thus, the result follows from Claims -. �

Theorem . For the graphs in Bn with n ≥ , it holds that D,
n,n– is the unique graph

with the minimal AZI index, which is equal to (n – )( n–
n– ) + .

Proof Using Lemma ., among all of the graphs in Bn,n–, Sn(n – , , , ) is the unique
graph with the minimal AZI index, which is equal to (n – )( n–

n– ) + ( (n–)
n ) + . Using

Lemma . and Lemma ., among all of the graphs in Bn,p with  ≤ p ≤ n – , D,
n,n– is

the unique graph with the minimal AZI index, which is equal to (n – )( n–
n– ) + .

Note that

AZI
(
Sn(n – , , , )

)
– AZI

(
D,

n,n–
)

= (n – )
(

n – 
n – 

)

+
(

(n – )
n

)

+  – (n – )
(

n – 
n – 

)

– 

=
(

n – 
n – 

)

+
(

(n – )
n

)

– .
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Let g(x) = ( x–
x– ) + ( (x–)

x ) – , where x ≥ . We have

g ′(x) =
(x – )

x –
(x – )

(x – )

=
(x – )

x(x – )

(√
(x – ) + x)

× ( √(x – ) + x
)( √(x – ) – x

)

> 

for x ≥ . Then g(n) ≥ g() = ( 
 ) + ( 

 ) –  > . Therefore, this completes the proof of
Theorem .. �
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