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Abstract
In this paper, we introduce a relaxed extragradient iterative algorithm for finding a
common element of the set of solutions of a general mixed equilibrium problem, the
set of solutions of general system of variational inequalities, the set of solutions of
finitely many variational inclusions, and the set of common fixed points of finitely
many nonexpansive mappings and a strict pseudocontraction in a real Hilbert space.
The iterative algorithm is based on Korpelevich’s extragradient method, the viscosity
approximation method, Mann’s iterative method, and the strongly positive bounded
linear operator approach. We derive the strong convergence of the iterative algorithm
to a common element of these sets, which also solves some hierarchical minimization.
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1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, C be a nonempty
closed convex subset of H , and PC be the metric projection of H onto C. Let S : C → C be
a self-mapping on C. We denote by Fix(S) the set of fixed points of S and by R the set of
all real numbers. A mapping V is called strongly positive on H if there exists a constant
γ̄ >  such that

〈Vx, x〉 ≥ γ̄ ‖x‖, ∀x ∈ H .

A mapping A : C → H is called L-Lipschitz-continuous if there exists a constant L ≥ 
such that

‖Ax – Ay‖ ≤ L‖x – y‖, ∀x, y ∈ C.

In particular, if L =  then A is called a nonexpansive mapping; if L ∈ [, ) then A is called
a contraction. A mapping T : C → C is called ξ -strictly pseudocontractive if there exists
a constant ξ ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + ξ
∥
∥(I – T)x – (I – T)y

∥
∥

, ∀x, y ∈ C.

In particular, if ξ = , then T is a nonexpansive mapping.
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Let A : C → H be a nonlinear mapping on C. We consider the following variational
inequality problem (VIP): find a point x̄ ∈ C such that

〈Ax̄, y – x̄〉 ≥ , ∀y ∈ C. (.)

The solution set of VIP (.) is denoted by VI(C, A).
The VIP (.) was first discussed by Lions []. There are many applications of VIP (.)

in various fields; see e.g., [, ]. It is well known that, if A is a strongly monotone and
Lipschitz-continuous mapping on C, then VIP (.) has a unique solution. In , Kor-
pelevich [] proposed an iterative algorithm for solving VIP (.) in Euclidean space Rn:

{

yn = PC(xn – τAxn),
xn+ = PC(xn – τAyn), ∀n ≥ ,

with τ >  a given number, which is known as the extragradient method. The literature on
the VIP is vast and Korpelevich’s extragradient method has received great attention given
by many authors, who improved it in various ways; see e.g., [–] and the references
therein.

On the other hand, we consider the following general mixed equilibrium problem
(GMEP) (see, also, [, ]) of finding x ∈ C such that

Θ(x, y) + h(x, y) ≥ , ∀y ∈ C, (.)

where Θ , h : C ×C → R are two bifunctions. We denote the set of solutions of GMEP (.)
by GMEP(Θ , h). The GMEP (.) is very general; for example, it includes the following
equilibrium problems as special cases.

As an example, in [, , ] the authors considered and studied the generalized equi-
librium problem (GEP), which is to find x ∈ C such that

Θ(x, y) + 〈Ax, y – x〉 ≥ , ∀y ∈ C.

The set of solutions of GEP is denoted by GEP(Θ , A).
In [, , ], the authors considered and studied the mixed equilibrium problem

(MEP), which is to find x ∈ C such that

Θ(x, y) + ϕ(y) – ϕ(x) ≥ , ∀y ∈ C. (.)

The set of solutions of MEP is denoted by MEP(Θ ,ϕ).
In [–], the authors considered and studied the equilibrium problem (EP), which is

to find x ∈ C such that

Θ(x, y) ≥ , ∀y ∈ C.

The set of solutions of EP is denoted by EP(Θ). It is worth to mention that the EP is an
unified model of several problems, namely, variational inequality problems, optimization
problems, saddle point problems, complementarity problems, fixed point problems, Nash
equilibrium problems, etc.
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Throughout this paper, it is assumed as in [] that Θ : C × C → R is a bifunction sat-
isfying conditions (θ)-(θ) and h : C × C → R is a bifunction with restrictions (h)-(h),
where

(θ) Θ(x, x) =  for all x ∈ C;
(θ) Θ is monotone (i.e., Θ(x, y) +Θ(y, x) ≤ , ∀x, y ∈ C) and upper hemicontinuous in the

first variable, i.e., for each x, y, z ∈ C,

lim sup
t→+

Θ
(

tz + ( – t)x, y
)≤ Θ(x, y);

(θ) Θ is lower semicontinuous and convex in the second variable;
(h) h(x, x) =  for all x ∈ C;
(h) h is monotone and weakly upper semicontinuous in the first variable;
(h) h is convex in the second variable.

For r >  and x ∈ H , let Tr : H → C be a mapping defined by

Trx =
{

z ∈ C : Θ(z, y) + h(z, y) +

r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

,

called the resolvent of Θ and h.
Let {Tn}∞n= be an infinite family of nonexpansive self-mappings on C and {λn}∞n= be a

sequence of nonnegative numbers in [, ]. For any n ≥ , define a mapping Wn on C as
follows:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un,n+ = I,
Un,n = λnTnUn,n+ + ( – λn)I,
Un,n– = λn–Tn–Un,n + ( – λn–)I,
· · ·
Un,k = λkTkUn,k+ + ( – λk)I,
Un,k– = λk–Tk–Un,k + ( – λk–)I,
· · ·
Un, = λTUn, + ( – λ)I,
Wn = Un, = λTUn, + ( – λ)I.

(.)

Such a mapping Wn is called the W -mapping generated by Tn, Tn–, . . . , T and λn,λn–,
. . . ,λ.

In , Rattanaseeha [] introduced an iterative algorithm:

⎧

⎪⎨

⎪⎩

x ∈ H arbitrarily given,
Θ(un, y) + 

rn
〈y – un, un – xn〉 ≥ , ∀y ∈ C,

xn+ = PC[αnγ f (xn) + (I – αnV )Wnun], ∀n ≥ ,
(.)

and proved the following strong convergence theorem.

Theorem R (see [], Theorem .) Let C be a nonempty closed convex subset of a real
Hilbert space H . Let Θ : C × C → R be a bifunction satisfying assumptions (A)-(A). Let
f be an α-contraction on H with α ∈ (, ), and let {Tn}∞n= be an infinite family of nonex-
pansive self-mappings on C such that Ω :=

⋂∞
n= Fix(Tn) ∩ EP(Θ) �= ∅. Let V : H → H be
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a γ̄ -strongly positive bounded linear operator with  < γ < γ̄

α
. Let λ,λ, . . . be a sequence

of real numbers such that  < λn ≤ b < , n = , , . . . . Let Wn be the W -mapping of C into
itself generated by (.). Let W be defined by Wx = limn→∞ Wnx, ∀x ∈ C. Let {xn} and {un}
be sequences generated by (.), where {αn} is a sequence in (, ) and {rn} is a sequence in
(,∞) such that the following conditions hold:

(C) limn→∞ αn = ,
(C)

∑∞
n= αn = ∞, and

(C) limn→∞ rn = r > .
Then both {xn} and {un} converge strongly to x∗ ∈ Ω , where x∗ = PΩ (I – (V – γ f ))x∗ is a
unique solution of the VIP

〈

(V – γ f )x∗, x∗ – x
〉≤ , ∀x ∈ Ω ,

or, equivalently, the unique solution of the minimization problem

min
x∈Ω



〈Vx, x〉 – Ψ (x),

where Ψ is a potential function for γ f .

Let F, F : C → H be two mappings. Consider the general system of variational inequal-
ities (GSVI) of finding (x∗, y∗) ∈ C × C such that

{

〈νFy∗ + x∗ – y∗, x – x∗〉 ≥ , ∀x ∈ C,
〈νFx∗ + y∗ – x∗, x – y∗〉 ≥ , ∀x ∈ C,

(.)

where ν >  and ν >  are two constants. The solution set of GSVI (.) is denoted by
GSVI(C, F, F).

In particular, if F = F = A, then the GSVI (.) reduces to the problem of finding
(x∗, y∗) ∈ C × C such that

{

〈νAy∗ + x∗ – y∗, x – x∗〉 ≥ , ∀x ∈ C,
〈νAx∗ + y∗ – x∗, x – y∗〉 ≥ , ∀x ∈ C,

which is defined by Verma [] and it is called a new system of variational inequalities
(NSVI). Further, if x∗ = y∗ additionally, then the NSVI reduces to the classical VIP (.). In
, Ceng et al. [] transformed the GSVI (.) into the fixed point problem of the map-
ping G = PC(I – νF)PC(I – νF), that is, Gx∗ = x∗, where y∗ = PC(I – νF)x∗. Throughout
this paper, the fixed point set of the mapping G is denoted by Ξ .

In , Marino et al. [] introduced a multi-step iterative scheme

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

Θ(un, y) + h(un, y) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,
yn, = βn,Sun + ( – βn,)un,
yn,i = βn,iSiun + ( – βn,i)yn,i–, i = , . . . , N ,
xn+ = αnf (xn) + ( – αn)Tyn,N ,

(.)

with f : C → C a ρ-contraction and {αn}, {βn,i} ⊂ (, ), {rn} ⊂ (,∞), which generalizes
the two-step iterative scheme in [] for two nonexpansive mappings to a finite family of
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nonexpansive mappings T , Si : C → C, i = , . . . , N , and proved that the proposed scheme
(.) converges strongly to a common fixed point of the mappings that is also an equilib-
rium point of the GMEP (.).

More recently, Marino et al.’s multi-step iterative scheme (.) was extended to develop
the following relaxed viscosity iterative algorithm by virtue of Korpelevich’s extragradient
method.

Algorithm CKW (see (.) in []) Let f : C → C be a ρ-contraction and T : C → C
be a ξ -strict pseudocontraction. Let Si : C → C be a nonexpansive mapping for each i =
, . . . , N . Let Fj : C → H be ζj-inverse strongly monotone with  < νj < ζj for each j = , .
Let Θ : C × C → R be a bifunction satisfying conditions (θ)-(θ) and h : C × C → R be a
bifunction with restrictions (h)-(h). Let {xn} be the sequence generated by

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Θ(un, y) + h(un, y) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,
yn, = βn,Sun + ( – βn,)un,
yn,i = βn,iSiun + ( – βn,i)yn,i–, i = , . . . , N ,
yn = αnf (yn,N ) + ( – αn)Gyn,N ,
xn+ = βnxn + γnyn + δnTyn, ∀n ≥ ,

(.)

where G = PC(I – νF)PC(I – νF), {αn}, {βn} are sequences in (, ) with

 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < ,

{γn}, {δn} are sequences in [, ] with lim infn→∞ δn >  and βn + γn + δn = , ∀n ≥ , {βn,i}
is a sequence in (, ) for each i = , . . . , N , (γn + δn)ξ ≤ γn, ∀n ≥ , and {rn} is a sequence
in (,∞) with lim infn→∞ rn > .

The authors [] proved that the proposed scheme (.) converges strongly to a common
fixed point of the mappings T , Si : C → C, i = , . . . , N , which is also an equilibrium point
of the GMEP (.) and a solution of the GSVI (.).

Furthermore, let B be a single-valued mapping of C into H and R be a multivalued map-
ping with D(R) = C. Consider the following variational inclusion: find a point x ∈ C such
that

 ∈ Bx + Rx. (.)

We denote by I(B, R) the solution set of the variational inclusion (.). In particular, if
B = R = , then I(B, R) = C. If B = , then problem (.) becomes the inclusion problem in-
troduced by Rockafellar []. It is known that problem (.) provides a convenient frame-
work for the unified study of optimal solutions in many optimization related areas in-
cluding mathematical programming, complementarity problems, variational inequalities,
optimal control, mathematical economics, equilibria, game theory, etc. Let a set-valued
mapping R : D(R) ⊂ H → H be maximal monotone. We define the resolvent operator
JR,λ : H → D(R) associated with R and λ as follows:

JR,λ = (I + λR)–, ∀x ∈ H ,

where λ is a positive number.
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In , Huang [] studied problem (.) in the case where R is maximal monotone and
B is strongly monotone and Lipschitz-continuous with D(R) = C = H . Subsequently, Zeng
et al. [] further studied problem (.) in the case which is more general than Huang’s
one []. Moreover, the authors [] obtained the same strong convergence conclusion as
in Huang’s result []. In addition, the authors also gave the geometric convergence rate
estimate for approximate solutions. Also, various types of iterative algorithms for solving
variational inclusions have been further studied and developed; for more details, refer to
[, , –] and the references therein.

Very recently, Ceng et al. [] introduced and analyzed one multi-step hybrid steepest-
descent extragradient algorithm and another multi-step composite Mann-type viscosity
iterative algorithm for finding a solution of triple hierarchical variational inequalities de-
fined over the common set of solutions of finitely many generalized mixed equilibrium
problems, finitely many variational inclusions, a general system of variational inequalities,
and a fixed point problem of a strict pseudocontraction in a real Hilbert space H . Here,
the generalized mixed equilibrium problem is defined as follows: Let ϕ : C → R be a real-
valued function, A : C → H be a nonlinear mapping and Θ : C × C → R be a bifunction.
Then the objective is to find x ∈ C such that

Θ(x, y) + ϕ(y) – ϕ(x) + 〈Ax, y – x〉 ≥ , ∀y ∈ C.

The solution set of such generalized mixed equilibrium problem is denoted by GMEP(Θ ,
ϕ, A). Under appropriate assumptions, the authors proved that the proposed algorithms
converge strongly to an element of the common set, which is a unique solution of a triple
hierarchical variational inequality problem; see [], Theorems . and ..

In this paper, we introduce a relaxed extragradient iterative algorithm for finding
a common element of the solution set GMEP(Θ , h) of GMEP (.), the solution set
GSVI(C, F, F) (i.e., Ξ ) of GSVI (.), the solution set

⋂M
k= I(Bk , Rk) of finitely many varia-

tional inclusions for maximal monotone mappings {Rk}M
k= and inverse-strongly monotone

mappings {Bk}M
k=, and the common fixed point set

⋂N
i= Fix(Si) ∩ Fix(T) of finitely many

nonexpansive mappings Si : C → C, i = , . . . , N , and a strictly pseudocontractive mapping
T : H → H , in the setting of the infinite-dimensional Hilbert space. The iterative algo-
rithm is based on Korpelevich’s extragradient method, viscosity approximation method
[] (see also []), Mann’s iterative method, and strongly positive bounded linear op-
erator approach. Our aim is to prove that the iterative algorithm converges strongly to
a common element of these sets, which also solves some hierarchical minimization. We
observe that related results have been derived say in [, , , , , , –]. In ad-
dition, we also point out what are different between the present article and the previous
one [] as follows:

(i) The problem of finding an element of Fix(T)∩⋂N
i= Fix(Si)∩GMEP(Θ , h)∩⋂M

k= I(Bk ,
Rk)∩Ξ in Theorems . and . of this paper is very different from the one of finding an el-
ement of

⋂M
k= GMEP(Θk ,ϕk , Ak)∩⋂N

i= I(Bi, Ri)∩Ξ ∩Fix(T) in [], Theorems . and .,
where Si is a nonexpansive mapping for each i ∈ {, . . . , N} and T is a strict pseudocontrac-
tion. It is clear that the general mixed equilibrium problem (.) is very different from the
above generalized mixed equilibrium problem.

(ii) The iterative scheme (.) in this paper is very different from the iterative schemes
(.) and (.) in the authors [] because the scheme (.) involves finding a com-
mon fixed point of finitely many nonexpansive mappings {Si}N

i= and a strict pseudocon-
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traction T . In the meantime, Theorems . and . of this paper show that the pro-
posed algorithm converges strongly to a unique solution of a VIP defined over the set
Fix(T) ∩⋂N

i= Fix(Si) ∩ GMEP(Θ , h) ∩⋂M
k= I(Bk , Rk) ∩ Ξ . However, Theorems . and .

in [] show that the proposed algorithms converge strongly to a unique solution of a triple
hierarchical variational inequality problem defined over the set

⋂M
k= GMEP(Θk ,ϕk , Ak) ∩

⋂N
i= I(Bi, Ri) ∩ Ξ ∩ Fix(T).

2 Preliminaries
Throughout this paper, we assume that H is a real Hilbert space whose inner product
and norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let C be a nonempty closed convex
subset of H . We write xn ⇀ x to indicate that the sequence {xn} converges weakly to x
and xn → x to indicate that the sequence {xn} converges strongly to x. Moreover, we use
ωw(xn) to denote the weak ω-limit set of the sequence {xn} and ωs(xn) to denote the strong
ω-limit set of the sequence {xn}, i.e.,

ωw(xn) :=
{

x ∈ H : xni ⇀ x for some subsequence {xni} of {xn}
}

,

and

ωs(xn) :=
{

x ∈ H : xni → x for some subsequence {xni} of {xn}
}

.

The metric (or nearest point) projection from H onto C is the mapping PC : H → C
which assigns to each point x ∈ H the unique point PCx ∈ C satisfying the property

‖x – PCx‖ = inf
y∈C

‖x – y‖ =: d(x, C).

The following properties of projections are useful and pertinent to our purpose.

Proposition . Given any x ∈ H and z ∈ C. One has
(i) z = PCx ⇔ 〈x – z, y – z〉 ≤ , ∀y ∈ C;

(ii) z = PCx ⇔ ‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖, ∀y ∈ C;
(iii) 〈PCx – PCy, x – y〉 ≥ ‖PCx – PCy‖, ∀y ∈ H , which hence implies that PC is

nonexpansive and monotone.

Definition . A mapping T : H → H is said to be
(a) nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ H ;

(b) firmly nonexpansive if T – I is nonexpansive, or equivalently, if T is
-inverse-strongly monotone (-ism),

〈x – y, Tx – Ty〉 ≥ ‖Tx – Ty‖, ∀x, y ∈ H ;

alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =



(I + S),

where S : H → H is nonexpansive; projections are firmly nonexpansive.
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Definition . A mapping A : C → H is said to be
(i) monotone if

〈Ax – Ay, x – y〉 ≥ , ∀x, y ∈ C;

(ii) η-strongly monotone if there exists a constant η >  such that

〈Ax – Ay, x – y〉 ≥ η‖x – y‖, ∀x, y ∈ C;

(iii) ζ -inverse-strongly monotone if there exists a constant ζ >  such that

〈Ax – Ay, x – y〉 ≥ ζ‖Ax – Ay‖, ∀x, y ∈ C.

It can easily be seen that if T is nonexpansive, then I –T is monotone. It is also easy to see
that the projection PC is -ism. Inverse-strongly monotone (also referred to as co-coercive)
operators have been applied widely in solving practical problems in various fields.

On the other hand, it is obvious that if A : C → H is ζ -inverse-strongly monotone, then
A is monotone and 

ζ
-Lipschitz-continuous. Moreover, we also note that, for all u, v ∈ C

and λ > ,

∥
∥(I – λA)u – (I – λA)v

∥
∥

 ≤ ‖u – v‖ + λ(λ – ζ )‖Au – Av‖. (.)

So, if λ ≤ ζ , then I – λA is a nonexpansive mapping from C to H .
In , Ceng et al. [] transformed problem (.) into a fixed point problem in the

following way.

Proposition . (see []) For given x̄, ȳ ∈ C, (x̄, ȳ) is a solution of the GSVI (.) if and only
if x̄ is a fixed point of the mapping G : C → C defined by

Gx = PC(I – νF)PC(I – νF)x, ∀x ∈ C,

where ȳ = PC(I – νF)x̄.

In particular, if the mapping Fj : C → H is ζj-inverse-strongly monotone for j = , , then
the mapping G is nonexpansive provided νj ∈ (, ζj] for j = , . We denote by Ξ denote
the fixed point set of the mapping G.

We need some facts and tools in a real Hilbert space H which are listed as lemmas below.

Lemma . Let X be a real inner product space. Then we have the following inequality:

‖x + y‖ ≤ ‖x‖ + 〈y, x + y〉, ∀x, y ∈ X.

Lemma . Let H be a real Hilbert space. Then the following hold:
(a) ‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉 for all x, y ∈ H ;
(b) ‖λx + μy‖ = λ‖x‖ + μ‖y‖ – λμ‖x – y‖ for all x, y ∈ H and λ,μ ∈ [, ] with

λ + μ = ;
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(c) if {xn} is a sequence in H such that xn ⇀ x, it follows that

lim sup
n→∞

‖xn – y‖ = lim sup
n→∞

‖xn – x‖ + ‖x – y‖, ∀y ∈ H .

It is clear that, in a real Hilbert space H , T : C → C is ξ -strictly pseudocontractive if and
only if the following inequality holds:

〈Tx – Ty, x – y〉 ≤ ‖x – y‖ –
 – ξ


∥
∥(I – T)x – (I – T)y

∥
∥

, ∀x, y ∈ C.

This immediately implies that if T is a ξ -strictly pseudocontractive mapping, then I – T
is –ξ

 -inverse strongly monotone; for further details, we refer to [] and the references
therein. It is well known that the class of strict pseudocontractions strictly includes the
class of nonexpansive mappings and that the class of pseudocontractions strictly includes
the class of strict pseudocontractions.

Lemma . (see [], Proposition .) Let C be a nonempty closed convex subset of a real
Hilbert space H and T : C → C be a mapping.

(i) If T is a ξ -strictly pseudocontractive mapping, then T satisfies the Lipschitzian
condition

‖Tx – Ty‖ ≤  + ξ

 – ξ
‖x – y‖, ∀x, y ∈ C.

(ii) If T is a ξ -strictly pseudocontractive mapping, then the mapping I – T is semiclosed
at , that is, if {xn} is a sequence in C such that xn ⇀ x̃ and (I – T)xn → , then
(I – T)x̃ = .

(iii) If T is ξ -(quasi-)strict pseudocontraction, then the fixed point set Fix(T) of T is
closed and convex so that the projection PFix(T) is well defined.

Lemma . (see []) Let C be a nonempty closed convex subset of a real Hilbert space H .
Let T : C → C be a ξ -strictly pseudocontractive mapping. Let γ and δ be two nonnegative
real numbers such that (γ + δ)ξ ≤ γ . Then

∥
∥γ (x – y) + δ(Tx – Ty)

∥
∥≤ (γ + δ)‖x – y‖, ∀x, y ∈ C.

Lemma . (see [], demiclosedness principle) Let C be a nonempty closed convex subset
of a real Hilbert space H . Let S be a nonexpansive self-mapping on C. Then I – S is demi-
closed. That is, whenever {xn} is a sequence in C weakly converging to some x ∈ C and the
sequence {(I – S)xn} strongly converges to some y, it follows that (I – S)x = y. Here I is the
identity operator of H .

Lemma . Let A : C → H be a monotone mapping. In the context of the variational in-
equality problem the characterization of the projection (see Proposition .(i)) implies

u ∈ VI(C, A) ⇔ u = PC(u – λAu), λ > .

Lemma . (see []) Let V be a γ̄ -strongly positive bounded linear operator on H and
assume  < ρ ≤ ‖V‖–. Then ‖I – ρV‖ ≤  – ργ̄ .
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Lemma . (see []) Let {an} be a sequence of nonnegative real numbers satisfying

an+ ≤ ( – sn)an + snbn + tn, ∀n ≥ ,

where {sn}, {tn}, and {bn} satisfy the following conditions:
(i) {sn} ⊂ [, ] and

∑∞
n= sn = ∞;

(ii) either lim supn→∞ bn ≤  or
∑∞

n= |snbn| < ∞;
(iii) tn ≥  for all n ≥ , and

∑∞
n= tn < ∞.

Then limn→∞ an = .

In the sequel, we will indicate with GMEP(Θ , h) the solution set of GMEP (.).

Lemma . (see []) Let C be a nonempty closed convex subset of a real Hilbert space H .
Let Θ : C × C → R be a bifunction satisfying conditions (θ)-(θ) and h : C × C → R is a
bifunction with restrictions (h)-(h). Moreover, let us suppose that

(H) for fixed r >  and x ∈ C, there exist a bounded K ⊂ C and x̂ ∈ K such that for all
z ∈ C \ K , –Θ(x̂, z) + h(z, x̂) + 

r 〈x̂ – z, z – x〉 < .
For r >  and x ∈ H , the mapping Tr : H → C (i.e., the resolvent of Θ and h) has the
following properties:

(i) Trx �= ∅;
(ii) Trx is a singleton;

(iii) Tr is firmly nonexpansive;
(iv) GMEP(Θ , h) = Fix(Tr) and it is closed and convex.

Lemma . (see []) Let us suppose that (θ)-(θ), (h)-(h), and (H) hold. Let x, y ∈ H ,
r, r > . Then

‖Tr y – Tr x‖ ≤ ‖y – x‖ +
∣
∣
∣
∣

r – r

r

∣
∣
∣
∣
‖Tr y – y‖.

Lemma . (see []) Suppose that the hypotheses of Lemma . are satisfied. Let {rn} be
a sequence in (,∞) with lim infn→∞ rn > . Suppose that {xn} is a bounded sequence. Then
the following statements are equivalent and true:

(a) if ‖xn – Trn xn‖ →  as n → ∞, each weak cluster point of {xn} satisfies the problem

Θ(x, y) + h(x, y) ≥ , ∀y ∈ C,

i.e., ωw(xn) ⊆ GMEP(Θ , h);
(b) the demiclosedness principle holds in the sense that, if xn ⇀ x∗ and ‖xn – Trn xn‖ → 

as n → ∞, then (I – Trk )x∗ =  for all k ≥ .

Recall that a set-valued mapping T : D(T) ⊂ H → H is called monotone if for all x, y ∈
D(T), f ∈ Tx and g ∈ Ty imply

〈f – g, x – y〉 ≥ .

A set-valued mapping T is called maximal monotone if T is monotone and (I +λT)D(T) =
H for each λ > , where I is the identity mapping of H . We denote by G(T) the graph of T .
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It is well known that a monotone mapping T is maximal if and only if, for (x, f ) ∈ H × H ,
〈f – g, x – y〉 ≥  for every (y, g) ∈ G(T) implies f ∈ Tx. Next we provide an example to
illustrate the concept of a maximal monotone mapping.

Let A : C → H be a monotone, k-Lipschitz-continuous mapping and let NCv be the
normal cone to C at v ∈ C, i.e.,

NCv =
{

u ∈ H : 〈v – p, u〉 ≥ ,∀p ∈ C
}

.

Define

T̃v =

{

Av + NCv, if v ∈ C,
∅, if v /∈ C.

Then it is well known [] that T̃ is maximal monotone and  ∈ T̃v if and only if v ∈
VI(C, A).

Let R : D(R) ⊂ H → H be a maximal monotone mapping. Let λ,μ >  be two positive
numbers.

Lemma . (see []) We have the resolvent identity

JR,λx = JR,μ

(
μ

λ
x +

(

 –
μ

λ

)

JR,λx
)

, ∀x ∈ H .

Remark . For λ,μ > , we have the following relation:

‖JR,λx – JR,μy‖ ≤ ‖x – y‖ + |λ – μ|
(


λ

‖JR,λx – y‖ +

μ

‖x – JR,μy‖
)

, ∀x, y ∈ H . (.)

In terms of Huang [] (see also []), we have the following property for the resolvent
operator JR,λ : H → D(R).

Lemma . JR,λ is single-valued and firmly nonexpansive, i.e.,

〈JR,λx – JR,λy, x – y〉 ≥ ‖JR,λx – JR,λy‖, ∀x, y ∈ H .

Consequently, JR,λ is nonexpansive and monotone.

Lemma . (see []) Let R be a maximal monotone mapping with D(R) = C. Then for
any given λ > , u ∈ C is a solution of problem (.) if and only if u ∈ C satisfies

u = JR,λ(u – λBu).

Lemma . (see []) Let R be a maximal monotone mapping with D(R) = C and let
B : C → H be a strongly monotone, continuous, and single-valued mapping. Then for each
z ∈ H , the equation z ∈ (B + λR)x has a unique solution xλ for λ > .

Lemma . (see []) Let R be a maximal monotone mapping with D(R) = C and B :
C → H be a monotone, continuous and single-valued mapping. Then (I + λ(R + B))C = H
for each λ > . In this case, R + B is maximal monotone.
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3 Main results
We now propose the following relaxed extragradient iterative scheme:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ(un, y) + h(un, y) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,
vn = JRM ,λM,n (I – λM,nBM)JRM–,λM–,n (I – λM–,nBM–) · · · JR,λ,n (I – λ,nB)un,
yn, = βn,Svn + ( – βn,)vn,
yn,i = βn,iSivn + ( – βn,i)yn,i–, i = , . . . , N ,
yn = αnγ f (yn,N ) + (I – αnμV )Gyn,N ;
xn+ = βnxn + γnyn + δnTyn,

(.)

for all n ≥ , where
V is a γ̄ -strongly positive bounded linear operator on H and f : C → C is an
l-Lipschitz-continuous mapping with  ≤ γ l < μγ̄ ;
T : H → H is a ξ -strict pseudocontraction and Si : C → C is a nonexpansive mapping
for each i = , . . . , N ;
Rk : C → H is a maximal monotone mapping and Bk : C → H is ηk-inverse-strongly
monotone with {λk,n} ⊂ [ak , bk] ⊂ (, ηk) for each k = , , . . . , M;
Fj : C → H is ζj-inverse-strongly monotone and G := PC(I – νF)PC(I – νF) with
νj ∈ (, ζj) for j = , ;
Θ , h : C × C → R are two bifunctions satisfying the hypotheses of Lemma .;
{αn}, {βn} are sequences in (, ) with  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
{γn}, {δn} are sequences in [, ] with βn + γn + δn = , ∀n ≥ ;
{βn,i}N

i= are sequences in (, ) and (γn + δn)ξ ≤ γn, ∀n ≥ ;
{rn} is a sequence in (,∞) with lim infn→∞ rn >  and lim infn→∞ δn > .

We start our main result from the following series of propositions.

Proposition . Let us suppose that Ω = Fix(T)∩⋂N
i= Fix(Si)∩⋂M

k= I(Bk , Rk)∩GMEP(Θ ,
h) ∩ Ξ �= ∅. Then the sequences {xn}, {yn}, {yn,i} for all i, {un}, {vn} are bounded.

Proof Since limn→∞ αn =  and  < lim infn→∞ βn ≤ lim supn→∞ βn < , we may assume,
without loss of generality, that {βn} ⊂ [c, d] ⊂ (, ) and  < αnμ ≤ ‖V‖– for all n ≥ .
Since V is a γ̄ -strongly positive bounded linear operator on H , by Lemma . we know
that

‖I – αnμV‖ ≤  – αnμγ̄ , ∀n ≥ .

Put

Λk
n = JRk ,λk,n (I – λk,nBk)JRk–,λk–,n (I – λk–,nBk–) · · · JR,λ,n (I – λ,nB)

for all k ∈ {, , . . . , M} and n ≥ , and Λ
n = I , where I is the identity mapping on H . Then

we have that vn = ΛM
n un.

First of all, take a fixed p ∈ Ω arbitrarily. Utilizing (.) and Lemma . we have

‖vn – p‖ =
∥
∥JRM ,λM,n (I – λM,nAM)ΛM–

n un – JRM ,λM,n (I – λM,nAM)ΛM–
n p

∥
∥

≤ ∥
∥(I – λM,nAM)ΛM–

n un – (I – λM,nAM)ΛM–
n p

∥
∥
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≤ ∥
∥ΛM–

n un – ΛM–
n p

∥
∥

· · ·
≤ ∥
∥Λ

nun – Λ
np
∥
∥

= ‖un – p‖ ≤ ‖xn – p‖. (.)

Let us observe that, if p ∈ Ω , then

‖yn, – p‖ ≤ ‖vn – p‖ ≤ ‖un – p‖ ≤ ‖xn – p‖.

For all from i =  to i = N , by induction, one proves that

‖yn,i – p‖ ≤ βn,i‖vn – p‖ + ( – βn,i)‖yn,i– – p‖ ≤ ‖vn – p‖ ≤ ‖un – p‖ ≤ ‖xn – p‖.

Thus we obtain, for every i = , . . . , N ,

‖yn,i – p‖ ≤ ‖vn – p‖ ≤ ‖un – p‖ ≤ ‖xn – p‖. (.)

For simplicity, we write p̃ = PC(p – νFp), ỹn,N = PC(yn,N – νFyn,N ), and zn = PC(ỹn,N –
νFỹn,N ) for each n ≥ . Then zn = Gyn,N and

p = PC(I – νF)p̃ = PC(I – νF)PC(I – νF)p = Gp.

Since Fj : C → H is ζj-inverse-strongly monotone and  < νj < ζj for each j = , , we know
that, for all n ≥ ,

‖zn – p‖

= ‖Gyn,N – p‖

=
∥
∥PC(I – νF)PC(I – νF)yn,N – PC(I – νF)PC(I – νF)p

∥
∥



≤ ∥
∥(I – νF)PC(I – νF)yn,N – (I – νF)PC(I – νF)p

∥
∥



=
∥
∥
[

PC(I – νF)yn,N – PC(I – νF)p
]

– ν
[

FPC(I – νF)yn,N – FPC(I – νF)p
]∥
∥



≤ ∥
∥PC(I – νF)yn,N – PC(I – νF)p

∥
∥



+ ν(ν – ζ)
∥
∥FPC(I – νF)yn,N – FPC(I – νF)p

∥
∥



≤ ∥
∥PC(I – νF)yn,N – PC(I – νF)p

∥
∥



≤ ∥
∥(I – νF)yn,N – (I – νF)p

∥
∥



=
∥
∥(yn,N – p) – ν(Fyn,N – Fp)

∥
∥



≤ ‖yn,N – p‖ + ν(ν – ζ)‖Fyn,N – Fp‖

≤ ‖yn,N – p‖ ≤ ‖vn – p‖ ≤ ‖un – p‖ ≤ ‖xn – p‖. (.)
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Utilizing Gp = p and the nonexpansivity of G, from (.) and (.) we have

‖yn – p‖

=
∥
∥αnγ

(

f (yn,N ) – f (p)
)

+ (I – αnμV )(Gyn,N – p) + αn(γ f – μV )p
∥
∥

≤ αnγ
∥
∥f (yn,N ) – f (p)

∥
∥ + ‖I – αnμV‖‖Gyn,N – p‖ + αn

∥
∥(γ f – μV )p

∥
∥

≤ αnγ l‖yn,N – p‖ + ( – αnμγ̄ )‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥

=
(

 – αn(μγ̄ – γ l)
)‖yn,N – p‖ + αn

∥
∥(γ f – μV )p

∥
∥

=
(

 – αn(μγ̄ – γ l)
)‖yn,N – p‖ + αn(μγ̄ – γ l)

‖(γ f – μV )p‖
μγ̄ – γ l

≤ max

{

‖yn,N – p‖,
‖(γ f – μV )p‖

μγ̄ – γ l

}

≤ max

{

‖xn – p‖,
‖(γ f – μV )p‖

μγ̄ – γ l

}

. (.)

Since (γn + δn)ξ ≤ γn for all n ≥ , utilizing Lemma . we obtain from (.) and (.)

‖xn+ – p‖ =
∥
∥βn(xn – p) + γn(yn – p) + δn(Tyn – p)

∥
∥

≤ βn‖xn – p‖ +
∥
∥γn(yn – p) + δn(Tyn – p)

∥
∥

≤ βn‖xn – p‖ + (γn + δn)‖yn – p‖

≤ βn‖xn – p‖ + (γn + δn) max

{

‖xn – p‖,
‖(γ f – μV )p‖

μγ̄ – γ l

}

≤ max

{

‖xn – p‖,
‖(γ f – μV )p‖

μγ̄ – γ l

}

. (.)

By induction, we get

‖xn – p‖ ≤ max

{

‖x – p‖,
‖(γ f – μV )p‖

μγ̄ – γ l

}

, ∀n ≥ .

This implies that {xn} is bounded and so are {Fyn,N }, {Fỹn,N }, {ỹn,N }, {zn}, {un}, {vn}, {yn},
{yn,i} for each i = , . . . , N . Since ‖Tyn – p‖ ≤ +ξ

–ξ
‖yn – p‖, {Tyn} is also bounded. �

Proposition . Let us suppose that Ω �= ∅. Moreover, let us suppose that the following
hold:

(H) limn→∞ αn =  and
∑∞

n= αn = ∞;
(H)

∑∞
n= |λk,n – λk,n–| < ∞ or limn→∞

|λk,n–λk,n–|
αn

=  for each k = , . . . , M;
(H)

∑∞
n= |αn – αn–| < ∞ or limn→∞ |αn–αn–|

αn
= ;

(H)
∑∞

n= |βn,i – βn–,i| < ∞ or limn→∞
|βn,i–βn–,i|

αn
=  for each i = , . . . , N ;

(H)
∑∞

n= |rn – rn–| < ∞ or limn→∞ |rn–rn–|
αn

= ;
(H)

∑∞
n= |βn – βn–| < ∞ or limn→∞ |βn–βn–|

αn
= ;

(H)
∑∞

n= | γn
–βn

– γn–
–βn–

| < ∞ or limn→∞ 
αn

| γn
–βn

– γn–
–βn–

| = .
Then limn→∞ ‖xn+ – xn‖ = , i.e., {xn} is asymptotically regular.

Proof First, it is well known that {βn} ⊂ [c, d] ⊂ (, ) as in the proof of Proposition ..
Taking into account lim infn→∞ rn > , we may assume, without loss of generality, that
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{rn} ⊂ [ε,∞) for some ε > . First, we write xn = βn–xn– + ( – βn–)wn–, ∀n ≥ , where
wn– = xn–βn–xn–

–βn–
. It follows that for all n ≥ 

wn – wn– =
xn+ – βnxn

 – βn
–

xn – βn–xn–

 – βn–

=
γnyn + δnTyn

 – βn
–

γn–yn– + δn–Tyn–

 – βn–

=
γn(yn – yn–) + δn(Tyn – Tyn–)

 – βn
+
(

γn

 – βn
–

γn–

 – βn–

)

yn–

+
(

δn

 – βn
–

δn–

 – βn–

)

Tyn–. (.)

Since (γn + δn)ξ ≤ γn for all n ≥ , utilizing Lemma . we have

∥
∥γn(yn – yn–) + δn(Tyn – Tyn–)

∥
∥≤ (γn + δn)‖yn – yn–‖. (.)

Next, we estimate ‖yn – yn–‖. Observe that

‖zn – zn–‖

=
∥
∥PC(I – νF)PC(I – νF)yn,N – PC(I – νF)PC(I – νF)yn–,N

∥
∥



≤ ∥
∥(I – νF)PC(I – νF)yn,N – (I – νF)PC(I – νF)yn–,N

∥
∥



=
∥
∥
[

PC(I – νF)yn,N – PC(I – νF)yn–,N
]

– ν
[

FPC(I – νF)yn,N – FPC(I – νF)yn–,N
]∥
∥



≤ ∥
∥PC(I – νF)yn,N – PC(I – νF)yn–,N

∥
∥



– ν(ζ – ν)
∥
∥FPC(I – νF)yn,N – FPC(I – νF)yn–,N

∥
∥



≤ ∥
∥PC(I – νF)yn,N – PC(I – νF)yn–,N

∥
∥



≤ ∥
∥(I – νF)yn,N – (I – νF)yn–,N

∥
∥



=
∥
∥(yn,N – yn–,N ) – ν(Fyn,N – Fyn–,N )

∥
∥



≤ ‖yn,N – yn–,N‖ – ν(ζ – ν)‖Fyn,N – Fyn–,N‖

≤ ‖yn,N – yn–,N‖. (.)

Also, from (.) we have

{

yn = αnγ f (yn,N ) + (I – αnμV )zn,
yn– = αn–γ f (yn–,N ) + (I – αn–μV )zn–, ∀n ≥ .

Simple calculations show that

yn – yn– = (I – αnμV )(zn – zn–) + (αn – αn–)
(

γ f (yn–,N ) – μVzn–
)

+ αnγ
(

f (yn,N ) – f (yn–,N )
)

.
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Then passing to the norm we get from (.)

‖yn – yn–‖ ≤ ‖I – αnμV‖‖zn – zn–‖ + |αn – αn–|
∥
∥γ f (yn–,N ) – μVzn–

∥
∥

+ αnγ
∥
∥f (yn,N ) – f (yn–,N )

∥
∥

≤ ( – αnμγ̄ )‖yn,N – yn–,N‖ + M̃|αn – αn–| + αnγ l‖yn,N – yn–,N‖
=
(

 – αn(μγ̄ – γ l)
)‖yn,N – yn–,N‖ + M̃|αn – αn–|, (.)

where supn≥ ‖γ f (yn,N ) – μVzn‖ ≤ M̃ for some M̃ > . In the meantime, by the definition
of yn,i one obtains, for all i = N , . . . , ,

‖yn,i – yn–,i‖ ≤ βn,i‖vn – vn–‖ + ‖Sivn– – yn–,i–‖|βn,i – βn–,i|
+ ( – βn,i)‖yn,i– – yn–,i–‖. (.)

In the case i = , we have

‖yn, – yn–,‖ ≤ βn,‖vn – vn–‖ + ‖Svn– – vn–‖|βn, – βn–,| + ( – βn,)‖vn – vn–‖
= ‖vn – vn–‖ + ‖Svn– – vn–‖|βn, – βn–,|. (.)

Substituting (.) in all (.)-type expressions one obtains for i = , . . . , N

‖yn,i – yn–,i‖ ≤ ‖vn – vn–‖ +
i
∑

k=

‖Skvn– – yn–,k–‖|βn,k – βn–,k|

+ ‖Svn– – vn–‖|βn, – βn–,|.

This together with (.) implies that

‖yn – yn–‖
≤ (

 – αn(μγ̄ – γ l)
)‖yn,N – yn–,N‖ + M̃|αn – αn–|

≤ (

 – αn(μγ̄ – γ l)
)

[

‖vn – vn–‖ +
N
∑

k=

‖Skvn– – yn–,k–‖|βn,k – βn–,k|

+ ‖Svn– – vn–‖|βn, – βn–,|
]

+ M̃|αn – αn–|

≤ (

 – αn(μγ̄ – γ l)
)‖vn – vn–‖ +

N
∑

k=

‖Skvn– – yn–,k–‖|βn,k – βn–,k|

+ ‖Svn– – vn–‖|βn, – βn–,| + M̃|αn – αn–|. (.)

Furthermore, utilizing (.) and (.), we obtain

‖vn – vn–‖
=
∥
∥ΛM

n un – ΛM
n–un–

∥
∥



Ceng and Wen Journal of Inequalities and Applications  (2015) 2015:140 Page 17 of 41

=
∥
∥JRM ,λM,n (I – λM,nBM)ΛM–

n un – JRM ,λM,n– (I – λM,n–BM)ΛM–
n– un–

∥
∥

≤ ∥
∥JRM ,λM,n (I – λM,nBM)ΛM–

n un – JRM ,λM,n (I – λM,n–BM)ΛM–
n un

∥
∥

+
∥
∥JRM ,λM,n (I – λM,n–BM)ΛM–

n un – JRM ,λM,n– (I – λM,n–BM)ΛM–
n– un–

∥
∥

≤ ∥
∥(I – λM,nBM)ΛM–

n un – (I – λM,n–BM)ΛM–
n un

∥
∥

+
∥
∥(I – λM,n–BM)ΛM–

n un – (I – λM,n–BM)ΛM–
n– un–

∥
∥ + |λM,n – λM,n–|

×
(


λM,n

∥
∥JRM ,λM,n (I – λM,n–BM)ΛM–

n un – (I – λM,n–BM)ΛM–
n– un–

∥
∥

+


λM,n–

∥
∥(I – λM,n–BM)ΛM–

n un – JRM ,λM,n– (I – λM,n–BM)ΛM–
n– un–

∥
∥

)

≤ |λM,n – λM,n–|
(∥
∥BMΛM–

n un
∥
∥ + M̂

)

+
∥
∥ΛM–

n un – ΛM–
n– un–

∥
∥

≤ |λM,n – λM,n–|
(∥
∥BMΛM–

n un
∥
∥ + M̂

)

+ |λM–,n – λM–,n–|
(∥
∥BM–Λ

M–
n un

∥
∥ + M̂

)

+
∥
∥ΛM–

n un – ΛM–
n– un–

∥
∥

· · ·
≤ |λM,n – λM,n–|

(∥
∥BMΛM–

n un
∥
∥ + M̂

)

+ |λM–,n – λM–,n–|
(∥
∥BM–Λ

M–
n un

∥
∥ + M̂

)

+ · · ·
+ |λ,n – λ,n–|

(∥
∥BΛ


nun

∥
∥ + M̂

)

+
∥
∥Λ

nun – Λ
n–un–

∥
∥

≤ M̃

M
∑

k=

|λk,n – λk,n–| + ‖un – un–‖, (.)

where

sup
n≥,≤k≤M

{


λk,n

∥
∥JRk ,λk,n (I – λk,n–Bk)Λk–

n un – (I – λk,n–Bk)Λk–
n–un–

∥
∥

+


λk,n–

∥
∥(I – λk,n–Bk)Λk–

n un – JRk ,λk,n– (I – λk,n–Bk)Λk–
n–un–

∥
∥

}

≤ M̂,

for some M̂ >  and supn≥{
∑M

k= ‖BkΛ
k–
n un‖ + M̂} ≤ M̃ for some M̃ > .

By Lemma ., we know that

‖un – un–‖ ≤ ‖xn – xn–‖ + L
∣
∣
∣
∣
 –

rn–

rn

∣
∣
∣
∣
, (.)

where L = supn≥ ‖un – xn‖. So, combining (.)-(.), we obtain

‖yn – yn–‖

≤ (

 – αn(μγ̄ – γ l)
)‖vn – vn–‖ +

N
∑

k=

‖Skvn– – yn–,k–‖|βn,k – βn–,k|

+ ‖Svn– – vn–‖|βn, – βn–,| + M̃|αn – αn–|

≤ (

 – αn(μγ̄ – γ l)
)

[

M̃

M
∑

k=

|λk,n – λk,n–| + ‖un – un–‖
]
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+
N
∑

k=

‖Skvn– – yn–,k–‖|βn,k – βn–,k|

+ ‖Svn– – vn–‖|βn, – βn–,| + M̃|αn – αn–|

≤ (

 – αn(μγ̄ – γ l)
)

[

M̃

M
∑

k=

|λk,n – λk,n–| + ‖xn – xn–‖ + L
∣
∣
∣
∣
 –

rn–

rn

∣
∣
∣
∣

]

+
N
∑

k=

‖Skvn– – yn–,k–‖|βn,k – βn–,k|

+ ‖Svn– – vn–‖|βn, – βn–,| + M̃|αn – αn–|

≤ (

 – αn(μγ̄ – γ l)
)‖xn – xn–‖ + M̃

M
∑

k=

|λk,n – λk,n–| + L
∣
∣
∣
∣
 –

rn–

rn

∣
∣
∣
∣

+
N
∑

k=

‖Skvn– – yn–,k–‖|βn,k – βn–,k|

+ ‖Svn– – vn–‖|βn, – βn–,| + M̃|αn – αn–|

≤ (

 – αn(μγ̄ – γ l)
)‖xn – xn–‖ + M̃

[ M
∑

k=

|λk,n – λk,n–| +
|rn – rn–|

rn

+
N
∑

k=

|βn,k – βn–,k| + |βn, – βn–,| + |αn – αn–|
]

≤ (

 – αn(μγ̄ – γ l)
)‖xn – xn–‖ + M̃

[

|rn – rn–|
ε

+
M
∑

k=

|λk,n – λk,n–|

+
N
∑

k=

|βn,k – βn–,k| + |αn – αn–|
]

,

where supn≥{M̃ +L+
∑N

k=‖Skvn– –yn–,k–‖+‖Svn– –vn–‖+M̃} ≤ M̃ for some M̃ > .
This together with (.)-(.) implies that

‖wn – wn–‖

≤ ‖γn(yn – yn–) + δn(Tyn – Tyn–)‖
 – βn

+
∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣
‖yn–‖

+
∣
∣
∣
∣

δn

 – βn
–

δn–

 – βn–

∣
∣
∣
∣
‖Tyn–‖

≤ (γn + δn)‖yn – yn–‖
 – βn

+
∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣
‖yn–‖ +

∣
∣
∣
∣

δn

 – βn
–

δn–

 – βn–

∣
∣
∣
∣
‖Tyn–‖

= ‖yn – yn–‖ +
∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣

(‖yn–‖ + ‖Tyn–‖
)

≤ (

 – αn(μγ̄ – γ l)
)‖xn – xn–‖ + M̃

[

|rn – rn–|
ε

+
M
∑

k=

|λk,n – λk,n–|

+
N
∑

k=

|βn,k – βn–,k| + |αn – αn–|
]

+
∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣

(‖yn–‖ + ‖Tyn–‖
)
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≤ (

 – αn(μγ̄ – γ l)
)‖xn – xn–‖ + M̃

[

|rn – rn–|
ε

+
M
∑

k=

|λk,n – λk,n–|

+
N
∑

k=

|βn,k – βn–,k| + |αn – αn–| +
∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣

]

, (.)

where supn≥{M̃ + ‖yn‖ + ‖Tyn‖} ≤ M̃ for some M̃ > .
Further, we observe that

{

xn+ = βnxn + ( – βn)wn,
xn = βn–xn– + ( – βn–)wn–, ∀n ≥ .

Simple calculations show that

xn+ – xn = ( – βn)(wn – wn–) + (βn – βn–)(xn– – wn–) + βn(xn – xn–).

Then passing to the norm we get from (.)

‖xn+ – xn‖
≤ ( – βn)‖wn – wn–‖ + |βn – βn–|‖xn– – wn–‖ + βn‖xn – xn–‖

≤ ( – βn)

{

(

 – αn(μγ̄ – γ l)
)‖xn – xn–‖ + M̃

[

|rn – rn–|
ε

+
M
∑

k=

|λk,n – λk,n–|

+
N
∑

k=

|βn,k – βn–,k| + |αn – αn–| +
∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣

]}

+ |βn – βn–|‖xn– – wn–‖ + βn‖xn – xn–‖

≤ (

 – (μγ̄ – γ l)( – βn)αn
)‖xn – xn–‖ + M̃

[

|rn – rn–|
ε

+
M
∑

k=

|λk,n – λk,n–|

+
N
∑

k=

|βn,k – βn–,k| + |αn – αn–| +
∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣

]

+ |βn – βn–|‖xn– – wn–‖

≤ (

 – (μγ̄ – γ l)( – d)αn
)‖xn – xn–‖ + M̃

[

|rn – rn–|
ε

+
M
∑

k=

|λk,n – λk,n–|

+
N
∑

k=

|βn,k – βn–,k| + |αn – αn–| +
∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣

+ |βn – βn–|
]

, (.)

where supn≥{M̃ + ‖xn – wn‖} ≤ M̃ for some M̃ > . By hypotheses (H)-(H) and
Lemma ., we obtain the claim. �

Proposition . Let us suppose that Ω �= ∅. Let us suppose that {xn} is asymptotically
regular. Then ‖xn – un‖ = ‖xn – Trn xn‖ →  and ‖xn – vn‖ →  as n → ∞.
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Proof Take a fixed p ∈ Ω arbitrarily. We recall that, by the firm nonexpansivity of Trn ,
a standard calculation (see []) shows that for p ∈ GMEP(Θ , h)

‖un – p‖ ≤ ‖xn – p‖ – ‖xn – un‖. (.)

Observe that

∥
∥Λk

nun – p
∥
∥

 =
∥
∥JRk ,λk,n (I – λk,nBk)Λk–

n un – JRk ,λk,n (I – λk,nBk)p
∥
∥



≤ ∥
∥(I – λk,nBk)Λk–

n un – (I – λk,nBk)p
∥
∥



≤ ∥
∥Λk–

n un – p
∥
∥

 + λk,n(λk,n – ηk)
∥
∥BkΛ

k–
n un – Bkp

∥
∥



≤ ‖un – p‖ + λk,n(λk,n – ηk)
∥
∥BkΛ

k–
n un – Bkp

∥
∥



≤ ‖xn – p‖ + λk,n(λk,n – ηk)
∥
∥BkΛ

k–
n un – Bkp

∥
∥

, (.)

for each k ∈ {, , . . . , M}.
Utilizing Lemmas . and .(b), we obtain from  ≤ γ l < μγ̄ , (.), (.), (.), and

(.) that

‖yn – p‖

=
∥
∥αnγ

(

f (yn,N ) – f (p)
)

+ (I – αnμV )(zn – p) + αn(γ f – μV )p
∥
∥



≤ ∥
∥αnγ

(

f (yn,N ) – f (p)
)

+ (I – αnμV )(zn – p)
∥
∥

 + αn
〈

(γ f – μV )p, yn – p
〉

≤ [

αnγ
∥
∥f (yn,N ) – f (p)

∥
∥ + ‖I – αnμV‖‖zn – p‖] + αn

〈

(γ f – μV )p, yn – p
〉

≤ [

αnγ l‖yn,N – p‖ + ( – αnμγ̄ )‖zn – p‖] + αn
〈

(γ f – μV )p, yn – p
〉

=
[

αnμγ̄
γ l
μγ̄

‖yn,N – p‖ + ( – αnμγ̄ )‖zn – p‖
]

+ αn
〈

(γ f – μV )p, yn – p
〉

≤ αnμγ̄
(γ l)

(μγ̄ ) ‖yn,N – p‖ + ( – αnμγ̄ )‖zn – p‖ + αn
〈

(γ f – μV )p, yn – p
〉

≤ αnμγ̄ ‖yn,N – p‖ + ‖zn – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ αnμγ̄ ‖yn,N – p‖ + ‖yn,N – p‖ – ν(ζ – ν)‖Fyn,N – Fp‖

– ν(ζ – ν)‖Fỹn,N – Fp̃‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ αnμγ̄ ‖yn,N – p‖ + ‖vn – p‖ – ν(ζ – ν)‖Fyn,N – Fp‖

– ν(ζ – ν)‖Fỹn,N – Fp̃‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ αnμγ̄ ‖yn,N – p‖ +
∥
∥Λk

nun – p
∥
∥

 – ν(ζ – ν)‖Fyn,N – Fp‖

– ν(ζ – ν)‖Fỹn,N – Fp̃‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ αnμγ̄ ‖yn,N – p‖ + ‖un – p‖ + λk,n(λk,n – ηk)
∥
∥BkΛ

k–
n un – Bkp

∥
∥



– ν(ζ – ν)‖Fyn,N – Fp‖ – ν(ζ – ν)‖Fỹn,N – Fp̃‖

+ αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ αnμγ̄ ‖yn,N – p‖ + ‖xn – p‖ – ‖xn – un‖ + λk,n(λk,n – ηk)
∥
∥BkΛ

k–
n un – Bkp

∥
∥
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– ν(ζ – ν)‖Fyn,N – Fp‖ – ν(ζ – ν)‖Fỹn,N – Fp̃‖

+ αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖. (.)

Since (γn + δn)ξ ≤ γn for all n ≥ , utilizing Lemma . we have

‖xn+ – p‖

=
∥
∥βn(xn – p) + γn(yn – p) + δn(Tyn – p)

∥
∥



=
∥
∥
∥
∥
βn(xn – p) + (γn + δn)


γn + δn

[

γn(yn – p) + δn(Tyn – p)
]
∥
∥
∥
∥



≤ βn‖xn – p‖ + (γn + δn)
∥
∥
∥
∥


γn + δn

[

γn(yn – p) + δn(Tyn – p)
]
∥
∥
∥
∥



≤ βn‖xn – p‖ + (γn + δn)‖yn – p‖

= βn‖xn – p‖ + ( – βn)‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)
[

αnμγ̄ ‖yn,N – p‖ + ‖xn – p‖ – ‖xn – un‖

+ λk,n(λk,n – ηk)
∥
∥BkΛ

k–
n un – Bkp

∥
∥

 – ν(ζ – ν)‖Fyn,N – Fp‖

– ν(ζ – ν)‖Fỹn,N – Fp̃‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖]

≤ ‖xn – p‖ – ( – βn)
[‖xn – un‖ + λk,n(ηk – λk,n)

∥
∥BkΛ

k–
n un – Bkp

∥
∥



+ ν(ζ – ν)‖Fyn,N – Fp‖ + ν(ζ – ν)‖Fỹn,N – Fp̃‖]

+ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖. (.)

So, we deduce from {βn} ⊂ [c, d] ⊂ (, ) and {λk,n} ⊂ [ak , bk] ⊂ (, ηk), k = , . . . , M, that

( – d)
[‖xn – un‖ + λk,n(ηk – λk,n)

∥
∥BkΛ

k–
n un – Bkp

∥
∥



+ ν(ζ – ν)‖Fyn,N – Fp‖ + ν(ζ – ν)‖Fỹn,N – Fp̃‖]

≤ ( – βn)
[‖xn – un‖ + λk,n(ηk – λk,n)

∥
∥BkΛ

k–
n un – Bkp

∥
∥



+ ν(ζ – ν)‖Fyn,N – Fp‖ + ν(ζ – ν)‖Fỹn,N – Fp̃‖]

≤ ‖xn – p‖ – ‖xn+ – p‖ + αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ ‖xn – xn+‖
(‖xn – p‖ + ‖xn+ – p‖) + αnμγ̄ ‖yn,N – p‖

+ αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖.

By Propositions . and . we know that the sequences {xn}, {yn}, and {yn,N } are bounded,
and that {xn} is asymptotically regular. Therefore, from αn →  we obtain

lim
n→∞‖xn – un‖ = lim

n→∞‖Fyn,N – Fp‖ = lim
n→∞‖Fỹn,N – Fp̃‖

= lim
n→∞

∥
∥BkΛ

k–
n un – Bkp

∥
∥ = , (.)

for each k ∈ {, . . . , M}.
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Utilizing Lemmas .(a) and ., we obtain for each k ∈ {, . . . , M}
∥
∥Λk

nun – p
∥
∥



=
∥
∥JRk ,λk,n (I – λk,nBk)Λk–

n un – JRk ,λk,n (I – λk,nBk)p
∥
∥



≤ 〈

(I – λk,nBk)Λk–
n un – (I – λk,nBk)p,Λk

nun – p
〉

=


(∥
∥(I – λk,nBk)Λk–

n un – (I – λk,nBk)p
∥
∥

 +
∥
∥Λk

nun – p
∥
∥



–
∥
∥(I – λk,nBk)Λk–

n un – (I – λk,nBk)p –
(

Λk
nun – p

)∥
∥

)

≤ 

(∥
∥Λk–

n un – p
∥
∥

 +
∥
∥Λk

nun – p
∥
∥

 –
∥
∥Λk–

n un – Λk
nun – λk,n

(

BkΛ
k–
n un – Bip

)∥
∥

)

≤ 

(‖un – p‖ +

∥
∥Λk

nun – p
∥
∥

 –
∥
∥Λk–

n un – Λk
nun – λk,n

(

BkΛ
k–
n un – Bip

)∥
∥

)

≤ 

(‖xn – p‖ +

∥
∥Λk

nun – p
∥
∥

 –
∥
∥Λk–

n un – Λk
nun – λk,n

(

BkΛ
k–
n un – Bkp

)∥
∥

),

which immediately leads to

∥
∥Λk

nun – p
∥
∥



≤ ‖xn – p‖ –
∥
∥Λk–

n un – Λk
nun – λk,n

(

BkΛ
k–
n un – Bkp

)∥
∥



= ‖xn – p‖ –
∥
∥Λk–

n un – Λk
nun

∥
∥

 – λ
k,n
∥
∥BkΛ

k–
n un – Bkp

∥
∥



+ λk,n
〈

Λk–
n un – Λk

nun, BkΛ
k–
n un – Bkp

〉

≤ ‖xn – p‖ –
∥
∥Λk–

n un – Λk
nun

∥
∥



+ λk,n
∥
∥Λk–

n un – Λk
nun

∥
∥
∥
∥BkΛ

k–
n un – Bkp

∥
∥. (.)

From (.), (.), (.), and (.) we conclude that

‖xn+ – p‖

≤ βn‖xn – p‖ + ( – βn)‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)
[

αnμγ̄ ‖yn,N – p‖ + ‖zn – p‖

+ αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖]

≤ βn‖xn – p‖ + ( – βn)‖zn – p‖ + αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)‖yn,N – p‖ + αnμγ̄ ‖yn,N – p‖

+ αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)‖vn – p‖ + αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)
∥
∥Λk

nun – p
∥
∥

 + αnμγ̄ ‖yn,N – p‖

+ αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)
[‖xn – p‖ –

∥
∥Λk–

n un – Λk
nun

∥
∥



+ λk,n
∥
∥Λk–

n un – Λk
nun

∥
∥
∥
∥BkΛ

k–
n un – Bkp

∥
∥
]
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+ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ ‖xn – p‖ – ( – βn)
∥
∥Λk–

n un – Λk
nun

∥
∥



+ λk,n
∥
∥Λk–

n un – Λk
nun

∥
∥
∥
∥BkΛ

k–
n un – Bkp

∥
∥

+ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖, (.)

which, together with {βn} ⊂ [c, d] ⊂ (, ) and {λk,n} ⊂ [ak , bk] ⊂ (, ηk), k = , . . . , M,
yields

( – d)
∥
∥Λk–

n un – Λk
nun

∥
∥



≤ ( – βn)
∥
∥Λk–

n un – Λk
nun

∥
∥



≤ ‖xn – p‖ – ‖xn+ – p‖ + λk,n
∥
∥Λk–

n un – Λk
nun

∥
∥
∥
∥BkΛ

k–
n un – Bkp

∥
∥

+ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ ‖xn – xn+‖
(‖xn – p‖ + ‖xn+ – p‖) + bk

∥
∥Λk–

n un – Λk
nun

∥
∥
∥
∥BkΛ

k–
n un – Bkp

∥
∥

+ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖.

Since αn → , and {xn}, {yn}, {yn,N }, and {un} are bounded, we obtain from (.) and the
asymptotical regularity of {xn} (due to Proposition .),

lim
n→∞

∥
∥Λk–

n un – Λk
nun

∥
∥ = , ∀k ∈ {, . . . , M}. (.)

Therefore,

‖un – vn‖ =
∥
∥Λ

nun – ΛM
n un

∥
∥

≤ ∥
∥Λ

nun – Λ
nun

∥
∥ +

∥
∥Λ

nun – Λ
nun

∥
∥ + · · · +

∥
∥ΛM–

n un – ΛM
n un

∥
∥

→  as n → ∞,

and hence

‖xn – vn‖ ≤ ‖xn – un‖ + ‖un – vn‖
→  as n → ∞. (.)

�

Remark . By the last proposition we have ωw(xn) = ωw(vn) and ωs(xn) = ωs(vn), i.e., the
sets of strong/weak cluster points of {xn} and {vn} coincide.

Of course, if βn,i → βi �=  as n → ∞, for all indices i, the assumptions of Proposition .
are enough to assure that

lim
n→∞

‖xn+ – xn‖
βn,i

= , ∀i ∈ {, . . . , N}.

In the next proposition, we estimate the case in which at least one sequence {βn,k} is a
null sequence.
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Proposition . Let us suppose that Ω �= ∅. Let us suppose that (H) holds. Moreover, for
an index k ∈ {, . . . , N}, limn→∞ βn,k = , and the following hold:

(H) for each i ∈ {, . . . , N} and k ∈ {, . . . , M},

lim
n→∞

|βn,i – βn–,i|
αnβn,k

= lim
n→∞

|αn – αn–|
αnβn,k

= lim
n→∞

|βn – βn–|
αnβn,k

= lim
n→∞

|rn – rn–|
αnβn,k

= lim
n→∞


αnβn,k

∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣

= lim
n→∞

|λk,n – λk,n–|
αnβn,k

= ;

(H) there exists a constant τ >  such that 
αn

| 
βn,k

– 
βn–,k

| < τ for all n ≥ .
Then

lim
n→∞

‖xn+ – xn‖
βn,k

.

Proof We start by (.). Dividing both terms by βn,k we have

‖xn+ – xn‖
βn,k

≤ [

 – (μγ̄ – γ l)( – d)αn
]‖xn – xn–‖

βn,k
+ M̃

[ |rn – rn–|
εβn,k

+
∑M

k=|λk,n – λk,n–|
βn,k

+
∑N

k=|βn,k – βn–,k|
βn,k

+
|αn – αn–|

βn,k
+

| γn
–βn

– γn–
–βn–

|
βn,k

+
|βn – βn–|

βn,k

]

. (.)

So, by (H) we have

‖xn+ – xn‖
βn,k

≤ [

 – (μγ̄ – γ l)( – d)αn
]‖xn – xn–‖

βn–,k

+
[

 – (μγ̄ – γ l)( – d)αn
]‖xn – xn–‖

∣
∣
∣
∣


βn,k

–


βn–,k

∣
∣
∣
∣

+ M̃

[ |rn – rn–|
εβn,k

+
∑M

k=|λk,n – λk,n–|
βn,k

+
∑N

k=|βn,k – βn–,k|
βn,k

+
| γn

–βn
– γn–

–βn–
|

βn,k
+

|αn – αn–|
βn,k

+
|βn – βn–|

βn,k

]

≤ [

 – (μγ̄ – γ l)( – d)αn
]‖xn – xn–‖

βn–,k
+ ‖xn – xn–‖

∣
∣
∣
∣


βn,k

–


βn–,k

∣
∣
∣
∣

+ M̃

[ |rn – rn–|
εβn,k

+
∑M

k=|λk,n – λk,n–|
βn,k

+
∑N

k=|βn,k – βn–,k|
βn,k

+
| γn

–βn
– γn–

–βn–
|

βn,k
+

|αn – αn–|
βn,k

+
|βn – βn–|

βn,k

]

≤ [

 – (μγ̄ – γ l)( – d)αn
]‖xn – xn–‖

βn–,k
+ αnτ‖xn – xn–‖

+ M̃

[ |rn – rn–|
εβn,k

+
∑M

k=|λk,n – λk,n–|
βn,k

+
∑N

k=|βn,k – βn–,k|
βn,k

+
| γn

–βn
– γn–

–βn–
|

βn,k
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+
|αn – αn–|

βn,k
+

|βn – βn–|
βn,k

]

=
[

 – αn(μγ̄ – γ l)( – d)
]‖xn – xn–‖

βn–,k
+ αn(μγ̄ – γ l)( – d)

· 
(μγ̄ – γ l)( – d)

{

τ‖xn – xn–‖

+ M̃

[ |rn – rn–|
εαnβn,k

+
∑M

k=|λk,n – λk,n–|
αnβn,k

+
∑N

k=|βn,k – βn–,k|
αnβn,k

+
| γn

–βn
– γn–

–βn–
|

αnβn,k

+
|αn – αn–|

αnβn,k
+

|βn – βn–|
αnβn,k

]}

.

Therefore, utilizing Lemma ., from (H), (H), and the asymptotical regularity of {xn}
(due to Proposition .), we deduce that

lim
n→∞

‖xn+ – xn‖
βn,k

= . �

Proposition . Let us suppose that Ω �= ∅. Let us suppose that (H)-(H) hold. Then
‖zn – yn,N‖ →  as n → ∞.

Proof Let p ∈ Ω . In terms of the firm nonexpansivity of PC and the ζj-inverse-strong
monotonicity of Fj for j = , , we obtain from νj ∈ (, ζj), j = , , and (.)

‖ỹn,N – p̃‖

=
∥
∥PC(I – νF)yn,N – PC(I – νF)p

∥
∥



≤ 〈

(I – νF)yn,N – (I – νF)p, ỹn,N – p̃
〉

=


[∥
∥(I – νF)yn,N – (I – νF)p

∥
∥

 + ‖ỹn,N – p̃‖

–
∥
∥(I – νF)yn,N – (I – νF)p – (ỹn,N – p̃)

∥
∥

]

≤ 

[‖yn,N – p‖ + ‖ỹn,N – p̃‖ –

∥
∥(yn,N – ỹn,N ) – ν(Fyn,N – Fp) – (p – p̃)

∥
∥

]

=


[‖yn,N – p‖ + ‖ỹn,N – p̃‖ –

∥
∥(yn,N – ỹn,N ) – (p – p̃)

∥
∥



+ ν
〈

(yn,N – ỹn,N ) – (p – p̃), Fyn,N – Fp
〉

– ν
‖Fyn,N – Fp‖]

and

‖zn – p‖

=
∥
∥PC(I – νF)ỹn,N – PC(I – νF)p̃

∥
∥



≤ 〈

(I – νF)ỹn,N – (I – νF)p̃, zn – p
〉

=


[∥
∥(I – νF)ỹn,N – (I – νF)p̃

∥
∥

 + ‖zn – p‖

–
∥
∥(I – νF)ỹn,N – (I – νF)p̃ – (zn – p)

∥
∥

]
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≤ 

[‖ỹn,N – p̃‖ + ‖zn – p‖ –

∥
∥(ỹn,N – zn) + (p – p̃)

∥
∥



+ ν
〈

Fỹn,N – Fp̃, (ỹn,N – zn) + (p – p̃)
〉

– ν
 ‖Fỹn,N – Fp̃‖]

≤ 

[‖yn,N – p‖ + ‖zn – p‖ –

∥
∥(ỹn,N – zn) + (p – p̃)

∥
∥



+ ν
〈

Fỹn,N – Fp̃, (ỹn,N – zn) + (p – p̃)
〉]

.

Thus, we have

‖ỹn,N – p̃‖ ≤ ‖yn,N – p‖ –
∥
∥(yn,N – ỹn,N ) – (p – p̃)

∥
∥



+ ν
〈

(yn,N – ỹn,N ) – (p – p̃), Fyn,N – Fp
〉

– ν
‖Fyn,N – Fp‖ (.)

and

‖zn – p‖ ≤ ‖yn,N – p‖ –
∥
∥(ỹn,N – zn) + (p – p̃)

∥
∥



+ ν‖Fỹn,N – Fp̃‖∥∥(ỹn,N – zn) + (p – p̃)
∥
∥. (.)

Consequently, from (.), (.), and (.), it follows that

‖xn+ – p‖

≤ βn‖xn – p‖ + ( – βn)‖zn – p‖ + αnμγ̄ ‖yn,N – p‖

+ αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)‖ỹn,N – p̃‖ + αnμγ̄ ‖yn,N – p‖

+ αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)
[‖yn,N – p‖ –

∥
∥(yn,N – ỹn,N ) – (p – p̃)

∥
∥



+ ν
∥
∥(yn,N – ỹn,N ) – (p – p̃)

∥
∥‖Fyn,N – Fp‖]

+ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)
[‖xn – p‖ –

∥
∥(yn,N – ỹn,N ) – (p – p̃)

∥
∥



+ ν
∥
∥(yn,N – ỹn,N ) – (p – p̃)

∥
∥‖Fyn,N – Fp‖]

+ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ ‖xn – p‖ – ( – βn)
∥
∥(yn,N – ỹn,N ) – (p – p̃)

∥
∥



+ ν
∥
∥(yn,N – ỹn,N ) – (p – p̃)

∥
∥‖Fyn,N – Fp‖

+ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖,

which yields

( – d)
∥
∥(yn,N – ỹn,N ) – (p – p̃)

∥
∥



≤ ( – βn)
∥
∥(yn,N – ỹn,N ) – (p – p̃)

∥
∥



≤ ‖xn – p‖ – ‖xn+ – p‖ + ν
∥
∥(yn,N – ỹn,N ) – (p – p̃)

∥
∥‖Fyn,N – Fp‖
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+ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ ‖xn – xn+‖
(‖xn – p‖ + ‖xn+ – p‖) + ν

∥
∥(yn,N – ỹn,N ) – (p – p̃)

∥
∥‖Fyn,N – Fp‖

+ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖.

Since limn→∞ αn = , limn→∞ ‖xn+ –xn‖ = , and {xn}, {yn}, {yn,N }, and {ỹn,N } are bounded,
we deduce from (.) that

lim
n→∞

∥
∥(yn,N – ỹn,N ) – (p – p̃)

∥
∥ = . (.)

Furthermore, from (.), (.), and (.), it follows that

‖xn+ – p‖

≤ βn‖xn – p‖ + ( – βn)‖zn – p‖ + αnμγ̄ ‖yn,N – p‖

+ αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)
[‖yn,N – p‖ –

∥
∥(ỹn,N – zn) + (p – p̃)

∥
∥



+ ν‖Fỹn,N – Fp̃‖∥∥(ỹn,N – zn) + (p – p̃)
∥
∥
]

+ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)
[‖xn – p‖ –

∥
∥(ỹn,N – zn) + (p – p̃)

∥
∥



+ ν‖Fỹn,N – Fp̃‖∥∥(ỹn,N – zn) + (p – p̃)
∥
∥
]

+ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ ‖xn – p‖ – ( – βn)
∥
∥(ỹn,N – zn) + (p – p̃)

∥
∥



+ ν‖Fỹn,N – Fp̃‖∥∥(ỹn,N – zn) + (p – p̃)
∥
∥

+ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖,

which leads to

( – d)
∥
∥(ỹn,N – zn) + (p – p̃)

∥
∥



≤ ( – βn)
∥
∥(ỹn,N – zn) + (p – p̃)

∥
∥



≤ ‖xn – p‖ – ‖xn+ – p‖ + ν‖Fỹn,N – Fp̃‖∥∥(ỹn,N – zn) + (p – p̃)
∥
∥

+ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ ‖xn – xn+‖
(‖xn – p‖ + ‖xn+ – p‖) + ν‖Fỹn,N – Fp̃‖∥∥(ỹn,N – zn) + (p – p̃)

∥
∥

+ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖.

Since limn→∞ αn = , limn→∞ ‖xn+ – xn‖ = , and {xn}, {zn}, {yn}, {yn,N }, and {ỹn,N } are
bounded, we deduce from (.) that

lim
n→∞

∥
∥(ỹn,N – zn) + (p – p̃)

∥
∥ = . (.)
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Note that

‖yn,N – zn‖ ≤ ∥
∥(yn,N – ỹn,N ) – (p – p̃)

∥
∥ +

∥
∥(ỹn,N – zn) + (p – p̃)

∥
∥.

Hence from (.) and (.) we get

lim
n→∞‖yn,N – zn‖ = lim

n→∞‖yn,N – Gyn,N‖ = . (.)
�

Proposition . Let us suppose that Ω �= ∅. Let us suppose that  < lim infn→∞ βn,i ≤
lim supn→∞ βn,i <  for each i = , . . . , N . Moreover, suppose that (H)-(H) are satisfied.
Then limn→∞ ‖Sivn – vn‖ =  for each i = , . . . , N provided ‖Tyn – yn‖ → as n → ∞.

Proof First of all, observe that

xn+ – xn = γn(yn – xn) + δn(Tyn – xn)

= γn(yn – xn) + δn(Tyn – yn) + δn(yn – xn)

= (γn + δn)(yn – xn) + δn(Tyn – yn)

= ( – βn)(yn – xn) + δn(Tyn – yn).

By Proposition . we know that {xn} is asymptotically regular. Hence we have

( – βn)‖yn – xn‖ =
∥
∥xn+ – xn – δn(Tyn – yn)

∥
∥≤ ‖xn+ – xn‖ + δn‖Tyn – yn‖,

which, together with ‖Tyn – yn‖ → , implies that

lim
n→∞‖xn – yn‖ = . (.)

Let us show that for each i ∈ {, . . . , N}, one has ‖Sivn – yn,i–‖ →  as n → ∞. Let p ∈ Ω .
When i = N , by Lemma .(b) we have from (.), (.), and (.)

‖yn – p‖ ≤ αnμγ̄ ‖yn,N – p‖ + ‖zn – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

≤ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖ + ‖yn,N – p‖

= αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖ + βn,N‖SN vn – p‖

+ ( – βn,N )‖yn,N– – p‖ – βn,N ( – βn,N )‖SN vn – yn,N–‖

≤ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖ + βn,N‖vn – p‖

+ ( – βn,N )‖vn – p‖ – βn,N ( – βn,N )‖SN vn – yn,N–‖

= αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖ + ‖vn – p‖

– βn,N ( – βn,N )‖SN vn – yn,N–‖

≤ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖ + ‖xn – p‖

– βn,N ( – βn,N )‖SN vn – yn,N–‖.
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So, we have

βn,N ( – βn,N )‖SN vn – yn,N–‖

≤ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖ + ‖xn – p‖ – ‖yn – p‖

≤ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖ + ‖xn – yn‖

(‖xn – p‖ + ‖yn – p‖).

Since αn → ,  < lim infn→∞ βn,N ≤ lim supn→∞ βn,N < , and limn→∞ ‖xn – yn‖ =  (due
to (.)), it is well known that {‖SN vn – yn,N–‖} is a null sequence.

Let i ∈ {, . . . , N – }. Then one has

‖yn – p‖ ≤ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖ + ‖yn,N – p‖

≤ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖ + βn,N‖SN vn – p‖

+ ( – βn,N )‖yn,N– – p‖

≤ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖ + βn,N‖xn – p‖

+ ( – βn,N )‖yn,N– – p‖

≤ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖ + βn,N‖xn – p‖

+ ( – βn,N )
[

βn,N–‖SN–vn – p‖ + ( – βn,N–)‖yn,N– – p‖]

≤ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

+
(

βn,N + ( – βn,N )βn,N–
)‖xn – p‖ +

N
∏

k=N–

( – βn,k)‖yn,N– – p‖,

and so, after (N – i + ) iterations,

‖yn – p‖ ≤ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

+

(

βn,N +
N
∑

j=i+

( N
∏

l=j

( – βn,l)

)

βn,j–

)

‖xn – p‖ +
N
∏

k=i+

( – βn,k)‖yn,i – p‖

≤ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

+

(

βn,N +
N
∑

j=i+

( N
∏

l=j

( – βn,l)

)

βn,j–

)

‖xn – p‖

+
N
∏

k=i+

( – βn,k)
[

βn,i‖Siun – p‖

+ ( – βn,i)‖yn,i– – p‖ – βn,i( – βn,i)‖Sivn – yn,i–‖]

≤ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖ + ‖xn – p‖

– βn,i

N
∏

k=i

( – βn,k)‖Sivn – yn,i–‖. (.)
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Again we obtain

βn,i

N
∏

k=i

( – βn,k)‖Sivn – yn,i–‖

≤ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖ + ‖xn – p‖ – ‖yn – p‖

≤ αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖ + ‖xn – yn‖

(‖xn – p‖ + ‖yn – p‖).

Since αn → ,  < lim infn→∞ βn,i ≤ lim supn→∞ βn,i <  for each i = , . . . , N – , and
limn→∞ ‖xn – yn‖ =  (due to (.)), it is well known that

lim
n→∞‖Sivn – yn,i–‖ = .

Obviously for i = , we have ‖Sun – un‖ → .
To conclude, we have

‖Svn – vn‖ ≤ ‖Svn – yn,‖ + ‖yn, – vn‖ = ‖Svn – yn,‖ + βn,‖Svn – vn‖

from which ‖Svn – vn‖ → . Thus by induction ‖Sivn – vn‖ →  for all i = , . . . , N since
it is enough to observe that

‖Sivn – vn‖ ≤ ‖Sivn – yn,i–‖ + ‖yn,i– – Si–vn‖ + ‖Si–vn – vn‖
≤ ‖Sivn – yn,i–‖ + ( – βn,i–)‖Si–vn – yn,i–‖ + ‖Si–vn – vn‖. �

Remark . As an example, we consider M = , N = , and the sequences:
(a) λ,n = η – 

n , ∀n > 
η

;
(b) αn = √

n , rn =  – 
n , ∀n > ;

(c) βn = βn, = 
 – 

n , βn, = 
 – 

n , ∀n > .

They satisfy the hypotheses on the parameter sequences in Proposition ..

Proposition . Let us suppose that Ω �= ∅ and βn,i → βi for all i as n → ∞. Suppose there
exists k ∈ {, . . . , N} such that βn,k →  as n → ∞. Let k ∈ {, . . . , N} be the largest index
such that βn,k →  as n → ∞. Suppose that

(i) αn
βn,k

→  as n → ∞;

(ii) if i ≤ k and βn,i →  then βn,k
βn,i

→  as n → ∞;
(iii) if βn,i → βi �=  then βi lies in (, ).

Moreover, suppose that (H), (H), and (H) hold. Then limn→∞ ‖Sivn – vn‖ =  for each
i = , . . . , N provided ‖Tyn – yn‖ →  as n → ∞.

Proof First of all we note that if (H) holds then also (H)-(H) are satisfied. So {xn} is
asymptotically regular.

Let k be as in the hypotheses. As in Proposition ., for every index i ∈ {, . . . , N} such
that βn,i → βi �=  (which leads to  < lim infn→∞ βn,i ≤ lim supn→∞ βn,i < ), one has ‖Sivn –
yn,i–‖ →  as n → ∞.
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For all the other indices i ≤ k, we can prove that ‖Sivn – yn,i–‖ →  as n → ∞ in a
similar manner. By the relation (due to (.) and (.))

‖xn+ – p‖ ≤ βn‖xn – p‖ + ( – βn)‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)

[

αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

+ ‖xn – p‖ – βn,i

N
∏

k=i

( – βn,k)‖Sivn – yn,i–‖

]

≤ ‖xn – p‖ + αnμγ̄ ‖yn,N – p‖ + αn
∥
∥(γ f – μV )p

∥
∥‖yn – p‖

– ( – βn)βn,i

N
∏

k=i

( – βn,k)‖Sivn – yn,i–‖,

we immediately obtain

( – d)
N
∏

k=i

( – βn,k)‖Sivn – yn,i–‖

≤ ( – βn)
N
∏

k=i

( – βn,k)‖Sivn – yn,i–‖

≤ αn

βn,i

[

μγ̄ ‖yn,N – p‖ + 
∥
∥(γ f – μV )p

∥
∥‖yn – p‖]

+
‖xn – xn+‖

βn,i

(‖xn – p‖ + ‖xn+ – p‖).

By Proposition . or by hypothesis (ii) on the sequences, we have

‖xn – xn+‖
βn,i

=
‖xn – xn+‖

βn,k
· βn,k

βn,i
→ .

So, the conclusion follows. �

Remark . Let us consider M = , N = , and the following sequences:
(a) αn = 

n/ , rn =  – 
n , ∀n > ;

(b) λ,n = η – 
n , ∀n > 

η/


;

(c) βn, = 
n/ , βn = βn, = 

 – 
n , βn, = 

n/ , ∀n > .
It is easy to see that all hypotheses (i)-(iii), (H), (H), and (H) of Proposition . are
satisfied.

Remark . Under the hypotheses of Proposition ., analogously to Proposition ., one
can see that

lim
n→∞‖Sivn – yn,i–‖ = , ∀i ∈ {, . . . , N}.

Corollary . Let us suppose that the hypotheses of either Proposition . or Propo-
sition . are satisfied. Then ωw(xn) = ωw(vn) = ωw(yn,), ωs(xn) = ωs(vn) = ωs(yn,), and
ωw(xn) ⊂ Ω .
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Proof By Remark ., we have ωw(xn) = ωw(vn) and ωs(xn) = ωs(vn). Note that by Re-
mark .,

lim
n→∞‖SN vn – yn,N–‖ = .

In the meantime, it is well known that

lim
n→∞‖SN vn – vn‖ = lim

n→∞‖vn – xn‖ = lim
n→∞‖xn – yn‖ = .

Hence we have

lim
n→∞‖SN vn – yn‖ = . (.)

Furthermore, it follows from (.) that

lim
n→∞‖yn,N – yn,N–‖ = lim

n→∞βn,N‖SN vn – yn,N–‖ = ,

which, together with limn→∞ ‖SN vn – yn,N–‖ = , yields

lim
n→∞‖SN vn – yn,N‖ = . (.)

Combining (.) and (.), we conclude that

lim
n→∞‖yn – yn,N‖ = , (.)

which, together with limn→∞ ‖xn – yn‖ = , leads to

lim
n→∞‖xn – yn,N‖ = . (.)

Now we observe that

‖xn – yn,‖ ≤ ‖xn – vn‖ + ‖yn, – vn‖ = ‖xn – vn‖ + βn,‖Svn – vn‖.

By Propositions . and ., ‖xn – vn‖ →  and ‖Svn – vn‖ →  as n → ∞, and hence

lim
n→∞‖xn – yn,‖ = .

So we get ωw(xn) = ωw(yn,) and ωs(xn) = ωs(yn,).
Let p ∈ ωw(xn). Then there exists a subsequence {xni} of {xn} such that xni ⇀ p. Since

p ∈ ωw(vn), by Proposition . and Lemma . (demiclosedness principle), we have p ∈
Fix(Si) for each i = , . . . , N , i.e., p ∈ ⋂N

i= Fix(Si). Taking into account p ∈ ωw(yn,N ) (due
to (.)) and ‖yn,N – Gyn,N‖ →  (due to (.)), by Lemma . (demiclosedness prin-
ciple) we know that p ∈ Fix(G) =: Ξ . Also, since p ∈ ωw(yn) (due to ‖xn – yn‖ → ), in
terms of ‖Tyn – yn‖ →  and Lemma . (demiclosedness principle), we get p ∈ Fix(T).
Moreover, by Lemma . and Proposition . we know that p ∈ GMEP(Θ , h). Next we
prove that p ∈⋂M

m= I(Bm, Rm). As a matter of fact, from (.) and (.) we know that



Ceng and Wen Journal of Inequalities and Applications  (2015) 2015:140 Page 33 of 41

uni ⇀ p and Λm
ni

uni ⇀ p for each m = , . . . , M. Since Bm is ηm-inverse-strongly monotone,
Bm is a monotone and Lipschitz-continuous mapping. It follows from Lemma . that
Rm + Bm is maximal monotone. Let (v, g) ∈ G(Rm + Bm), i.e., g – Bmv ∈ Rmv. Again, since
Λm

n un = JRm ,λm,n (I – λm,nBm)Λm–
n un, n ≥ , m ∈ {, , . . . , N}, we have

Λm–
n un – λm,nBmΛm–

n un ∈ (I + λm,nRm)Λm
n un,

that is,


λm,n

(

Λm–
n un – Λm

n un – λm,nBmΛm–
n un

) ∈ RmΛm
n un.

In terms of the monotonicity of Rm, we get

〈

v – Λm
n un, g – Bmv –


λm,n

(

Λm–
n un – Λm

n un – λm,nBmΛm–
n un

)
〉

≥ 

and hence

〈

v – Λm
n un, g

〉

≥
〈

v – Λm
n un, Bmv +


λm,n

(

Λm–
n un – Λm

n un – λm,nBmΛm–
n un

)
〉

=
〈

v – Λm
n un, Bmv – BmΛm

n un + BmΛm
n un – BmΛm–

n un +


λm,n

(

Λm–
n un – Λm

n un
)
〉

≥ 〈

v – Λm
n un, BmΛm

n un – BmΛm–
n un

〉

+
〈

v – Λm
n un,


λm,n

(

Λm–
n un – Λm

n un
)
〉

.

In particular,

〈

v – Λm
ni

uni , g
〉≥ 〈

v – Λm
ni

uni , BmΛm
ni

uni – BmΛm–
ni

uni

〉

+
〈

v – Λm
ni

uni ,


λm,ni

(

Λm–
ni

uni – Λm
ni

uni

)
〉

.

Since ‖Λm
n un – Λm–

n un‖ →  (due to (.)) and ‖BmΛm
n un – BmΛm–

n un‖ →  (due to
the Lipschitz-continuity of Bm), we conclude from Λm

ni
uni ⇀ p and {λm,n} ⊂ [am, bm] ⊂

(, ηm) that

lim
i→∞

〈

v – Λm
ni

uni , g
〉

= 〈v – p, g〉 ≥ .

It follows from the maximal monotonicity of Bm + Rm that  ∈ (Rm + Bm)w, i.e., p ∈
I(Bm, Rm). Therefore, p ∈ ⋂M

m= I(Bm, Rm). Consequently, p ∈ Fix(T) ∩ ⋂N
i= Fix(Si) ∩

GMEP(Θ , h) ∩⋂M
m= I(Bm, Rm) =: Ω . �

Theorem . Let us suppose that Ω �= ∅. Let {αn}, {βn,i}, i = , . . . , N , be sequences in (, )
such that  < lim infn→∞ βn,i ≤ lim supn→∞ βn,i <  for each index i. Moreover, let us suppose
that (H)-(H) hold. Then the sequences {un}, {vn}, {xn}, and {yn} defined by scheme (.),
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all converge strongly to x∗ = PΩ (I – (μV – γ f ))x∗ if and only if ‖yn – Tyn‖ →  as n → ∞,
where x∗ = PΩ (I – (μV – γ f ))x∗ is the unique solution of the VIP

〈

(γ f – μV )x∗, x – x∗〉≤ , ∀x ∈ Ω , (.)

or, equivalently, the unique solution of the minimization problem

min
x∈Ω

μ


〈Vx, x〉 – Ψ (x), (.)

where Ψ is a potential function for γ f .

Proof First of all, we note that V is a γ̄ -strongly positive bounded linear operator on H
and f : H → H is an l-Lipschitz-continuous mapping with  ≤ γ l < μγ̄ . It is clear that

〈

(μV – γ f )x – (μV – γ f )y, x – y
〉≥ (μγ̄ – γ l)‖x – y‖, ∀x, y ∈ H .

Hence we deduce that μV – γ f is (μγ̄ – γ l)-strongly monotone. In the meantime, it is
easy to see that μV –γ f is (μ‖V‖+γ l)-Lipschitz-continuous with constant μ‖V‖+γ l > .
Thus, there exists a unique solution x∗ in Ω to the VIP (.). Equivalently, x∗ is the unique
solution of the minimization problem (.).

Now, observe that there exists a subsequence {xni} of {xn} such that

lim sup
n→∞

〈

(γ f – μV )x∗, xn – x∗〉 = lim
i→∞

〈

(γ f – μV )x∗, xni – x∗〉. (.)

Since {xni} is bounded, there exists a subsequence {xnij
} of {xni} which converges weakly to

some p ∈ H . Without loss of generality, we may assume that xni ⇀ p. Then by Corollary .,
we get p ∈ ωw(xn) ⊂ Ω . Hence, from (.) and (.), we have

lim sup
n→∞

〈

(γ f – μV )x∗, xn – x∗〉 =
〈

(γ f – μV )x∗, p – x∗〉≤ . (.)

Since (H)-(H) hold, the sequence {xn} is asymptotically regular (according to Propo-
sition .). In terms of (.) and Proposition ., ‖xn – yn‖ →  and ‖xn – vn‖ →  as
n → ∞.

Let us show that ‖xn – x∗‖ →  as n → ∞. Indeed, putting p = x∗, we deduce from (.),
(.), and (.) that

∥
∥xn+ – x∗∥∥

≤ βn
∥
∥xn – x∗∥∥ + ( – βn)

∥
∥yn – x∗∥∥

≤ βn
∥
∥xn – x∗∥∥ + ( – βn)

[

αnμγ̄
(γ l)

(μγ̄ )

∥
∥yn,N – x∗∥∥ + ( – αnμγ̄ )

∥
∥zn – x∗∥∥

+ αn
〈

(γ f – μV )x∗, yn – x∗〉
]

≤ βn
∥
∥xn – x∗∥∥ + ( – βn)

[

αn
(γ l)

μγ̄

∥
∥xn – x∗∥∥ + ( – αnμγ̄ )

∥
∥xn – x∗∥∥
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+ αn
〈

(γ f – μV )x∗, yn – x∗〉
]

= βn
∥
∥xn – x∗∥∥ + ( – βn)

[(

 – αn
(μγ̄ ) – (γ l)

μγ̄

)
∥
∥xn – x∗∥∥

+ αn
〈

(γ f – μV )x∗, yn – x∗〉
]

=
(

 – αn( – βn)
(μγ̄ ) – (γ l)

μγ̄

)
∥
∥xn – x∗∥∥ + αn( – βn)

〈

(γ f – μV )x∗, yn – x∗〉

≤
(

 – αn( – βn)
(μγ̄ ) – (γ l)

μγ̄

)
∥
∥xn – x∗∥∥

+ αn( – βn)
(μγ̄ ) – (γ l)

μγ̄
· μγ̄

(μγ̄ ) – (γ l)

〈

(γ f – μV )x∗, yn – x∗〉. (.)

Since
∑∞

n= αn = ∞, {βn} ⊂ [c, d] ⊂ (, ) and ‖xn – yn‖ → , we obtain
∑∞

n= αn( –
βn) (μγ̄ )–(γ l)

μγ̄
≥∑∞

n= αn( – d) (μγ̄ )–(γ l)

μγ̄
= ∞ and

lim sup
n→∞

μγ̄

(μγ̄ ) – (γ l)

〈

(γ f – μV )x∗, yn – x∗〉

= lim sup
n→∞

μγ̄

(μγ̄ ) – (γ l)

(〈

(γ f – μV )x∗, xn – x∗〉 +
〈

(γ f – μV )x∗, yn – xn
〉)

= lim sup
n→∞

μγ̄

(μγ̄ ) – (γ l)

〈

(γ f – μV )x∗, xn – x∗〉≤ 

(due to (.)). Applying Lemma . to (.), we infer that the sequence {xn} converges
strongly to x∗. This completes the proof. �

In a similar way, we can conclude to another theorem, as follows.

Theorem . Let us suppose that Ω �= ∅. Let {αn}, {βn,i}, i = , . . . , N , be sequences in (, )
such that βn,i → βi for each index i as n → ∞. Suppose that there exists k ∈ {, . . . , N}
for which βn,k →  as n → ∞. Let k ∈ {, . . . , N} the largest index for which βn,k → .
Moreover, let us suppose that (H), (H), and (H) hold and

(i) αn
βn,k

→  as n → ∞;

(ii) if i ≤ k and βn,i → βi then βn,k
βn,i

→  as n → ∞;
(iii) if βn,i → βi �=  then βi lies in (, ).

Then the sequences {un}, {vn}, {xn}, and {yn} defined by scheme (.) all converge strongly
to x∗ = PΩ (I – (μV – γ f ))x∗ if and only if ‖yn – Tyn‖ →  as n → ∞, where x∗ = PΩ (I –
(μV – γ f ))x∗ is the unique solution of the VIP

〈

(γ f – μV )x∗, x – x∗〉≤ , ∀x ∈ Ω ,

or, equivalently, the unique solution of the minimization problem

min
x∈Ω

μ


〈Vx, x〉 – Ψ (x),

where Ψ is a potential function for γ f .
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Remark . According to the above argument process for Theorems . and ., we can
readily see that if in scheme (.), the iterative step yn = αnγ f (yn,N ) + (I – αnμV )Gyn,N is
replaced by the iterative one yn = αnγ f (xn) + (I – αnμV )Gyn,N , then Theorems . and .
remain valid.

Remark . Theorems . and . improve, extend, supplement, and develop [], The-
orems . and . and [], Theorems . and . in the following aspects.

(i) The multi-step iterative scheme (.) of [] is extended to develop our relaxed ex-
tragradient iterative scheme (.) by virtue of Korpelevich’s extragradient method and the
strongly positive bounded linear operator approach. The iterative scheme (.) is based on
Korpelevich’s extragradient method, the viscosity approximation method [] (see also
[]), Mann’s iterative method, and the strongly positive bounded linear operator ap-
proach.

(ii) The argument techniques in our Theorems . and . are very different from the
techniques in [], Theorems . and . and [], Theorems . and ., because we
make use of the properties of strict pseudocontractions (see Lemmas . and .), the
ones of resolvent operators and maximal monotone mappings (see Remark . and Lem-
mas .-.), the ones of the resolvent operator associated with Θ and h (see Lem-
mas .-.), the fixed point problem x∗ = Gx∗ (⇔ GSVI (.)) (see Proposition .), and
the ones of strongly positive boundedness linear operators (see Lemma .).

(iii) The problem of finding an element of Fix(T) ∩ ⋂N
i= Fix(Si) ∩ GMEP(Θ , h) ∩

⋂M
k= I(Bk , Rk) ∩ Ξ in our Theorems . and . is more general and more subtle than the

one of finding an element of Fix(T) ∩⋂N
i= Fix(Si) ∩ GMEP(Θ , h) in [], Theorems .

and . (where T is a nonexpansive mapping) and the one of finding an element of
Fix(T) ∩⋂N

i= Fix(Si) ∩ GMEP(Θ , h) ∩ Ξ in [], Theorems . and . (where T is a strict
pseudocontraction).

(iv) Our Theorems . and . generalizes from the nonexpansive mapping T to the
strict pseudocontraction T and extend [], Theorems . and . to the setting of GSVI
(.), hierarchical minimization (.) and finitely many variational inclusions for maxi-
mal monotone and inverse-strongly monotone mappings. In the meantime, our Theo-
rems . and . extend [], Theorems . and . to the setting of hierarchical minimiza-
tion (.) and finitely many variational inclusions for maximal monotone and inverse-
strongly monotone mappings.

4 Applications
For a given nonlinear mapping A : C → H , we consider the variational inequality problem
(VIP) of finding x̄ ∈ C such that

〈Ax̄, y – x̄〉 ≥ , ∀y ∈ C. (.)

We will indicate by VI(C, A) the set of solutions of the VIP (.).
Recall that if u is a point in C, then the following relation holds:

u ∈ VI(C, A) ⇔ u = PC(I – λA)u, ∀λ > .
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In the meantime, it is easy to see that the following relation holds:

GSVI (.) with F =  ⇔ VIP (.) with A = F. (.)

An operator A : C → H is said to be an α-inverse-strongly monotone operator if there
exists a constant α >  such that

〈Ax – Ay, x – y〉 ≥ α‖Ax – Ay‖, ∀x, y ∈ C.

As an example, we recall that the α-inverse-strongly monotone operators are firmly non-
expansive mappings if α ≥  and that every α-inverse-strongly monotone operator is also

α

-Lipschitz-continuous (see []).
Let us observe also that, if A is α-inverse-strongly monotone, the mappings PC(I – λA)

are nonexpansive for all λ ∈ (, α] since they are compositions of nonexpansive mappings
(see p. in []).

Let us consider S̃, . . . , S̃K to be a finite number of nonexpansive self-mappings on C and
A, . . . , AN to be a finite number of α-inverse-strongly monotone operators. Let T : H → H
be a ξ -strict pseudocontraction on C with fixed points. Let us consider the mixed problem
of finding x∗ ∈ Fix(T) ∩ GMEP(Θ , h) ∩ Ξ ∩⋂M

k= I(Bk , Rk) such that

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈(I – S̃)x∗, y – x∗〉 ≥ , ∀y ∈ Fix(T) ∩ GMEP(Θ , h) ∩ Ξ ∩⋂M
k= I(Bk , Rk),

〈(I – S̃)x∗, y – x∗〉 ≥ , ∀y ∈ Fix(T) ∩ GMEP(Θ , h) ∩ Ξ ∩⋂M
k= I(Bk , Rk),

· · ·
〈(I – S̃K )x∗, y – x∗〉 ≥ , ∀y ∈ Fix(T) ∩ GMEP(Θ , h) ∩ Ξ ∩⋂M

k= I(Bk , Rk),
〈Ax∗, y – x∗〉 ≥ , ∀y ∈ C,
〈Ax∗, y – x∗〉 ≥ , ∀y ∈ C,
· · ·
〈AN x∗, y – x∗〉 ≥ , ∀y ∈ C.

(.)

Let us call (SVI) the set of solutions of the (N + K)-system. This problem is equivalent to
finding a common fixed point of T , {PFix(T)∩GMEP(Θ ,h)∩Ξ∩⋂M

k= I(Bk ,Rk )S̃i}K
i=, {PC(I – λAi)}N

i=.
So we claim that the following holds.

Theorem . Let us suppose that Ω = Fix(T)∩ (SVI)∩GMEP(Θ , h)∩Ξ ∩⋂M
k= I(Bk , Rk) �=

∅. Fix λ > . Let {αn}, {βn,i}, i = , . . . , (K + N), be sequences in (, ) such that  <
lim infn→∞ βn,i ≤ lim supn→∞ βn,i <  for all indices i. Moreover, let us suppose that (H)-
(H) hold. Then the sequences {un}, {vn}, {xn}, and {yn} explicitly defined by scheme

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ(un, y) + h(un, y) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,
vn = JRM ,λM,n (I – λM,nBM)JRM–,λM–,n (I – λM–,nBM–) · · · JR,λ,n (I – λ,nB)un,
yn, = βn,PFix(T)∩GMEP(Θ ,h)∩Ξ∩⋂M

k= I(Bk ,Rk )S̃vn + ( – βn,)vn,
yn,i = βn,iPFix(T)∩GMEP(Θ ,h)∩Ξ∩⋂M

k= I(Bk ,Rk )S̃ivn + ( – βn,i)yn,i–, i = , . . . , K ,
yn,K+j = βn,K+jPC(I – λAj)vn + ( – βn,K+j)yn,K+j–, j = , . . . , N ,
yn = αnγ f (yn,K+N ) + (I – αnμV )Gyn,K+N ;
xn+ = βnxn + γnyn + δnTyn,

(.)



Ceng and Wen Journal of Inequalities and Applications  (2015) 2015:140 Page 38 of 41

all converge strongly to x∗ = PΩ (I – (μV – γ f ))x∗ if and only if ‖yn – Tyn‖ →  as n → ∞,
where x∗ = PΩ (I – (μV – γ f ))x∗ is the unique solution of the VIP

〈

(γ f – μV )x∗, x – x∗〉≤ , ∀x ∈ Ω ,

or, equivalently, the unique solution of the minimization problem

min
x∈Ω

μ


〈Vx, x〉 – Ψ (x),

where Ψ is a potential function for γ f .

Theorem . Let us suppose that Ω �= ∅. Fix λ > . Let {αn}, {βn,i}, i = , . . . , (K + N), be
sequences in (, ) and βn,i → βi for all i as n → ∞. Suppose that there exists k ∈ {, . . . , K +
N} such that βn,k →  as n → ∞. Let k ∈ {, . . . , K + N} be the largest index for which
βn,k → . Moreover, let us suppose that (H), (H), and (H) hold and

(i) αn
βn,k

→  as n → ∞;

(ii) if i ≤ k and βn,i →  then βn,k
βn,i

→  as n → ∞;
(iii) if βn,i → βi �=  then βi lies in (, ).

Then the sequences {un}, {vn}, {xn}, and {yn} explicitly defined by scheme (.) all converge
strongly to x∗ = PΩ (I – (μV – γ f ))x∗ if and only if ‖yn – Tyn‖ →  as n → ∞, where x∗ =
PΩ (I – (μV – γ f ))x∗ is the unique solution of the VIP

〈

(γ f – μV )x∗, x – x∗〉≤ , ∀x ∈ Ω ,

or, equivalently, the unique solution of the minimization problem

min
x∈Ω

μ


〈Vx, x〉 – Ψ (x),

where Ψ is a potential function for γ f .

Remark . If in system (.), F = F = A = · · · = AN = , B = · · · = BM = R = · · · =
RM = , and T is a nonexpansive mapping, we obtain a system of hierarchical fixed point
problems introduced by Mainge and Moudafi [, ].

On the other hand, if S : C → C is a κ-strictly pseudocontractive mapping, that is, there
exists a constant κ ∈ [, ) such that

‖Sx – Sy‖ ≤ ‖x – y‖ + κ
∥
∥(I – S)x – (I – S)y

∥
∥

, ∀x, y ∈ C,

then A = I – S is –κ
 -inverse-strongly monotone; see [].

Utilizing Theorems . and ., we also give two strong convergence theorems for
finding a common element of the solution set GMEP(Θ , h) of GMEP (.), the solution
set

⋂M
k= I(Bk , Rk) of finitely many variational inclusions and the common fixed point set

⋂N
i= Fix(Si) ∩ Fix(S) of finitely many nonexpansive mappings Si : C → C, i = , . . . , N , and

a κ-strictly pseudocontractive mapping S.
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Theorem . Let ν ∈ (,  – κ). Let us suppose that Ω =
⋂N

i= Fix(Si) ∩ Fix(S) ∩ GMEP(Θ ,
h) ∩ ⋂M

k= I(Bk , Rk) �= ∅. Let {αn}, {βn,i}, i = , . . . , N , be sequences in (, ) such that  <
lim infn→∞ βn,i ≤ lim supn→∞ βn,i <  for all indices i. Moreover, let us suppose that we have
(H)-(H) with γn = , ∀n ≥ . Then the sequences {un}, {vn}, {xn}, and {yn} generated ex-
plicitly by

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ(un, y) + h(un, y) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,
vn = JRM ,λM,n (I – λM,nBM)JRM–,λM–,n (I – λM–,nBM–) · · · JR,λ,n (I – λ,nB)un,
yn, = βn,Svn + ( – βn,)vn,
yn,i = βn,iSivn + ( – βn,i)yn,i–, i = , . . . , N ,
yn = αnf (yn,N ) + ( – αn)(( – ν)yn,N + νSyn,N ),
xn+ = βnxn + ( – βn)yn, ∀n ≥ ,

(.)

all converge strongly to x∗ = PΩ (I – (μV – γ f ))x∗, which is the unique solution of the VIP

〈

(γ f – μV )x∗, x – x∗〉≤ , ∀x ∈ Ω ,

or, equivalently, the unique solution of the minimization problem

min
x∈Ω

μ


〈Vx, x〉 – Ψ (x),

where Ψ is a potential function for γ f .

Proof In Theorem ., put F = A = I – S and F = . Then A is –κ
 -inverse-strongly mono-

tone. Hence we deduce that Fix(S) = VI(C, A) = Γ and

Gyn,N = PC(I – νF)PC(I – νF)yn,N

= PC(I – νF)yn,N

= ( – ν)yn,N + νSyn,N .

Thus, in terms of Theorem ., we obtain the desired result. �

Theorem . Let ν ∈ (,  – κ). Let us suppose that Ω =
⋂N

i= Fix(Si) ∩ Fix(S) ∩ GMEP(Θ ,
h) ∩⋂M

k= I(Bk , Rk) �= ∅. Let {αn}, {βn,i}, i = , . . . , N , be sequences in (, ) such that βn,i → βi

for all i as n → ∞. Suppose that there exists k ∈ {, . . . , N} for which βn,k →  as n → ∞.
Let k ∈ {, . . . , N} be the largest index for which βn,k → . Moreover, let us suppose that
we have (H), (H), and (H) with γn = , ∀n ≥ , and

(i) αn
βn,k

→  as n → ∞;

(ii) if i ≤ k and βn,i →  then βn,k
βn,i

→  as n → ∞;
(iii) if βn,i → βi �=  then βi lies in (, ).

Then the sequences {un}, {vn}, {xn}, and {yn}, generated explicitly by (.), all converge
strongly to x∗ = PΩ (I – (μV – γ f ))x∗, which is the unique solution of the VIP

〈

(γ f – μV )x∗, x – x∗〉≤ , ∀x ∈ Ω ,
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or, equivalently, the unique solution of the minimization problem

min
x∈Ω

μ


〈Vx, x〉 – Ψ (x),

where Ψ is a potential function for γ f .
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