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Abstract
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1 Introduction
Let (X, d) be a metric space. A function T : (X, d) → (X, d) is said to satisfy the contraction
condition if there exists a real number k ∈ (, ) and for all x, y ∈ X such that

d(Tx, Ty) ≤ kd(x, y). (.)

It is remarkable that a self-map T satisfying condition (.) implies that T is continuous
(see []). One can see in the literature on metric fixed point theory that condition (.) has
been extended and generalized by fixed point theorists in many ways for obtaining fixed
points, common fixed points and, very recently, proximal points in different spaces.

The title of this paper implies that the pair of maps in a complete metric space satisfies
certain inequality by generalizing the contraction condition of Banach, but the inequality
itself does not force the mapping to be continuous. It was an open question for almost
four decades after Banach’s fixed point theorem []. In , Kannan [] answered this
question affirmatively by introducing the following inequality:

d(Tx, Ty) ≤ β
[
d(x, Tx) + d(y, Ty)

]
for all x, y ∈ X and β ∈

(
,




)
. (.)

Rakotch [] and later Boyd and Wond [] generalized the inequality of Banach by intro-
ducing a control function as follows:

d(Tx, Ty) ≤ α(x, y)d(x, y) for all x, y ∈ X and α : [,∞) → [, ) (.)
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and

d(Tx, Ty) ≤ φ
(
d(x, y)

)
for all x, y ∈ X and φ : [,∞) → [,∞), (.)

and it satisfies certain conditions. In a Hilbert space, Alber and Guerre-Delabriere [] in-
troduced a weak contraction condition, which was later extended by Rhoades [] in a com-
plete metric space, and they argued that the result of Alber and Guerre-Delabriere [] still
holds in a complete metric space.

A mapping T : X → X satisfies the following condition:

d(Tx, Ty) ≤ d(x, y) – ϕ
(
d(x, y)

)
(.)

for all x, y ∈ X, and ϕ : [,∞) → [,∞) is a continuous and nondecreasing function such
that ϕ(t) =  if and only if t = .

Remark If ϕ(t) = ( – k)t, where k ∈ (, ) in (.), then we shall have the condition (.) of
Banach [].

So, in view of (.), condition (.) is a weaker condition, and we call this condition a
weak contraction condition.

Definition . (Altering distance function []) A function ψ : [,∞) → [,∞) is called
an altering distance function if it satisfies the following conditions:

() ψ is monotone increasing and continuous,
() ψ(t) =  if and only if t = .

Definition . ([]) A pair of self-mappings A and B of a metric space (X, d) is said to be
weakly compatible if they commute at their coincidence points. In other words, if Ax = Bx
for some x ∈ X, then ABx = BAx.

The first and second author of this paper with Choudhury [] proved a common fixed
point theorem in Saks spaces. The main purpose of this note is to establish a few com-
mon fixed point theorems by generalizing the results of Murthy et al. [] for two pairs of
discontinuous functions in a complete metric space by using a weaker condition than con-
dition (.) called (ϕ,ψ)-weak contraction condition in metric spaces. For example, refer
to Rhoades [], Dutta and Choudhury [], Zhang and Song [], Doric [], Hosseini [],
Abkar and Choudhury [], Ahmad et al. [], Hussain et al. [], etc.

2 Fixed point theorems in a complete metric space
Theorem . Let (X, d) be a complete metric space, and let A, B, S and T : X → X be
mappings satisfying

ψ
(
d(Ax, By)

) ≤ ψ
(
M(x, y)

)
– φ

(
N(x, y)

)
(.)

for all x, y ∈ X, with x �= y and

M(x, y) = max

{
d(Sx, Ty),



(
d(Sx, Ax) + d(Ty, By)

)
,



(
d(Sx, By) + d(Ty, Ax)

)}



Murthy et al. Journal of Inequalities and Applications  (2015) 2015:139 Page 3 of 14

and

N(x, y) = min

{
d(Sx, Ty),



(
d(Sx, Ax) + d(Ty, By)

)
,



(
d(Sx, By) + d(Ty, Ax)

)
}

,

A(X) ⊂ T(X) and B(X) ⊂ S(X), (.)

(A, S) and (B, T) are weak compatible pairs, (.)

φ : [,∞) → [,∞) is such that φ(t) > , (.)

which is lower semi-continuous for all t >  and φ is discontinuous at t =  with φ() = ,

ψ : [,∞) → [,∞) is an altering distance function. (.)

Then A, B, S and T have a unique common fixed point in X.

Proof Let x ∈ X be an arbitrary point. Since A(X) ⊂ T(X) and B(X) ⊂ S(X), then there
exists a point x ∈ X such that Ax = Tx, and for x ∈ X, there exists a point x ∈ X such
that Bx = Sx. Inductively, we can construct a sequence

yn+ = Axn = Txn+,

yn+ = Bxn+ = Sxn+ for n = , , , . . . .

We assume, for all n ∈ N ∪ {},

yn �= yn+. (.)

At first, we shall show that d(yn, yn+) →  as n → ∞ for all n ∈ N ∪ {}, where N is a set
of natural numbers.

For this, suppose that x = xn, y = xn+ in (.), we have

ψ
(
d(Axn, Bxn+)

)
= ψ

(
d(yn+, yn+)

)

≤ ψ
(
M(xn, xn+)

)
– φ

(
N(xn, xn+)

)
, (.)

where

M(xn, xn+) = max

{
d(yn, yn+),



(
d(yn, yn+) + d(yn+, yn+)

)
,



(
d(yn, yn+) + d(yn+, yn+)

)
}

and

N(xn, xn+) = min

{
d(yn, yn+),



(
d(yn, yn+) + d(yn+, yn+)

)
,



(
d(yn, yn+) + d(yn+, yn+)

)}
.
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Then, by the triangular inequality, we have

M(xn, xn+) ≤ max

{
d(yn, yn+),



(
d(yn, yn+) + d(yn+, yn+)

)
,



(
d(yn, yn+) + d(yn+, yn+)

)
}

.

If

d(yn, yn+) < d(yn+, yn+), (.)

then we get

M(xn, xn+) ≤ d(yn+, yn+), (.)

and (.) implies the following:

ψ
(
d(yn+, yn+)

) ≤ ψ
(
M(xn, xn+)

)
– φ

(
N(xn, xn+)

) ≤ ψ
(
M(xn, xn+)

)
.

Using the monotonically increasing property of ψ function, we have

d(yn+, yn+) ≤ M(xn, xn+). (.)

From (.) and (.), we have

M(xn, xn+) = d(yn+, yn+). (.)

Since

 <
∣∣d(yn+, yn+) – d(yn, yn+)

∣∣ ≤ d(yn, yn+), (.)

we have N(xn, xn+) > , then from (.), (.) and the property of φ and ψ functions,
we have

ψ
(
d(yn+, yn+)

) ≤ ψ
(
d(yn+, yn+)

)
– φ

(
N(xn, xn+)

)

< ψ
(
d(yn+, yn+)

)
,

which is a contradiction. Thus we have

d(yn+, yn+) ≤ d(yn, yn+). (.)

So, we obtain the following:

M(xn, xn+) = d(yn, yn+), (.)

N(xn, xn+) =


(
d(yn, yn+)

)
. (.)
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Now putting (.) and (.) in (.), we have

ψ
(
d(yn+, yn+)

) ≤ ψ
(
d(yn, yn+)

)
– φ

(
N(xn, xn+)

)
. (.)

Therefore d(yn, yn+) is a monotonically decreasing sequence of nonnegative real num-
bers, then there exists a number r >  such that

lim
n→∞ d(yn, yn+) = r > . (.)

By virtue of (.) and (.), we have N(xn, xn+) > . Taking n → ∞ in (.) and using
(.), we get

lim
n→∞ψ

(
d(yn+, yn+)

) ≤ lim
n→∞ψ

(
d(yn, yn+)

)
– lim

n→∞φ
(
N(xn, xn+)

)
.

This implies that

ψ(r) ≤ ψ(r) – lim
n→∞φ

(
N(xn, xn+)

)
.

We observe that the last term on the right-hand side of the above inequality is non-zero.
We get a contradiction with φ function. Therefore, we have

lim
n→∞ d(yn, yn+) = .

Putting x = xn+ and y = xn+ in (.) and arguing as above, we obtain

lim
n→∞ d(yn+, yn+) = .

Therefore, for all n ∈ N ∪ {}, we have

lim
n→∞ d(yn, yn+) = . (.)

Next, we prove that {yn} is a Cauchy sequence. For this, it is enough to show that the sub-
sequence {yn} is a Cauchy sequence. To the contrary, suppose that {yn} is not a Cauchy
sequence, then there exist ε >  and the sequence of natural numbers {n(k)} and {m(k)}
such that n(k) > m(k) > k for k ∈ N and

d(ym(k), yn(k)) ≥ ε (.)

corresponding to m(k). We can choose n(k) to be the smallest such that (.) is satisfied.
Then we have

d(ym(k), yn(k)–) < ε. (.)

Putting x = xm(k)– and y = xn(k)– in (.), where for all k ∈ N ,

ψ
(
d(ym(k), yn(k))

) ≤ ψ
(
M(xm(k)–, xn(k)–)

)
– φ

(
N(xm(k)–, xn(k)–)

)
, (.)
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where

M(xm(k)–, xn(k)–) = max

{
d(ym(k)–, yn(k)–),



(
d(ym(k)–, ym(k)) + d(yn(k)–, yn(k))

)
,



(
d(ym(k)–, yn(k)) + d(yn(k)–, ym(k))

)
}

and

N(xm(k)–, xn(k)–) = min

{
d(ym(k)–, yn(k)–),



(
d(ym(k)–, ym(k)) + d(yn(k)–, yn(k))

)
,



(
d(ym(k)–, yn(k)) + d(yn(k)–, ym(k))

)
}

.

Using the triangle inequality, we have

d(ym(k), yn(k)) ≤ d(ym(k), yn(k)–) + d(yn(k)–, yn(k)).

Taking the limit k → ∞, we get

lim
k→∞

d(ym(k), yn(k)) = ε. (.)

Again for all k, we have

d(ym(k)–, yn(k)–) ≤ d(ym(k), ym(k)–) + d(ym(k), yn(k)) + d(yn(k)–, yn(k)),

d(ym(k), yn(k)) ≤ d(ym(k), ym(k)–) + d(ym(k)–, yn(k)–) + d(yn(k)–, yn(k)).

On letting limit k → ∞ and using (.)-(.), we get

lim
k→∞

d(ym(k)–, yn(k)–) = ε. (.)

Again for all positive integers k, we have

d(ym(k)–, yn(k)) ≤ d(ym(k)–, ym(k)) + d(ym(k), yn(k)),

d(ym(k), yn(k)) ≤ d(ym(k), ym(k)–) + d(ym(k)–, yn(k)).

Letting limit k → ∞ and using (.)-(.), we get

lim
k→∞

d(ym(k)–, yn(k)) = ε. (.)

Again for all positive integers k, we have

d(yn(k)–, ym(k)) ≤ d(yn(k)–, yn(k)) + d(yn(k), ym(k)),

d(yn(k), ym(k)) ≤ d(yn(k), yn(k)–) + d(yn(k)–, ym(k)).
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Letting limit k → ∞ and using (.)-(.), we get

lim
k→∞

d(yn(k)–, ym(k)) = ε. (.)

From (.)-(.), we get

lim
k→∞

M(xm(k)–, xn(k)–) = ε

and

lim
k→∞

N(xm(k)–, xn(k)–) = .

Letting k → ∞ in (.), we get

ψ(ε) ≤ ψ(ε) – lim
k→∞

φ
(
N(xm(k)–, xn(k)–)

)
.

Using discontinuity of φ at t =  and φ(t) >  for t > , we observe that the last term on the
right-hand side of the above inequality is non-zero. Thus we arrive at a contradiction.

Hence {yn} is a Cauchy sequence.
Therefore, the Cauchy sequence {yn} is a convergent sequence, and it converges to a

point z (say) in X.
Consequently, the subsequences also converge to z in X:

Axn → z, Txn+ → z, Bxn+ → z and Sxn → z.

Now we shall prove that z is a common fixed point of A, B, S and T .
Since B(X) ⊂ S(X), there exists v ∈ X such that z = Sv. Let d(z, Av) �= . Putting x = v and

y = xn+ in (.), we get

ψ
(
d(Av, Bxn+)

) ≤ ψ
(
M(v, xn+)

)
– φ

(
N(v, xn+)

)
, (.)

where

M(v, xn+) = max

{
d(Sv, Txn+),



(
d(Sv, Av) + d(Txn+, Bxn+)

)
,



(
d(Sv, Bxn+) + d(Txn+Av)

)}

and

N(v, xn+) = min

{
d(Sv, Txn+),



(
d(Sv, Av) + d(Txn+, Bxn+)

)
,



(
d(Sv, Bxn+) + d(Txn+, Av)

)
}

.

Taking n → ∞ and using z = Sv, we have

M(v, z) = max

{
d(Sv, z),



(
d(Sv, Av) + d(z, z)

)
,



(
d(Sv, z) + d(z, Av)

)}
=



(
d(z, Av)

)
.
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Also we have

ψ
(
d(Av, z)

) ≤ ψ

(


(
d(z, Av)

)
)

– lim
n→∞φ

(
N(v, xn+)

)
.

Using discontinuity of φ at t =  and φ(t) >  for t > , we observe that the last term on the
right-hand side of the above inequality is non-zero. Therefore we obtain

ψ
(
d(Av, z)

)
< ψ

(


(
d(z, Av)

))
.

Hence we arrive at a contradiction with the ψ function.
Therefore d(z, Av) =  ⇒ Av = z ⇒ Av = z = Sv.
Since (A, S) is a weakly compatible pair of maps, so it commutes at their coincidence

point v, i.e., ASv = SAv ⇒ Az = Sz.
Now we shall show that Az = Sz = z.
For this, putting x = z and y = xn+ in (.), we get

ψ
(
d(Az, Bxn+)

) ≤ ψ
(
M(z, xn+)

)
– φ

(
N(z, xn+)

)
, (.)

where

M(z, xn+) = max

{
d(Sz, Txn+),



(
d(Sz, Az) + d(Txn+, Bxn+)

)
,



(
d(Sz, Bxn+) + d(Txn+, Az)

)
}

and

N(z, xn+) = min

{
d(Sz, Txn+),



(
d(Sz, Az) + d(Txn+, Bxn+)

)
,



(
d(Sz, Bxn+) + d(Txn+, Az)

)}
.

Taking n → ∞ and using Az = Sz, we get

M(z, z) = d(Sz, z).

Now (.) implies that

ψ
(
d(Sz, z)

) ≤ ψ
(
d(Sz, z)

)
– lim

n→∞φ
(
N(z, xn+)

)
.

Using discontinuity of φ at t =  and φ(t) >  for t > , we observe that the last term on the
right-hand side of the above inequality is non-zero. Therefore we obtain

ψ
(
d(Sz, z)

)
< ψ

(
d(Sz, z)

)
,

which is contradiction. Therefore d(Sz, z) =  ⇒ Sz = z ⇒ Sz = Az = z. Similarly, we can
show that Tz = Bz = z. Hence Sz = Az = Tz = Bz = z.
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Now we shall show that z is the unique common fixed point of A, B, S and T .
Let z be also a fixed point of A, B, S and T . Putting x = z and y = z in (.), we have

ψ
(
d(z, z)

) ≤ ψ
(
d(z, z)

)
– φ

(
d(z, z)

)
, (.)

a contradiction. Hence d(z, z) =  ⇒ z = z. Hence A, B, S and T have a unique common
fixed point in X. �

When we take S = T = I identity map, we get the following theorem.

Theorem . Let (X, d) be a complete metric space. Let A, B : X → X be two self-mappings
which satisfy the following inequality:

ψ
(
d(Ax, By)

) ≤ ψ
(
M(x, y)

)
– φ

(
N(x, y)

)
, (.)

where x, y ∈ X, x �= y,

M(x, y) = max

{
d(x, y),



(
d(x, Ax) + d(y, By)

)
,



(
d(x, By) + d(y, Ax)

)}

and

N(x, y) = min

{
d(x, y),



(
d(x, Ax) + d(y, By)

)
,



(
d(x, By) + d(y, Ax)

)}
;

() φ : [,∞) → [,∞) is such that φ(t) >  which is lower semi-continuous for all t > ,
and φ is discontinuous at t =  with φ() = ,

() ψ : [,∞) → [,∞) is an altering distance function.
Then there exists a unique fixed point of A, B in X.

When we take ψ(t) = t in Theorem . and Theorem ., we get the following corollaries.

Corollary . Let (X, d) be a complete metric space. Let A, B, S and T : X → X be self-
mappings which satisfy the following inequality:

d(Ax, By) ≤ M(x, y) – φ
(
N(x, y)

)
, (.)

where x, y ∈ X, x �= y and

M(x, y) = max

{
d(Sx, Ty),



(
d(Sx, Ax) + d(Ty, By)

)
,



(
d(Sx, By) + d(Ty, Ax)

)
}

,

N(x, y) = min

{
d(Sx, Ty),



(
d(Sx, Ax) + d(Ty, By)

)
,



(
d(Sx, By) + d(Ty, Ax)

)}
;

() A(X) ⊂ T(X) and B(X) ⊂ S(X),
() (A, S) and (B, T) are weak compatible pairs,
() φ : [,∞) → [,∞) is such that φ(t) >  which is lower semi-continuous for all t > ,

and φ is discontinuous at t =  with φ() = .
Then A, B, S and T have a unique common fixed point in X.
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Corollary . Let (X, d) be a complete metric space. Let A, B : X → X be two self-mappings
which satisfy the following inequality:

d(Ax, By) ≤ M(x, y) – φ
(
N(x, y)

)
, (.)

where x, y ∈ X, x �= y,

M(x, y) = max

{
d(x, y),



(
d(x, Ax) + d(y, By)

)
,



(
d(x, By) + d(y, Ax)

)}
and

N(x, y) = min

{
d(x, y),



(
d(x, Ax) + d(y, By)

)
,



(
d(x, By) + d(y, Ax)

)}
;

(.)

φ : [,∞) → [,∞) is such that φ(t) >  which is lower semi-continuous for all t > ,
and φ is discontinuous at t =  with φ() = .

Then there exists a unique fixed point of A, B in X.

Now, we are ready to establish the following theorem in which we are going to replace

N(x, y) = min

{
d(Sx, Ty),



(
d(Sx, Ax) + d(Ty, By)

)
,



(
d(Sx, By) + d(Ty, Ax)

)}

with

N(x, y) = min

{
d(Sx, Ty),



(
d(Sx, By) + d(Ty, Ax)

)
}

.

Theorem . Let (X, d) be a complete metric space. Let A, B, S and T : X → X be self-
mappings which satisfy the following inequality:

ψ
(
d(Ax, By)

) ≤ ψ
(
M(x, y)

)
– φ

(
N(x, y)

)
(.)

for all x, y ∈ X with x �= y and

M(x, y) = max

{
d(Sx, Ty),



(
d(Sx, Ax) + d(Ty, By)

)
,



(
d(Sx, By) + d(Ty, Ax)

)}

and

N(x, y) = min

{
d(Sx, Ty),



(
d(Sx, By) + d(Ty, Ax)

)}
;

() A(X) ⊂ T(X) and B(X) ⊂ S(X),
() (A, S) and (B, T) are weak compatible pairs,
() φ : [,∞) → [,∞) is a lower semi-continuous function with φ(t) >  for all

t ∈ (,∞) and φ() = ,
() ψ : [,∞) → [,∞) is an altering distance function which in addition is strictly

monotone increasing.
Then A, B, S and T have a unique common fixed point in X.
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One can easily prove this theorem by using the technique given in the proof of Theo-
rem ..

When we take S = T = I identity map, we get the following theorem.

Theorem . Let (X, d) be a complete metric space. Let A and B : X → X be self-mappings
which satisfy the following inequality:

ψ
(
d(Ax, By)

) ≤ ψ
(
M(x, y)

)
– φ

(
N(x, y)

)
(.)

for all x, y ∈ X with x �= y,

M(x, y) = max

{
d(x, y),



(
d(x, Ax) + d(Ty, By)

)
,



(
d(x, By) + d(y, Ax)

)}

and

N(x, y) = min

{
d(x, y),



(
d(x, By) + d(y, Ax)

)}
;

() φ : [,∞) → [,∞) is a lower semi-continuous function with φ(t) >  for all
t ∈ (,∞) and φ() = ,

() ψ : [,∞) → [,∞) is an altering distance function which in addition is strictly
monotone increasing.

Then there exists a unique fixed point of A, B in X.

When we take ψ(t) = t in Theorem . and Theorem ., we get the following corollar-
ies.

Corollary . Let (X, d) be a complete metric space. Let A, B, S and T : X → X be self-
mappings which satisfy the following inequality:

d(Ax, By) ≤ M(x, y) – φ
(
N(x, y)

)
, (.)

where x, y ∈ X, x �= y and

M(x, y) = max

{
d(Sx, Ty),



(
d(Sx, Ax) + d(Ty, By)

)
,



(
d(Sx, By) + d(Ty, Ax)

)
}

,

N(x, y) = min

{
d(Sx, Ty),



(
d(Sx, By) + d(Ty, Ax)

)}
;

() A(X) ⊂ T(X) and B(X) ⊂ S(X),
() (A, S) and (B, T) are weak compatible pairs,
() φ : [,∞) → [,∞) is a lower semi-continuous function with φ(t) >  for all

t ∈ (,∞) and φ() = .
Then A, B, S and T have a unique common fixed point in X.

Corollary . Let (X, d) be a complete metric space. Let A, B : X → X be two self-mappings
which satisfy the following inequality:

d(Ax, By) ≤ M(x, y) – φ
(
N(x, y)

)
(.)
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for all x, y ∈ X with x �= y,

M(x, y) = max

{
d(Sx, Ty),



(
d(Sx, Ax) + d(Ty, By)

)
,



(
d(Sx, By) + d(Ty, Ax)

)
}

and

N(x, y) = min

{
d(Sx, Ty),



(
d(Sx, By) + d(Ty, Ax)

)}
;

φ : [,∞) → [,∞) is a lower semi-continuous function with φ(t) >  for all t ∈ (,∞)
and φ() = .

Then there exists a unique fixed point of A, B in X.

Example . Let X = [, ] be endowed with the Euclidean metric d(x, y) = |x – y|, and let
A, B, S and T → X be defined by

A(x) =

{
 if x = ,
x
 +  otherwise,

S(x) =

{
 if x = ,
x
 +  otherwise,

B(x) =

{
 if x = ,
x
 +  otherwise,

T(x) =

{
 if x = ,
x
 +  otherwise,

where x, y ∈ X. A(X) = [, 
 ], S(X) = [, 

 ], B(X) = [, 
 ], T(X) = [, 

 ]. Here A(X) ⊂ T(X)
and B(X) ⊂ S(X), and (A, S) and (B, T) are weakly compatible maps at x =  but not com-
patible maps.

Take

ψ(t) = t and φ(t) =

{
t
 if t > ,
 if t = .

Now we have to check the inequality of Theorem . for the following cases.
Case : If x =  and y = :

ψ
(
d(Ax, By)

)
= ψ

(|Ax – By|) = , ψ
(
M(x, y)

)
=  and φ

(
N(x, y)

)
= ,

hence ψ(d(Ax, By)) = ψ(M(x, y)) – φ(N(x, y)).
Case : If x =  and y �= :

ψ
(
d(Ax, By)

)
= ψ

(|Ax – By|) = ψ

(∣
∣∣∣
y


∣
∣∣∣

)
=

∣
∣∣∣
y


∣
∣∣∣

and

M(x, y) = max

[
|Sx – Ty|, 


(|Sx – Ax| + |Ty – By|),



(|Sx – By| + |Ty – Ax|)

]

= max

[∣
∣∣
∣
y


∣
∣∣
∣,

∣
∣∣
∣

y


∣
∣∣
∣,




(∣
∣∣
∣
y


∣
∣∣
∣ +

∣
∣∣
∣
y


∣
∣∣
∣

)]
=

∣
∣∣
∣
y


∣
∣∣
∣,

N(x, y) = min

[
|Sx – Ty|, 


(|Sx – Ax| + |Ty – By|),



(|Sx – By| + |Ty – Ax|)

]
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= min

[∣∣
∣∣
y


∣∣
∣∣,

∣∣
∣∣

y


∣∣
∣∣,




(∣∣
∣∣
y


∣∣
∣∣ +

∣∣
∣∣
y


∣∣
∣∣

)]
=

∣∣
∣∣

y


∣∣
∣∣,

ψ
(
M(x, y)

)
– �

(
N(x, y)

)
= ψ

(∣∣
∣∣
y


∣∣
∣∣

)
– φ

(∣∣
∣∣

y


∣∣
∣∣

)

=
∣
∣∣
∣
y


∣
∣∣
∣ –




(∣
∣∣
∣

y


∣
∣∣
∣

)

≥
∣
∣∣
∣
y


∣
∣∣
∣ = ψ

(
d(Ax, By)

)
.

Case : If x �=  and y = :

ψ
(
d(Ax, By)

)
= ψ

(|Ax – By|) = ψ
(|Ax|) = ψ

(∣∣
∣∣
x


∣∣
∣∣

)
=

∣∣
∣∣
x


∣∣
∣∣

and

M(x, y) = max

[
|Sx – Ty|, 


(|Sx – Ax| + |Ty – By|),



(|Sx – By| + |Ty – Ax|)

]

= max

[∣
∣∣
∣
x


∣
∣∣
∣,

∣
∣∣
∣
x


∣
∣∣
∣,




(∣
∣∣
∣
x


∣
∣∣
∣ +

∣
∣∣
∣
x


∣
∣∣
∣

)]
=

∣
∣∣
∣
x


∣
∣∣
∣,

N(x, y) = min

[
|Sx – Ty|, 


(|Sx – Ax| + |Ty – By|),



(|Sx – By| + |Ty – Ax|)

]

= min

[∣∣
∣∣
x


∣∣
∣∣,

∣∣
∣∣
x


∣∣
∣∣,




(∣∣
∣∣
x


∣∣
∣∣ +

∣∣
∣∣
x


∣∣
∣∣

)]
=

∣∣
∣∣
x


∣∣
∣∣,

ψ
(
M(x, y)

)
– φ

(
N(x, y)

)
= ψ

(∣∣
∣∣
x


∣∣
∣∣

)
– φ

(∣∣
∣∣
x


∣∣
∣∣

)

=
∣
∣∣
∣
x


∣
∣∣
∣ –




(∣
∣∣
∣
x


∣
∣∣
∣

)

≥
∣
∣∣
∣
x


∣
∣∣
∣ = ψ

(
d(Ax, By)

)
.

Case : If x �=  and y �= :

ψ
(
d(Ax, By)

)
= ψ

(|Ax – By|) = ψ

(∣∣
∣∣
x


+  –
y


– 
∣∣
∣∣

)
=

∣∣
∣∣
x


–
y


∣∣
∣∣

and

M(x, y) = max

[
|Sx – Ty|, 


(|Sx – Ax| + |Ty – By|),



(|Sx – By| + |Ty – Ax|)

]

= max

[∣
∣∣
∣
x


–
y


∣
∣∣
∣,

(∣
∣∣
∣
x


∣
∣∣
∣ +

∣
∣∣
∣

y


∣
∣∣
∣

)
,




(∣
∣∣
∣
x


–
y


∣
∣∣
∣ +

∣
∣∣
∣
y


–
x


∣
∣∣
∣

)]
,

M(x, y) =

⎧
⎪⎨

⎪⎩

| x
 – y

 | if  < y < x
 ,

| x
 – y

 |, (| x
 | + | y

 |), 
 (| x

 – y
 | + | y

 – x
 |) if y = x

 ,
(| x

 | + | y
 |), 

 (| x
 – y

 | + | y
 – x

 |) if x
 < y ≤ x,

N(x, y) = min

[
|Sx – Ty|, 


(|Sx – Ax| + |Ty – By|),



(|Sx – By| + |Ty – Ax|)

]
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= min

[∣∣
∣∣
x


–
y


∣∣
∣∣,

(∣∣
∣∣
x


∣∣
∣∣ +

∣∣
∣∣

y


∣∣
∣∣

)
,




(∣∣
∣∣
x


–
y


∣∣
∣∣ +

∣∣
∣∣
y


–
x


∣∣
∣∣

)]
,

N(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

| x
 | + | y

 | if  < y ≤ x
 ,

| x
 | + | y

 |, 
 (| x

 – y
 | + | y

 – x
 |) if x

 < y < x
 ,

| x
 – y

 |, | x
 | + | y

 |, 
 (| x

 – y
 | + | y

 – x
 |) if y = x

 ,
| x

 – y
 | if x

 < y ≤ x,

ψ
(
d(Ax, By)

)
=

∣
∣∣
∣
x


–
y


∣
∣∣
∣ ≤ ψ

(
M(x, y)

)
– φ

(
N(x, y)

)
.

So the inequalities hold in each of the cases. Hence all the conditions of Theorem . hold
and A, B, S and T have the unique common fixed point at x =  in X.
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