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Abstract
This paper deals with the eigenvalue problem of Hamiltonian operator matrices with
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their eigenvalues are determined by using the properties of the eigenvalues and
associated eigenvectors. The necessary and sufficient condition is further given for the
eigenvector (root vector) system to be complete in the Cauchy principal value sense.
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1 Introduction
The method of separation of variables, also known as the Fourier method, is one of the
most effective tools in analytically solving the problems from mathematical physics. This
method will lead to the eigenvalue problem of self-adjoint operators (see, e.g., Sturm-
Liouville problems). However, a great number of applied problems cannot be reduced to
the above eigenvalue problem, e.g., the system characterized by the second order partial
differential equation with a mixed partial derivative. As the orthogonality and the com-
pleteness of eigenvector systems can not be guaranteed for these problems, the traditional
method of separation of variables fails to work.

In [], using the simulation theory between structural mechanics and optimal control,
the author introduced Hamiltonian systems into elasticity and related fields, and proposed
the method of separation of variables based on Hamiltonian systems. In this method, the
orthogonality and the completeness of eigenvector systems are, respectively, replaced by
the symplectic orthogonality and the completeness in the Cauchy principal value (CPV)
sense; the eigenvalue problem of self-adjoint operators becomes that of Hamiltonian op-
erator matrices admitting the representation

H =

(
A B
C –A∗

)
: D(H) ⊆ X × X → X × X. (.)

Here the asterisk denotes the adjoint operator, A is a closed linear operator with dense
domain D(A) in a Hilbert space X, and B, C are self-adjoint operators in X. In this direc-
tion, it has been shown that many non-self-adjoint problems in applied mechanics can be
solved efficiently (see, e.g., [–]).
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Over the past decade, the spectral problems of Hamiltonian operator matrices have been
extensively considered in the literature [–]. But the completeness of the eigenvector or
the root vector system [, , ] has not been completely understood.

In this note, for the Hamiltonian operator matrix H , defined in (.), with at least one
invertible off-diagonal entry, we consider its eigenvalue problem including the ascent, the
algebraic multiplicity and the completeness. To be precise, we introduce the discriminant
�k (k ∈ �) dependent on the first component of the eigenvectors of H . According to
whether �k is equal to zero or not, we prove under certain assumptions that the alge-
braic multiplicity of every eigenvalue is  and the eigenvector system is complete in the
CPV sense if �k �=  for all k ∈ �, and that the algebraic multiplicity of the eigenvalue is 
and the root vector system is complete in the CPV sense if �k =  for some k ∈ �. We
should mention the following: the assumption (.) in Section  does not necessarily hold
for the whole domain of the involved operator, but only for the first component of the
eigenvectors of H .

2 Preliminaries
Let λ ∈ C. For an operator T , we define N(T – λ)k = {x ∈ D(Tk) | (T – λ)kx = }. Recall
that the smallest integer α such that N(T – λ)α = N(T – λ)α+ is called the ascent of λ

and dim N(T – λ)α is called the algebraic multiplicity of λ, which are denoted by α(λ) and
ma(λ), respectively. The geometric multiplicity of λ is equal to dim N(T –λ) and is at most
the algebraic multiplicity. These two multiplicities are equal if T is self-adjoint. Note that
the eigenvalue λ is called simple if the geometric multiplicity of λ is . We start with two
basic concepts below.

Definition . [] Let T be a linear operator in a Banach space, and let u be an eigen-
vector of T associated with the eigenvalue λ. If

Tuj – λuj = uj–, j = , , . . . , r, u = u, (.)

then the vectors u, . . . , ur are called the root vectors associated with the pair (λ, u), and
{u, u, . . . , ur} is called the Jordan chain associated with the pair (λ, u). Note that each uj is
called the jth order root vector associated with the pair (λ, u). The collection of all eigen-
vectors and root vectors of T is called its root vector system.

Definition . The symplectic orthogonal vector system {uk , vk | k ∈ �} is said to be com-
plete in the CPV sense in X × X, if for each (f g)T ∈ X × X, there exists a unique constant
sequence {ck , dk | k ∈ �} such that

(
f
g

)
=

∑
k∈�

ckuk + dkvk ,

where � is an at most countable index set such as {, , . . .}, {±,±, . . .} and {,±,±, . . .}.
In general, the above formula is also called the symplectic Fourier expansion of (f g)T in
terms of {uk , vk | k ∈ �}.

In the following, we review an important property of the Hamiltonian operator ma-
trix H , and its proof may be found in [].



Wang et al. Journal of Inequalities and Applications  (2015) 2015:115 Page 3 of 13

Lemma . Let λ and μ be the eigenvalues of the Hamiltonian operator matrix H , and let
the associated eigenvectors be u = (x y)T and v = (f  g)T , respectively. Assume that
u = (x y)T and v = (f  g)T are the first order root vectors associated with the pairs
(λ, u) and (μ, v), respectively. If λ + μ �= , then (u, Jv) = , (u, Jv) = , and (u, Jv) = ,
where

J =

(
 I
–I 

)

with I being the identity operator on X.

To prove the main results of this paper, we also need the following auxiliary lemma (see
[]).

Lemma . Let T be a linear operator in a Banach space. If dim N(T) < ∞, then
dim N(Tk) ≤ k dim N(T) for k = , , . . . .

3 Ascent and algebraic multiplicity
In this section, we present the results on the ascent and the algebraic multiplicity of the
eigenvalues of the Hamiltonian operator matrix H and their proofs.

Theorem . Let ν be an eigenvalue of the Hamiltonian operator matrix H with invert-
ible B, and let (x y)T be an associated eigenvector. If (B–x, x) �= , then y = νB–x – B–Ax,
and

ν =
Im(B–Ax, x)i +

√
–(Im(B–Ax, x)) + (B–x, x)((Cx, x) + (B–Ax, Ax))

(B–x, x)
(.)

or

ν =
Im(B–Ax, x)i –

√
–(Im(B–Ax, x)) + (B–x, x)((Cx, x) + (B–Ax, Ax))

(B–x, x)
. (.)

Proof Since (x y)T is an eigenvector of H associated with the eigenvalue ν , we obtain

{
Ax + By = νx,
Cx – A∗y = νy.

(.)

By the invertibility of B, the first relation of (.) implies y = νB–x – B–Ax, and inserting
it into the second relation yields

νB–x – νB–Ax + A∗(νB–x – B–Ax
)

– Cx = .

Taking the inner product of the above relation by x on the right, we have

ν(B–x, x
)

– ν
((

B–Ax, x
)

–
(
B–x, Ax

))
– (Cx, x) –

(
B–Ax, Ax

)
= .

This together with the self-adjointness of B and (B–x, x) �=  demonstrates that (.) and
(.) are valid. �
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Write ν given by (.) and (.) as λ and μ, respectively. Then λ = a(x)i + b(x) and μ =
a(x)i – b(x), where a(x) = Im(B–Ax,x)

(B–x,x) , b(x) =
√

�(x)
(B–x,x) , and the discriminant

�(x) = –
(
Im

(
B–Ax, x

)) +
(
B–x, x

)(
(Cx, x) +

(
B–Ax, Ax

))
.

Note that the self-adjointness of B and C implies �(x) ∈R, thus, the principal square root√
�(x) ∈R of �(x) if �(x) ≥  and

√
�(x) = i

√
–�(x) ∈ {z | z = ir, r ∈R} if �(x) < .

Theorem . Let λ be an eigenvalue of the Hamiltonian operator matrix H with invert-
ible B, and let u = (x y)T be an associated eigenvector. If (B–x, x) �= , then the following
statements hold.

(i) If �(x) �= , then v = (x μB–x – B–Ax)T is an eigenvector of H associated with the
eigenvalue μ.

(ii) If �(x) =  and

A∗B–x – B–Ax + λB–x = , (.)

then μ = λ = a(x)i, and there exists a vector v = (x λB–x – B–Ax + B–x)T such that
Hv = λv + u, i.e., v is the first order root vector of H associated with the pair (λ, u).

Proof (i) Let �(x) �= . By Theorem ., if λ is an eigenvalue of H , then μ is also an eigen-
value of H , and v = (x μB–x – B–Ax)T is an eigenvector of H associated with the eigen-
value μ.

(ii) The assumption �(x) =  clearly implies μ = λ = a(x)i. By Theorem ., we have
y = λB–x – B–Ax, and hence

λB–x – λB–Ax + A∗(λB–x – B–Ax
)

– Cx = . (.)

To prove the assertion, it suffices to verify that

H

(
x

λB–x – B–Ax + B–x

)
– λ

(
x

λB–x – B–Ax + B–x

)
–

(
x

λB–x – B–Ax

)
= ,

which immediately follows from (.) and (.). �

Remark  The assumption (.) is a natural hypothesis and aims to guarantee the exis-
tence of the first order root vector of H associated with the pair (λ, u). In fact, if λB– –B–A
is self-adjoint, then (.) is obviously fulfilled. However, the self-adjointness of the opera-
tor is not necessary (see Example .).

Theorem . reflects the location of eigenvalues of the Hamiltonian operator matrix H ,
i.e., they appear in the pair (λ,μ) of complex numbers. So, we have the results below.

Corollary . Let H be a Hamiltonian operator matrix with invertible B. If the first compo-
nent x of every eigenvector of H satisfies (B–x, x) �= , then λ and μ appear pairwise. More-
over, if H only possesses at most countable eigenvalues, then we may set {λk ,μk | k ∈ �},
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where

λk = aki + bk , μk = aki – bk ,

ak = a(xk) =
Im(B–Axk , xk)

(B–xk , xk)
, bk = b(xk) =

√
�k

(B–xk , xk)
, �k = �(xk),

� is an at most countable index set, and xk is the first component of the eigenvector of H
associated with the eigenvalue λk (or μk).

The following theorem is the main result in this section, which gives the ascent and the
algebraic multiplicity of the eigenvalues of the Hamiltonian operator matrix H .

Theorem . Let λ be a simple eigenvalue of the Hamiltonian operator matrix H with
invertible B, and let u = (x y)T be an associated eigenvector. If (B–x, x) �= , then we have:

(i) if �(x) �= , then α(λ) = α(μ) = , and hence ma(λ) = ma(μ) = ;
(ii) if �(x) =  and (.) holds, then α(λ) = , and hence ma(λ) = .

Proof (i) If λ is simple, then μ is also simple. By Theorem ., their eigenvectors are u =
(x λB–x – B–Ax)T and v = (x μB–x – B–Ax)T , respectively. Thus, we can obtain

A∗B–x – B–Ax + a(x)iB–x = . (.)

In the following, we only prove the results for λ, and the proof for μ is similar.
Assume α(λ) �= , then H has the first order root vector u = (x y)T associated with the

pair (λ, u), i.e.,

{
Ax + By = λx + x,
Cx – A∗y = λy + λB–x – B–Ax.

(.)

From the first relation of (.), we have y = λB–x – B–Ax + B–x, and inserting it into
the second equation yields

λB–x – λB–Ax + A∗(λB–x – B–Ax + B–x
)

– Cx + λB–x – B–Ax = .

Taking the inner product of the above relation by x, we obtain

λ(B–x, x
)

– λ
((

B–Ax, x
)

–
(
B–x, Ax

))
–

(
Cx, x

)
–

(
B–Ax, Ax

)
+ λ

(
B–x, x

)
–

(
B–Ax, x

)
+

(
B–x, Ax

)
= .

Since B is an invertible self-adjoint operator, (B–A)∗ = A∗B–, which together with the
self-adjointness of C deduces

λ(x, B–x
)

– λ
((

x, A∗B–x
)

–
(
x, B–Ax

))
–

(
x, Cx

)
–

(
B–Ax, Ax

)
+ λ

(
x, B–x

)
–

(
x, A∗B–x

)
+

(
x, B–Ax

)
= ,
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i.e.,

(
x,λB–x – λ

(
A∗B–x – B–Ax

)
– Cx

)
–

(
B–Ax, Ax

)
+

(
x, λB–x – A∗B–x + B–Ax

)
= . (.)

Thus, by (.) and (.), (.) is reduced to

(
x, (λ + λ)

(
(λ – λ)B–x – A∗B–x + B–Ax

))
+ b(x)

(
x, B–x

)
= . (.)

If �(x) > , then λ – λ = –a(x)i, and hence (λ – λ)B–x – A∗B–x + B–Ax =  by (.);
if �(x) < , then λ + λ = . To sum up,

(λ + λ)
(
(λ – λ)B–x – A∗B–x + B–Ax

)
= 

when �(x) �= . From (.), it follows that

b(x)
(
x, B–x

)
= ,

which is a contradiction since �(x) �=  and (x, B–x) �= . Therefore, α(λ) = . Since λ is
simple, we immediately have ma(λ) = .

(ii) By Theorem ., we have N(H – λ) � N(H – λ), and then α(λ) ≥ . Assume
N(H – λ)

� N(H – λ), then there exists a vector u = (x y)T ∈ N(H – λ) such that
u /∈ N(H – λ). Obviously,  �= (H – λ)u ∈ N(H – λ). From Lemma ., it follows that
dim N(H – λ) = . So, N(H – λ) = span{u, u}, where u = (x λB–x – B–Ax + B–x)T is
the first order root vector associated with the pair (λ, u). Let (H – λ)u = lu + lu, i.e.,

{
Ax + By = λx + (l + l)x,
Cx – A∗y = λy + (l + l)(λB–x – B–Ax) + lB–x,

where l, l ∈C and l �= . Thus, y = λB–x – B–Ax + (l + l)B–x and

λB–x – λB–Ax + A∗(λB–x – B–Ax + (l + l)B–x
)

– Cx

+ (l + l)
(
λB–x – B–Ax

)
+ lB–x = .

In view of λ = –λ = –a(x)i, taking the inner product of the above relation by x, we may have
(B–x, x) = , which contradicts the assumption (B–x, x) �= . Therefore, N(H –λ) � N(H –
λ) = N(H – λ), i.e., α(λ) = , which together with dim N(H – λ) =  implies ma(λ) = .

�

Remark  If H is a compact operator, then dim N(H – λ) < ∞ for λ �= . In the present
article, we only consider the case that λ is a simple eigenvalue of H , i.e., dim N(H – λ) = ,
and other cases need to be considered separately.

4 Completeness
In this section, the completeness of the eigenvector or root vector system of the Hamilto-
nian operator matrix H is given.
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Theorem . Let H be a Hamiltonian operator matrix with invertible B, and let it only
possess at most countable simple eigenvalues. Assume that the first component x of every
eigenvector of H satisfies (B–x, x) �=  and D(B) ⊆ D(A∗) (or (A∗B–x, x̃) =  where x, x̃
are the, linear independent, first components of the eigenvectors associated with different
eigenvalues of H). If �(x) �=  for every x, then the eigenvector system of H is complete in the
CPV sense in X × X if and only if the collection of the first components of the eigenvector
system of H is a Schauder basis in X .

Proof By Corollary ., the collection of all eigenvalues of H can be given by {λk ,μk | k ∈
�}. From the assumptions, �k �=  immediately implies that bk �=  and λk �= μk . According
to Theorem ., the eigenvectors associated with the eigenvalue λk and μk are given by

uk =

(
xk

λkB–xk – B–Axk

)
, vk =

(
xk

μkB–xk – B–Axk

)
,

respectively. In addition, Theorem . shows that the algebraic multiplicity of every eigen-
value is . Thus, {uk , vk | k ∈ �} is an eigenvector system of H , and H has no root vectors.

Sufficiency. Since �k ∈R, there are three cases to consider.
Case : �k >  for each k ∈ �. In this case, for each k, j ∈ �,

λk + λj �= , μk + μj �= , λk + μj

{
= , k = j,
�= , k �= j.

(.)

Then, by Lemma ., we have

{
(uk , Juj) = (λj – λk)(B–xk , xj) + (B–Axk , xj) – (xk , B–Axj) = ,
(vk , Jvj) = (μj – μk)(B–xk , xj) + (B–Axk , xj) – (xk , B–Axj) = ,

and hence

(bj – bk)
(
B–xk , xj

)
= . (.)

From (.) and (.), we obtain

⎧⎨
⎩

(uk , Jvj) = (μj – λk)(B–xk , xj) + (B–Axk , xj) – (xk , B–Axj) =
{

–
√

�k , k = j,
, k �= j,

(vk , Juj) = (λj – μk)
(
B–xk , xj

)
+

(
B–Axk , xj

)
–

(
xk , B–Axj

)
=

{

√

�k , k = j,
, k �= j.

Thus,

(bj + bk)
(
B–xk , xj

)
= , k �= j,

which together with (.) and bk �=  (k ∈ �) yields

(
B–xk , xj

)
= , k �= j. (.)
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In what follows, we will prove the completeness of the eigenvector system {uk , vk | k ∈ �}
of H in the CPV sense. For each (f g)T ∈ X × X, set

ck =

(( f
g
)
, Jvk

)
(uk , Jvk)

, dk =

(( f
g
)
, Juk

)
(vk , Juk)

, k ∈ �. (.)

Then we see that

∑
k∈�

ckuk + dkvk

=
∑
k∈�

⎛
⎝ (f ,B–xk )

(B–xk ,xk ) xk
(g,xk )

(B–xk ,xk ) B–xk + (f ,B–Axk )
(B–xk ,xk ) B–xk – (f ,B–xk )

(B–xk ,xk ) A∗B–xk

⎞
⎠ . (.)

Since the vector system {xk | k ∈ �} consisting of the first components of the eigenvectors
of H is a Schauder basis in X, there exists a unique sequence {ek(f ) | k ∈ �} of complex
numbers such that

f =
∑
k∈�

ek(f )xk

for each f ∈ X. Taking the inner product of the above relation by B–xk on the right, we
clearly have ek(f ) = (f ,B–xk )

(B–xk ,xk ) , which shows that the first component of the right hand side
of (.) is exactly the expression of f in terms of the basis {xk | k ∈ �}, i.e.,

f =
∑
k∈�

(f , B–xk)
(B–xk , xk)

xk . (.)

Write

ϒ =
∑
k∈�

(f , B–Axk)
(B–xk , xk)

B–xk –
(f , B–xk)
(B–xk , xk)

A∗B–xk .

If D(B) ⊆D(A∗), then A∗B– is bounded on the whole space X. So,

A∗B–f = A∗B–
∑
k∈�

(f , B–xk)
(B–xk , xk)

xk =
∑
k∈�

(f , B–xk)
(B–xk , xk)

A∗B–xk . (.)

From (B–xk , xk) �=  and (.), it follows that { B–xk
(B–xk ,xk ) | k ∈ �} is also a Schauder basis

in X, and hence

A∗B–f =
∑
k∈�

(A∗B–f , xk)
(B–xk , xk)

B–xk =
∑
k∈�

(f , B–Axk)
(B–xk , xk)

B–xk . (.)

Hence, ϒ =  by (.) and (.). If (A∗B–x, x̃) = , i.e., (A∗B–xk , xj) =  (k �= j), then for
k �= j we have

(
(f , B–Axk)
(B–xk , xk)

B–xk –
(f , B–xk)
(B–xk , xk)

A∗B–xk , xj

)
= , k, j ∈ �,
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and for k = j, we have by (.) that

(
(f , B–Axk)
(B–xk , xk)

B–xk –
(f , B–xk)
(B–xk , xk)

A∗B–xk , xk

)

=
(
f , B–Axk

)
–

(f , B–xk)
(B–xk , xk)

(
A∗B–xk , xk

)

=
(
f , B–Axk

)
–

(f , B–xk)
(B–xk , xk)

(
xk , B–Axk

)
= , k, j ∈ �.

Hence, ϒ =  since {xk | k ∈ �} is a Schauder basis in X. Thus, we have shown so far that

∑
k∈�

ckuk + dkvk =
∑
k∈�

⎛
⎝ (f ,B–xk )

(B–xk ,xk ) xk
(g,xk )

(B–xk ,xk ) B–xk

⎞
⎠ =

(
f
g

)
. (.)

Finally, we assume that there is another constant sequence {ĉk , d̂k | k ∈ �} such that the
expansion (.) is valid. Then we have

∑
k∈�

(ck – ĉk)uk + (dk – d̂k)vk = ,

which clearly implies that ck = ĉk and dk = d̂k (k ∈ �). Thus, the expansion (.) is valid if
and only if we choose ck , dk (k ∈ �) defined by (.). Therefore, the eigenvector system
{uk , vk | k ∈ �} of H is complete in the CPV sense.

Case :

�k

{
> , k ∈ �,
< , k ∈ �,

where � = � ∪ �, � �= ∅, and � �= ∅. Then we find that

λk + λj

{
= , k = j ∈ �,
�= , otherwise,

μk + μj

{
= , k = j ∈ �,
�= , otherwise,

λk + μj

{
= , k = j ∈ �,
�= , otherwise.

Similar to the proof in Case , we can also obtain (.), and

⎧⎨
⎩

(uk , Juj) =
{

–
√

�k , k = j ∈ �,
, otherwise, (uk , Jvj) =

{
–

√
�k , k = j ∈ �,

, otherwise,

(vk , Juj) =
{


√

�k , k = j ∈ �,
, otherwise, (vk , Jvj) =

{

√

�k , k = j ∈ �,
, otherwise.

For (f g)T ∈ X × X, set

ck =

(( f
g
)
, Juk

)
(uk , Juk)

, dk =

(( f
g
)
, Jvk

)
(vk , Jvk)
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for k ∈ �, and set

ck =

(( f
g
)
, Jvk

)
(uk , Jvk)

, dk =

(( f
g
)
, Juk

)
(vk , Juk)

for k ∈ �. Thus, we also have (.). The rest of the proof is analogous to that of Case .
Case : �k <  for each k ∈ �. Indeed, it suffices to note that

⎧⎪⎪⎨
⎪⎪⎩

(uk , Juj) =
{

–
√

�k , k = j,
, k �= j,

(vk , Jvj) =
{


√

�k , k = j,
, k �= j,

(uk , Jvj) = ,

and set

ck =

(( f
g
)
, Juk

)
(uk , Juk)

, dk =

(( f
g
)
, Jvk

)
(vk , Jvk)

for each (f g)T ∈ X × X.
Necessity. Assume that the eigenvector system {uk , vk | k ∈ �} of H is complete in the

CPV sense, i.e., there exists a unique constant sequence {ck , dk | k ∈ �} such that the equal-
ity (.) holds for each (f g)T ∈ X × X. In the following, we only consider Case  listed in
the proof of sufficiency, and the proof of other cases is analogous. Taking the inner prod-
uct of (.) by Juk and Jvk on the right, respectively, we deduce that ck and dk (k ∈ �) are
determined by (.). Thus,

f =
∑
k∈�

ckxk + dkxk =
∑
k∈�

(f , B–xk)
(B–xk , xk)

xk .

Therefore, by the arbitrariness of f , the vector system {xk | k ∈ �} is a Schauder basis in X.
The proof is finished. �

Theorem . Let H be a Hamiltonian operator matrix with invertible B, and let it only
possess at most countable simple eigenvalues. Assume that the first component x of every
eigenvector of H satisfies (B–x, x) �=  and D(B) ⊆ D(A∗) (or (A∗B–x, x̃) =  where x, x̃
are the, linear independent, first components of the eigenvectors associated with different
eigenvalues of H). If there exists the first component x̂ of an eigenvector of H associated with
some eigenvalue λ̂ such that �(̂x) =  and (.) holds, then the root vector system of H is
complete in the CPV sense in X × X if and only if the collection of the first components of
the root vector system of H is a Schauder basis in X.

Proof According to Corollary ., we may assume that {λk ,μk | k ∈ �} is the collection of
all eigenvalues of H , where � = � ∪ � with � = {k ∈ � | �k = } �= ∅ and � = {k ∈ � |
�k �= }.

For k ∈ �, we have λk = μk = aki. Then, by Theorem ., the eigenvector uk and the
first order root vector vk of H associated with the eigenvalue λk and the pair (λk , uk) are
given by

uk =

(
xk

λkB–xk – B–Axk

)
, vk =

(
xk

λkB–xk – B–Axk + B–xk

)
,
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respectively. By Theorem .(ii), the algebraic multiplicity of the eigenvalue λk (k ∈ �)
is . For k ∈ �, we see that λk �= μk . Then, by Theorem ., the eigenvectors uk and vk of
H associated with the eigenvalues λk and μk are expressed as

uk =

(
xk

λkB–xk – B–Axk

)
, vk =

(
xk

μkB–xk – B–Axk

)
,

respectively. By Theorem .(i), the algebraic multiplicity of the eigenvalues λk and μk (k ∈
�) are both . Thus, {uk , vk | k ∈ �} is a root vector system of the Hamiltonian operator
matrix H .

When � �= ∅, we only prove the case that �k >  for k ∈ �. The proof of the other
cases can be similarly given. From Lemma ., we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(uk , Juj) = (vk , Jvj) = , k, j ∈ �,

(uk , Jvj) =
{

(B–xk , xk ), k = j ∈ �,
–

√
�k , k = j ∈ �,

, k �= j,

(vk , Juj) =
{

–(B–xk , xk ), k = j ∈ �,

√

�k , k = j ∈ �,
, k �= j.

When � = ∅, we obtain

⎧⎪⎪⎨
⎪⎪⎩

(uk , Juj) = (vk , Jvj) = ,
(uk , Jvj) =

{
(B–xk , xk ), k = j ∈ �,
, k �= j,

(vk , Juj) =
{

–(B–xk , xk ), k = j ∈ �,
, k �= j.

Then we set

ck =

(( f
g
)
, Jvk

)
(uk , Jvk)

, dk =

(( f
g
)
, Juk

)
(vk , Juk)

, k ∈ �.

The rest of the proof is analogous to that of Case  in Theorem .. �

5 Examples
In this section, some examples illustrating results of the previous sections are presented.
To streamline the calculations, we work in the infinite-dimensional Hilbert space X =
L(, ), which consists of square integrable complex-valued functions on the unit inter-
val (in the Lebesgue sense). Note that A stands for the subspace of X consisting of all
absolutely continuous functions.

Example . Let A = B = I . Define the operator C in X by Cu = –u′′ – u for u ∈ D(C),
where

D(C) =
{

u ∈ X | u, u′ ∈A, u() = u(), u′() = u′(), –u′′ – u ∈ X
}

. (.)

Consider the Hamiltonian operator matrix given by H =
( I I

– ∂
∂x –I –I

)
with the domain

D(C) × X.
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Direct calculations show that the eigenvalues and associated eigenfunctions of H are
given by

λk = kπ , μk = –kπ ,

uk =
(
sin kπx (kπ – ) sin kπx

)T , vk =
(
sin kπx –(kπ + ) sin kπx

)T , k ∈ �,

where � = {, , . . .}. Thus, the set {xk = sin kπx | k ∈ �} is a collection of the first compo-
nents of the eigenfunction system {uk , vk | k ∈ �}. Obviously,

(
B–xk , xk

)
= (xk , xk) �= 

and D(B) ⊆ D(A∗). Since �k �=  for every k ∈ �, using Theorem ., we have ma(λk) =
ma(μk) = . Besides, {xk = sin kπx | k ∈ �} is clearly a Schauder basis by observing that it
is an orthogonal basis in X. According to Theorem ., the eigenfunction system of H is
complete in the CPV sense in X × X.

Example . Consider the boundary value problem

{
uxx + uxy + uyy = ,  < x < ,  < y < h,
u(, y) = u(, y), ux(, y) = ux(, y),  ≤ y ≤ h.

(.)

Set v = – 
 ux – uy. Then we have the infinite-dimensional Hamiltonian system

∂

∂y

(
u
v

)
=

(
– 


∂
∂x – 





∂

∂x – 


∂
∂x

)(
u
v

)
.

For the corresponding Hamiltonian operator matrix H , its entries are given by Au = – 
 u′

for u ∈D(A), B = – 
 I , and Cu = 

 u′′ for u ∈D(C), where

D(A) =
{

u ∈ X ∩A | u() = u(), u′ ∈ X
}

,

D(C) =
{

u ∈ X | u, u′ ∈A, u() = u(), u′() = u′(), u′′ ∈ X
}

.
(.)

Set � = {,±,±, . . .}. It is easy to see that λ =  is an eigenvalue of H and u = ( )T

is its associated eigenfunction, and that the non-zero eigenvalues and associated eigen-
functions are given by

λk = –
kπ


i +

√
kπ


, μk = –

kπ


i –

√
kπ


,

uk =
(
ekπ ix –

√
kπekπ ix)T , vk =

(
ekπ ix

√
kπekπ ix)T , k ∈ �\{}.

Note that � =  and �k �=  (k �= ), so we have α(λk) = α(μk) = ma(λk) = ma(μk) =  and
α(λ) = ma(μ) =  by Theorem .. Then H has the first order root vector v = ( –)T

associated with the pair (λ, u). Clearly, the collection {xk = ekπ ix | k ∈ �} of the first
components of the root vector system {uk , vk | k ∈ �} is a Schauder basis in X. Also, we
have

(
B–xk , xk

)
= –(xk , xk) �= ,
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(
A∗B–xk , xj

)
= , k �= j,

A∗B–x – B–Ax + λB–x = .

According to Theorem ., {uk , vk | k ∈ �} is complete in the CPV sense in X × X.
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