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Abstract
Our aim in this paper is to obtain Matsaev type inequalities about harmonic functions
on smooth cones, which generalize the results obtained by Xu, Yang and Zhao in a
half space.
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1 Introduction and results
Let R and R+ be the set of all real numbers and the set of all positive real numbers, re-
spectively. We denote by Rn (n ≥ ) the n-dimensional Euclidean space. A point in Rn is
denoted by P = (X, xn), X = (x, x, . . . , xn–). The Euclidean distance between two points P
and Q in Rn is denoted by |P – Q|. Also |P – O| with the origin O of Rn is simply denoted
by |P|. The boundary and the closure of a set S in Rn are denoted by ∂S and S, respectively.

We introduce a system of spherical coordinates (r,�), � = (θ, θ, . . . , θn–), in Rn which
are related to Cartesian coordinates (x, x, . . . , xn–, xn) by xn = r cos θ.

The unit sphere and the upper half unit sphere in Rn are denoted by Sn– and Sn–
+ ,

respectively. For simplicity, a point (,�) on Sn– and the set {�; (,�) ∈ �} for a set
�, � ⊂ Sn–, are often identified with � and �, respectively. For two sets � ⊂ R+ and
� ⊂ Sn–, the set {(r,�) ∈ Rn; r ∈ �, (,�) ∈ �} in Rn is simply denoted by � × �. In par-
ticular, the half space R+ × Sn–

+ = {(X, xn) ∈ Rn; xn > } will be denoted by Tn.
For P ∈ Rn and r > , let B(P, r) denote the open ball with center at P and radius r in Rn.

Sr = ∂B(O, r). By Cn(�), we denote the set R+ × � in Rn with the domain � on Sn–. We
call it a cone. Then Tn is a special cone obtained by putting � = Sn–

+ . We denote the sets
I × � and I × ∂� with an interval on R by Cn(�; I) and Sn(�; I). By Sn(�; r) we denote
Cn(�) ∩ Sr . By Sn(�) we denote Sn(�; (, +∞)) which is ∂Cn(�) – {O}.

We use the standard notations u+ = max{u, } and u– = – min{u, }. Further, we denote
by wn the surface area πn/{�(n/)}– of Sn–, by ∂/∂nQ denotes the differentiation at
Q along the inward normal into Cn(�), by dSr the (n – )-dimensional volume elements
induced by the Euclidean metric on Sr and by dw the elements of the Euclidean volume
in Rn.

Let � be a domain on Sn– with smooth boundary. Consider the Dirichlet problem

(	n + λ)ϕ =  on �,

ϕ =  on ∂�,
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where 	n is the spherical part of the Laplace operator �n,

�n =
n – 

r
∂

∂r
+

∂

∂r +
	n

r .

We denote the least positive eigenvalue of this boundary value problem by λ and the nor-
malized positive eigenfunction corresponding to λ by ϕ(�),

∫
�

ϕ(�) dS = . In order to
ensure the existence of λ and a smooth ϕ(�). We put a rather strong assumption on �: if
n ≥ , then � is a C,α-domain ( < α < ) on Sn– surrounded by a finite number of mutu-
ally disjoint closed hypersurfaces (e.g. see [], pp.-, for the definition of C,α-domain).
Then ϕ ∈ C(�) and ∂ϕ/∂n >  on ∂� (here and below, ∂/∂n denotes differentiation along
the interior normal).

We note that each function

rℵ±
ϕ(�)

is harmonic in Cn(�), belongs to the class C(Cn(�)\{O}) and vanishes on Sn(�), where

ℵ± = –n +  ±
√

(n – ) + λ.

In the sequel, for the sake of brevity, we shall write χ instead of ℵ+ – ℵ–. If � = Sn–
+ , then

ℵ+ = , ℵ– =  – n, and ϕ(�) = (nw–
n )/ cos θ.

Let G�(P, Q) (P = (r,�), Q = (t,�) ∈ Cn(�)) be the Green function of Cn(�). Then the
ordinary Poisson kernel relative to Cn(�) is defined by

PI�(P, Q) =

cn

∂

∂nQ
G�(P, Q),

where Q ∈ Sn(�) and

cn =

{
π if n = ,
(n – )wn if n ≥ .

The estimate we deal with has a long history which can be traced back to Matsaev’s
estimate of harmonic functions from below (see, for example, Levin [], p.).

Theorem A Let A be a constant, u(z) (|z| = R) be harmonic on T and continuous on ∂T.
Suppose that

u(z) ≤ ARρ , z ∈ T, R > ,ρ > 

and

∣
∣u(z)

∣
∣ ≤ A, R ≤ , z ∈ T.

Then

u(z) ≥ –AA
(
 + Rρ

)
sin– α,

where z = Reiα ∈ T and A is a constant independent of A, R, α, and the function u(z).
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Recently, Xu et al. [–] considered Theorem A in the n-dimensional (n ≥ ) case and
obtained the following result.

Theorem B Let A be a constant, u(P) (|P| = R) be harmonic on Tn and continuous on Tn.
If

u(P) ≤ ARρ , P ∈ Tn, R > ,ρ > n –  (.)

and

∣
∣u(P)

∣
∣ ≤ A, R ≤ , P ∈ Tn, (.)

then

u(P) ≥ –AA
(
 + Rρ

)
cos–n θ,

where P ∈ Tn and A is a constant independent of A, R, θ, and the function u(P).

Now we have the following.

Theorem  Let K be a constant, u(P) (P = (R,�)) be harmonic on Cn(�) and continuous
on Cn(�). If

u(P) ≤ KRρ(R), P = (R,�) ∈ Cn
(
�; (,∞)

)
,ρ(R) > ℵ+ (.)

and

u(P) ≥ –K , R ≤ , P = (R,�) ∈ Cn(�), (.)

then

u(P) ≥ –KM
(

 +
(

N + 
N

R
)ρ( N+

N R))

ϕ–nθ ,

where P ∈ Cn(�), N (≥ ) is a sufficiently large number, ρ(R) is nondecreasing in [, +∞)
and M is a constant independent of K , R, ϕ(θ ), and the function u(P).

By taking ρ(R) ≡ ρ , we obtain the following corollary, which generalizes Theorem B to
the conical case.

Corollary Let K be a constant, u(P) (P = (R,�)) be harmonic on Cn(�) and continuous on
Cn(�). If

u(P) ≤ KRρ , P = (R,�) ∈ Cn
(
�; (,∞)

)
,ρ > ℵ+

and

u(P) ≥ –K , R ≤ , P = (R,�) ∈ Cn(�),
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then

u(P) ≥ –KM
(
 + Rρ

)
ϕ–nθ ,

where P ∈ Cn(�), M is a constant independent of K , R, ϕ(θ ), and the function u(P).

Remark From the corollary, we know that conditions (.) and (.) may be replaced with
the weaker conditions

u(P) ≤ ARρ , P ∈ Tn, R > ,ρ > 

and

u(P) ≥ –A, R ≤ , P ∈ Tn,

respectively.

2 Lemmas
Throughout this paper, let M denote various constants independent of the variables in
question, which may be different from line to line.

Carleman’s formula (see []) connects the modulus and the zeros of a function analytic
in a complex plane (see, for example, [], p.). I Miyamoto and H Yoshida generalized
it to subharmonic functions in an n-dimensional cone (see [, ]).

Lemma  If R >  and u(t,�) is a subharmonic function on a domain containing
Cn(�; (, R)), then

∫

Cn(�;(,R))

(


t–ℵ– –
tℵ+

Rχ

)

ϕ�u dw

= χ

∫

Sn(�;R)

uϕ

R–ℵ– dSR +
∫

Sn(�;(,R))
u
(


t–ℵ– –

tℵ+

Rχ

)
∂ϕ

∂n
dσQ + d +

d

Rχ
,

where

d =
∫

Sn(�;)
ℵ–uϕ – ϕ

∂u
∂n

dS and d =
∫

Sn(�;)
ϕ

∂u
∂n

– ℵ+uϕ dS.

Lemma  (see [, ])

PI�(P, Q) ≤ Mrℵ–
tℵ+–ϕ(�)

∂ϕ(�)
∂n�

(.)

for any P = (r,�) ∈ Cn(�) and any Q = (t,�) ∈ Sn(�) satisfying  < t
r ≤ 

 ,

PI�(P, Q) ≤ M
ϕ(�)
tn–

∂ϕ(�)
∂n�

+ M
rϕ(�)

|P – Q|n
∂ϕ(�)
∂n�

(.)

for any P = (r,�) ∈ Cn(�) and any Q = (t,�) ∈ Sn(�; ( 
 r, 

 r)).
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Let G�,R(P, Q) be the Green function of Cn(�, (, R)). Then

∂G�,R(P, Q)
∂R

≤ Mrℵ+
Rℵ––ϕ(�)ϕ(�), (.)

where P = (r,�) ∈ Cn(�) and Q = (R,�) ∈ Sn(�; R).

3 Proof of Theorem 1
Lemma  applied to u = u+ – u– gives

χ

∫

Sn(�;R)

u+ϕ

R–ℵ– dSR +
∫

Sn(�;(,R))
u+

(


t–ℵ– –
tℵ+

Rχ

)
∂ϕ

∂n
dσQ + d +

d

Rχ

= χ

∫

Sn(�;R)

u–ϕ

R–ℵ– dSR +
∫

Sn(�;(,R))
u–

(


t–ℵ– –
tℵ+

Rχ

)
∂ϕ

∂n
dσQ. (.)

It immediately follows from (.) that

χ

∫

Sn(�;R)

u+ϕ

R–ℵ– dSR ≤ MKRρ(R)–ℵ+
(.)

and

∫

Sn(�;(,R))
u+

(


t–ℵ– –
tℵ+

Rχ

)
∂ϕ

∂n
dσQ

≤
∫

Sn(�;(,R))
Ktρ(t)+ℵ+

(


tχ
–


Rχ

)
∂ϕ

∂n
dσQ

≤ MK
∫ R



(

rρ(r)–ℵ+– –
rρ(r)–ℵ––

Rχ

)
∂ϕ

∂n
dr

≤ MK
∫ R


rρ(R)–ℵ+– dr

≤ MK
ρ(R) – ℵ+ Rρ(R)–ℵ+

≤ MKRρ(R)–ℵ+
. (.)

Notice that

d +
d

Rχ
≤ MKRρ(R)–ℵ+

. (.)

Hence from (.), (.), (.), and (.) we have

χ

∫

Sn(�;R)

u–ϕ

R–ℵ– dSR ≤ MKRρ(R)–ℵ+
(.)

and

∫

Sn(�;(,R))
u–

(


t–ℵ– –
tℵ+

Rχ

)
∂ϕ

∂n
dσQ ≤ MKRρ(R)–ℵ+

. (.)
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Equation (.) gives

∫

Sn(�;(,R))
u–tℵ– ∂ϕ

∂n
dσQ

≤ (N + )χ

(N + )χ – Nχ

∫

Sn(�;(, N+
N R))

u–
(


t–ℵ– –

tℵ+

( N+
N R)χ

)
∂ϕ

∂n
dσQ

≤ (N + )χ

(N + )χ – Nχ
MK

(
N + 

N
R
)ρ( N+

N R)–ℵ+

≤ MK
(

N + 
N

R
)ρ( N+

N R)–ℵ+

.

Thus

∫

Sn(�;(,R))
u–tℵ– ∂ϕ

∂n
dσQ ≤ MK

(
N + 

N
R
)ρ( N+

N R)–ℵ+

. (.)

By the Riesz decomposition theorem (see []), for any P = (r,�) ∈ Cn(�; (, R)) we have

–u(P) =
∫

Sn(�;(,R))
PI�(P, Q) – u(Q) dσQ

+
∫

Sn(�;R)

∂G�,R(P, Q)
∂R

– u(Q) dSR. (.)

Now we distinguish three cases.
Case . P = (r,�) ∈ Cn(�; ( 

 ,∞)) and R = 
 r.

Since –u(x) ≤ u–(x), we obtain

–u(P) =
∑

i=

Ii(P) (.)

from (.), where

I(P) =
∫

Sn(�;(,])
PI�(P, Q) – u(Q) dσQ,

I(P) =
∫

Sn(�;(, 
 r])

PI�(P, Q) – u(Q) dσQ,

I(P) =
∫

Sn(�;( 
 r,R))

PI�(P, Q) – u(Q) dσQ and

I(P) =
∫

Sn(�;R)
PI�(P, Q) – u(Q) dσQ.

Then from (.) and (.) we have

I(P) ≤ MKϕ(�) (.)

RETRACTED A
RTIC

LE



Pang and Ychussie Journal of Inequalities and Applications  (2015) 2015:108 Page 7 of 9

and

I(P) ≤ rℵ–
ϕ(�)

(



r
)χ– ∫

Sn(�;(, 
 r])

–u(Q)tℵ– ∂ϕ(�)
∂n�

dσQ

≤ MK
(

N + 
N

R
)ρ( N+

N R)

ϕ(�). (.)

By (.), we consider the inequality

I(P) ≤ I(P) + I(P), (.)

where

I(P) = M
∫

Sn(�;( 
 r,R))

–u(Q)ϕ(�)
tn–

∂ϕ(�)
∂n�

dσQ

and

I(P) = Mrϕ(�)
∫

Sn(�;( 
 r,R))

–u(Q)rϕ(�)
|P – Q|n

∂ϕ(�)
∂n�

dσQ.

We first have

I(P) ≤ Mϕ(�)r–n–ℵ–
∫

Sn(�;( 
 r,R))

–u(Q)tℵ– ∂ϕ(�)
∂n�

dσQ

≤ MK
(

N + 
N

R
)ρ( N+

N R)

ϕ(�) (.)

from (.). Next, we shall estimate I(P). Take a sufficiently small positive number k such
that Sn(�; ( 

 r, R)) ⊂ B(P, 
 r) for any P = (r,�) ∈ �(k), where

�(k) =
{

P = (r,�) ∈ Cn(�); inf
(,z)∈∂�

∣
∣(,�) – (, z)

∣
∣ < k,  < r < ∞

}
,

and divide Cn(�) into two sets �(k) and Cn(�) – �(k).
If P = (r,�) ∈ Cn(�) – �(k), then there exists a positive k′ such that |P – Q| ≥ k′r for any

Q ∈ Sn(�), and hence

I(P) ≤ M
∫

Sn(�;( 
 r,R))

–u(Q)ϕ(�)
tn–

∂ϕ(�)
∂n�

dσQ

≤ MK
(

N + 
N

R
)ρ( N+

N R)

ϕ(�), (.)

which is similar to the estimate of I(P).
We shall consider the case P = (r,�) ∈ �(k). Now put

Hi(P) =
{

Q ∈ Sn

(

�;
(




r, R
))

; i–δ(P) ≤ |P – Q| < iδ(P)
}

,

where δ(P) = infQ∈∂Cn(�) |P – Q|.
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Since Sn(�) ∩ {Q ∈ Rn : |P – Q| < δ(P)} = ∅, we have

I(P) = M
i(P)∑

i=

∫

Hi(P)

–u(Q)rϕ(�)
|P – Q|n

∂ϕ(�)
∂n�

dσQ,

where i(P) is a positive integer satisfying i(P)–δ(P) ≤ r
 < i(P)δ(P).

Since rϕ(�) ≤ Mδ(P) (P = (r,�) ∈ Cn(�)), similar to the estimate of I(P) we obtain

∫

Hi(P)

–u(Q)rϕ(�)
|P – Q|n

∂ϕ(�)
∂n�

dσQ

≤
∫

Hi(P)
rϕ(�)

–u(Q)
(i–δ(P))n

∂ϕ(�)
∂n�

dσQ

≤ M(–i)nϕ–n(�)
∫

Hi(P)
t–n – u(Q)

∂ϕ(�)
∂n�

dσQ

≤ MK
(

N + 
N

R
)ρ( N+

N R)

ϕ–n(�)

for i = , , , . . . , i(P).
So

I(P) ≤ MK
(

N + 
N

R
)ρ( N+

N R)

ϕ–n(�). (.)

From (.), (.), (.), and (.) we see that

I(P) ≤ MK
(

N + 
N

R
)ρ( N+

N R)

ϕ–n(�). (.)

On the other hand, we have from (.) and (.) that

I(P) ≤ Mrℵ+
ϕ(�)

∫

Sn(�;R)

–u(Q)ϕ
R–ℵ– dSR

≤ MKRρ(R)ϕ(�). (.)

We thus obtain (.), (.), (.), and (.) that

–u(P) ≤ MK
(

 +
(

N + 
N

R
)ρ( N+

N R))

ϕ–n(�). (.)

Case . P = (r,�) ∈ Cn(�; ( 
 , 

 ]) and R = 
 r.

Equation (.) gives

–u(P) = I(P) + I(P) + I(P),

where I(P) and I(P) are defined in Case  and

I(P) =
∫

Sn(�;(,R))
PI�(P, Q) – u(Q) dσQ.
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Similar to the estimate of I(P) in Case  we have

I(P) ≤ MK
(

N + 
N

R
)ρ( N+

N R)

ϕ–n(�),

which together with (.) and (.) gives (.).
Case . P = (r,�) ∈ Cn(�; (, 

 ]).
It is evident from (.) that we have –u ≤ K , which also gives (.).
From (.) we finally have

u(P) ≥ –KM
(

 +
(

N + 
N

R
)ρ( N+

N R))

ϕ–nθ ,

which is the conclusion of Theorem .
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