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Abstract
In the present work we prove the pointwise convergence and the rate of pointwise
convergence for a family of singular integral operators with radial kernel in
two-dimensional setting in the following form: Lλ(f ; x, y) =

∫∫
D f (t, s)Hλ(t – x, s – y)dt ds,

(x, y) ∈ D, where D = 〈a,b〉 × 〈c,d〉 is an arbitrary closed, semi-closed or open region in
R

2 and λ ∈ �, � is a set of non-negative numbers with accumulation point λ0. Also
we provide an example to justify the theoretical results.
MSC: Primary 41A35; secondary 41A25
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1 Introduction
Taberski [] analyzed both the pointwise convergence of functions in L(–π ,π ), where
L(–π ,π ) is the collection of all measurable functions f for which |f | is integrable on
(–π ,π ) and the approximation properties of their derivatives by a two parameter family
of convolution type singular integral operators Uλ(f ; x) of the form

Uλ(f ; x) =
∫ π

–π

f (t)Kλ(t – x) dt, x ∈ (–π ,π ). (.)

Here, Kλ(t) denotes a kernel fulfilling appropriate conditions with λ ∈ �, where � is
a given set of non-negative numbers with accumulation point λ. Following this work,
Gadjiev [] proved the pointwise convergence of operators of type (.) at a generalized
Lebesgue point and established the pertinent convergence order. Rydzewska [] extended
these results to approximation at a μ-generalized Lebesgue point. Karsli and Ibikli [, ]
proceeded to the study of the more general integral operators defined by

Tλ(f ; x) =
∫ b

a
f (t)Kλ(t – x) dt, x ∈ 〈a, b〉,λ ∈ � ∈R, (.)

with functions in L〈a, b〉 where 〈a, b〉 is an arbitrary interval in R such as [a, b], (a, b), [a, b)
or (a, b].

The convergence of the other operators have been studied at characteristic points such
as a generalized Lebesgue point, m-Lebesgue point, and so on, by other workers: a family
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of nonlinear singular integral operators [, ], a family of nonlinear m-singular integral
operators [], Fejer-Type singular integrals [], moment type operators [], a family of
nonlinear Mellin type convolution operators [], nonlinear integral operators with homo-
geneous kernels [] and a family of Mellin type nonlinear m-singular integral operators
[].

Taberski [] stepped up his analysis to two-dimensional singular integrals of the form

Tλ(f ; x, y) =
∫∫

Q
f (t, s)Kλ(t – x, s – y) dt ds, (x, y) ∈ Q, (.)

where Q denotes a given rectangle. His findings were later used by Siudut [, ] rendering
significant results. Yilmaz et al. [] replaced Kλ in (.) by a radial function Hλ as follows:

Lλ(f ; x, y) =
∫ π

–π

∫ π

–π

f (t, s)Hλ(t – x, s – y) dt ds, (x, y) ∈ 〈–π ,π〉 × 〈–π ,π〉. (.)

The new operator approaches f (x, y) as (x, y,λ) tends to (x, y,λ). In [], the function
f ∈ L(〈–π ,π〉× 〈–π ,π〉) became f ∈ Lp(D) where D = 〈a, b〉× 〈c, d〉 is an arbitrary closed,
semi-closed or open region in R

.
The current manuscript presents a continuation and further generalization of []. The

main purpose is to investigate the pointwise convergence and the rate of convergence of
the operators in the following form:

Lλ(f ; x, y) =
∫∫

D
f (t, s)Hλ(t – x, s – y) ds dt, (x, y) ∈ D, (.)

where D = 〈a, b〉 × 〈c, d〉 is an arbitrary closed, semi-closed or open region in R
, at a μ-

generalized Lebesgue point of f ∈ L(D) as (x, y,λ) → (x, y,λ). Here L(D) is the collec-
tion of all measurable functions f for which |f | is integrable on D and the kernel function
Hλ(s, t) is a radial function. As concerns the study of linear singular operators in several
settings, the reader may see also e.g. [–].

The paper is organized as follows: In Section , we introduce the fundamental defini-
tions. In Section , we give a theorem concerning the existence of the operator of type
(.). In Section , we prove two theorems about the pointwise convergence of Lλ(f ; x, y)
to f (x, y) whenever (x, y) is a μ-generalized Lebesgue point of f in bounded region and
unbounded region. In Section , we establish the rate of convergence of operators of type
(.) to f (x, y) as (x, y,λ) tends to (x, y,λ) and the paper is ended with an example to
support our results.

2 Preliminaries
In this section we introduce the main definitions used in this paper.

Definition  A function H ∈ L(R) is said to be radial, if there exists a function K : R+
 →

R such that H(t, s) = K(
√

t + s) a.e. [].

Definition  A point (x, y) ∈ D is called a μ-generalized Lebesgue point of function
f ∈ L(D) if

lim
(h,k)→(,)


μ(h)μ(k)

∫ h



∫ k



∣
∣f (t + x, s + y) – f (x, y)

∣
∣dt ds = ,
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where μ(t) : R → R, absolutely continuous on [–δ, δ], increasing on [, δ] and μ() =
 and also μ(s) : R → R, absolutely continuous on [–δ, δ], increasing on [, δ] and
μ() = . Here  < h, k < δ [].

The following two examples are simple applications to a generalized Lebesgue point and
μ-generalized Lebesgue point of some functions that belong to L(R).

Example  Let g : R → R be given by

g(t, s) =

{
, if (t, s) = (, ),

√|t|(+|t|)√|s|(+|s|) , if (t, s) ∈R
\(, ).

Now, if μ(t) = t 
 et and μ(s) = s 

 es, then the origin is a μ-generalized Lebesgue point of
g ∈ L(R) but not a generalized Lebesgue point.

Example  Let f : R →R be given by

f (t, s) =

{
e–(t+s), if (t, s) ∈ (, ] × (, ],
, if (t, s) ∈R

\(, ] × (, ].

If we take μ(t) = t 
 + and μ(s) = s 

 +, then the origin is a μ-generalized Lebesgue point
of f ∈ L(R). On the other hand, if we take α = 

 and p = , then the origin is also a
generalized Lebesgue point. Clearly, this example shows that generalized Lebesgue points
are also μ-generalized Lebesgue points.

Definition  (Class A) Let Hλ : R ×� →R be a radial function i.e., there exists a function
Kλ : R+

 × � →R such that the following equality holds for (t, s) ∈R
 a.e.:

Hλ(t, s) := Kλ

(√
t + s

)
,

where � is a given set of non-negative numbers with accumulation point λ.
Hλ(t, s) belongs to class A, if the following conditions are satisfied:
(a) Hλ(t, s) = Kλ(

√
t + s) is even, non-negative and integrable as a function of (s, t) on

R
 for each fixed λ ∈ �.

(b) For fixed (x, y) ∈ D, Kλ(
√

x
 + y

) tends to infinity as λ tends to λ.
(c) lim(x,y,λ)→(x,y,λ)

∫∫
R Kλ(

√
(t – x) + (s – y)) dt ds = .

(d) limλ→λ [sup
ξ≤√

t+s Kλ(
√

t + s)] = , ∀ξ > .
(e) limλ→λ

∫∫
ξ≤√

t+s Kλ(
√

t + s) dt ds = , ∀ξ > .
(f ) Kλ(

√
t + s) is monotonically increasing with respect to t on (–∞, ] and similarly

Kλ(
√

t + s) is monotonically increasing with respect to s on (–∞, ] for any λ ∈ �.
Analogously, Kλ(

√
t + s) is bimonotonically increasing with respect to (t, s) on

[,∞) × [,∞) and (–∞, ] × (–∞, ] and bimonotonically decreasing with respect
to (t, s) on [,∞) × (–∞, ] and (–∞, ] × [,∞) for any λ ∈ �.

Throughout this paper we assume that the kernel Hλ(t, s) belongs to class A.
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3 Existence of the operator
Lemma  If f ∈ L(D), then the operator Lλ(f ; x, y) defines a continuous transformation
over L(D) [].

4 Pointwise convergence
The following theorem gives a pointwise approximation of the integral operators of type
(.) to the function f at a μ-generalized Lebesgue point of f ∈ L(D) where D = 〈a, b〉 ×
〈c, d〉 is a bounded region in R

, which is closed, semi-closed or open.

Theorem  If (x, y) is a μ-generalized Lebesgue point of f ∈ L(D), then

lim
(x,y,λ)→(x,y,λ)

Lλ(f ; x, y) = f (x, y)

on any set Z on which the functions

∫ x+δ

x–δ

∫ y+δ

y–δ

Kλ

(√
(t – x) + (s – y)

)∣∣{μ
(|t – x|

)}′
t

∣
∣
∣
∣{μ

(|s – y|
)}′

s

∣
∣dt ds (.)

and

Kλ()μ
(|x – x|

)
and Kλ()μ

(|y – y|
)

(.)

are bounded as (x, y,λ) tends to (x, y,λ).

Proof Suppose that (x, y) ∈ D is a μ-generalized Lebesgue point of f ∈ L(D). Therefore,
for all given ε > , there exists δ >  such that for all h, k satisfying  < h, k ≤ δ, the following
inequality holds:

∫ x+δ

x

∫ y

y–δ

∣
∣f (t, s) – f (x, y)

∣
∣dt ds < εμ(h)μ(k). (.)

If we follow the same strategy as used in the proof of Theorem . in [], then we obtain

∣
∣Lλ(f ; x, y) – f (x, y)

∣
∣ ≤

∫∫

D

∣
∣f (t, s) – f (x, y)

∣
∣Kλ

(√
(t – x) + (s – y)

)
dt ds

+
∣
∣f (x, y)

∣
∣
∣
∣
∣
∣

∫∫

R
Kλ

(√
(t – x) + (s – y)

)
dt ds – 

∣
∣
∣
∣

+
∣
∣f (x, y)

∣
∣
∫∫

R\D
Kλ

(√
(t – x) + (s – y)

)
dt ds

= I + I + I.

In view of conditions (c) and (d) of class A, I → , and I →  as λ → λ, respectively,

I =
{∫∫

D\Bδ

+
∫∫

Bδ

}∣
∣f (t, s) – f (x, y)

∣
∣Kλ

(√
(t – x) + (s – y)

)
dt ds

= I + I,

where Bδ := {(s, t) : (s – x) + (t – y) < δ, (x, y) ∈ D}.
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Since Kλ(
√

t + s) is monotonically decreasing on D\Bδ , the inequality

I ≤ Kλ

(
(
√

 – )δ/
√


)(‖f ‖L(D) +

∣
∣f (x, y)

∣
∣|b – a||d – c|)

holds. Hence by condition (d) of class A, I →  as (x, y,λ) → (x, y,λ).
Now, we prove that I tends to zero as (x, y,λ) tends to (x, y,λ). It is easy to see that

the following inequality holds for I, i.e.:

I ≤
{∫ x+δ

x

∫ y

y–δ

+
∫ x

x–δ

∫ y

y–δ

}∣
∣f (t, s) – f (x, y)

∣
∣Kλ

(√
(t – x) + (s – y)

)
dt ds

+
{∫ x

x–δ

∫ y+δ

y

+
∫ x+δ

x

∫ y+δ

y

}∣
∣f (t, s) – f (x, y)

∣
∣Kλ

(√
(t – x) + (s – y)

)
dt ds

= I + I + I + I.

Let us consider the integral I. In view of (.), for every ε >  there exists δ >  such that

∫ x+h

x

∫ y

y–k

∣
∣f (t, s) – f (x, y)

∣
∣dt ds < εμ(h)μ(k)

holds for all  < h, k ≤ δ.
Let us define a new function by

F(t, s) :=
∫ t

x

∫ y

s

∣
∣f (u, v) – f (x, y)

∣
∣du dv. (.)

For all t and s satisfying  < t – x ≤ δ and  < y – s ≤ δ we have

∣
∣F(t, s)

∣
∣ ≤ εμ(t – x)μ(y – s). (.)

In view of (.) and (.) and applying the method of bivariate integration by parts to I

(see Theorem ., p. in []) we have

I ≤ ε

∫ x+δ

x

∫ y

y–δ

μ(t – x)μ(y – s)
∣
∣dKλ

(√
(t – x) + (s – y)

)∣∣

+ εμ(δ)
∫ x+δ

x

μ(t – x)
∣
∣dKλ

(√
(t – x) + (y – δ – y)

)∣∣

+ εμ(δ)
∫ y

y–δ

μ(y – s)
∣
∣dKλ

(√
(x + δ – x) + (s – y)

)∣∣

+ εμ(δ)μ(δ)Kλ

(√
(x + δ – x) + (y – δ – y)

)
.

Let us define the variations:

B(u, v) :=

⎧
⎪⎨

⎪⎩

∨x+δ–x
u

∨v
y–δ–y(Kλ(

√
t + s)), x – x ≤ u < x + δ – x,

y – δ – y < v ≤ y – y,
, otherwise,

B(u) :=

{∨x+δ–x
u (Kλ(

√
t + (y – δ – y))), x – x ≤ u < x + δ – x,

, otherwise,
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B(v) :=

{∨v
y–δ–y(Kλ(

√
(x – x + δ) + s)), y – δ – y < v ≤ y – y,

, otherwise.

Taking the above variations into account and applying the method of bivariate integration
by parts to the last inequality, we have

I ≤ –ε

∫ x–x+δ

x–x

∫ y–y

y–y–δ

[
B(t, s) + B(t) + B(s) + Kλ

(√
(x – x + δ) + (y – δ – y)

)]

× {
μ(t – x + x)

}′
t

{
μ(y – s – y)

}′
s dt ds

= ε(i + i + i + i).

Remark  If the function g : R → R is bimonotonic on [α,α] × [β,β] ⊂ R
 then the

equality given by

V
(
g; [α,α] × [β,β]

)
=

α∨

α

β∨

β

(
g(t, s)

)
=

∣
∣g(α,β) – g(α,β) – g(α,β) + g(α,β)

∣
∣

holds [, ].

Splitting i into two parts yields

i = –
{∫ x–x+δ

x–x

∫ y–y


+

∫ x–x+δ

x–x

∫ 

y–y–δ

}

B(t, s)
{
μ(t – x + x)

}′
t

{
μ(y – s – y)

}′
s dt ds

= i + i.

Using Remark  and condition (f ) of class A, we can write for i

i = –
∫ x–x+δ

x–x

∫ y–y



[{x+δ–x∨

t

∨

y–δ–y

+
x+δ–x∨

t

s∨



}

Kλ

(√
u + v

)
]

× {
μ(t – x + x)

}′
t

{
μ(y – s – y)

}′
s dt ds

=
∫ x–x+δ

x–x

∫ y–y



(
Kλ

(√
t + (y – δ – y)

)
– Kλ

(√
s + (x + δ – x)

)
– Kλ

(|t|)

+ Kλ

(√
t + s

)
+ Kλ

(|x + δ – x|) – Kλ

(√
(y – δ – y) + (x + δ – x)

))

× {
μ(t – x + x)

}′
t

{
μ(y – s – y)

}′
s dt ds.

Using the same method for i, we have

i =
∫ x–x+δ

x–x

∫ 

y–y–δ

(
Kλ

(√
t + (y – δ – y)

)
+ Kλ

(√
s + (x + δ – x)

)

– Kλ

(√
t + s

)
– Kλ

(√
(y – δ – y) + (x + δ – x)

))

× {
μ(t – x + x)

}′
t

{
μ(y – s – y)

}′
s dt ds.
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Making similar calculations for i and i and collecting the obtained terms, we may write

i + i + i + i = –
∫ x–x+δ

x–x

∫ 

y–y–δ

Kλ

(√
t + s

){
μ(t – x + x)

}′
t

{
μ(y – s – y)

}′
s dt ds

+
∫ x–x+δ

x–x

∫ y–y



(
Kλ

(√
t + s

)
– Kλ

(|t|))

× {
μ(t – x + x)

}′
t

{
μ(y – s – y)

}′
s dt ds.

Hence the following inequality holds for I:

I ≤ ε

∫ x+δ

x

∫ y

y–δ

Kλ

(√
(t – x) + (s – y)

)∣
∣
{
μ(t – x)

}′
t

∣
∣
∣
∣
{
μ(y – s)

}′
s

∣
∣dt ds

+ εKλ()μ(δ)μ
(|y – y|).

By a similar argument to the evaluation of the integral I, we can easily obtain the fol-
lowing inequalities for I, I, and I:

I ≤ ε

∫ x

x–δ

∫ y

y–δ

Kλ

(√
(t – x) + (s – y)

)∣∣{μ(x – t)
}′

t

∣
∣
∣
∣{μ(y – s)

}′
s

∣
∣dt ds

+ εKλ()
(
μ(δ)μ

(|y – y|) + μ(δ)μ
(|x – x|))

+ εKλ()μ
(|x – x|)μ

(|y – y|),

I ≤ ε

∫ x

x–δ

∫ y+δ

y

Kλ

(√
(t – x) + (s – y)

)∣
∣
{
μ(x – t)

}′
t

∣
∣
∣
∣
{
μ(s – y)

}′
s

∣
∣dt ds

+ εKλ()μ(δ)μ
(|x – x|),

I ≤ ε

∫ x+δ

x

∫ y+δ

y

Kλ

(√
(t – x) + (s – y)

)∣
∣
{
μ(t – x)

}′
t

∣
∣
∣
∣
{
μ(s – y)

}′
s

∣
∣dt ds.

Hence the following inequality is obtained for I i.e.:

I ≤ ε

∫ x+δ

x–δ

∫ y+δ

y–δ

Kλ

(√
(t – x) + (s – y)

)∣
∣
{
μ

(|x – t|)}′
t

∣
∣
∣
∣
{
μ

(|y – s|)}′
s

∣
∣dt ds

+ εKλ()
(
μ(δ)μ

(|y – y|) + μ(δ)μ
(|x – x|))

+ εKλ()μ
(|x – x|)μ

(|y – y|).

The remaining part of the proof is obvious by the hypotheses (.) and (.). Hence I → 
as λ → λ. Thus the proof is completed. �

The following theorem gives a pointwise approximation of the integral operators of type
(.) to the function f at a μ-generalized Lebesgue point of f ∈ L(R).

Theorem  Suppose that the hypothesis of Theorem  is satisfied for D = R
. If (x, y) is a

μ-generalized Lebesgue point of f ∈ L(R) then

lim
(x,y,λ)→(x,y,λ)

Lλ(f ; x, y) = f (x, y).
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Proof The proof of this theorem is quite similar to the proof of Theorem . in [] and
thus is omitted. �

5 Rate of convergence
In this section, we give a theorem concerning the rate of pointwise convergence.

Theorem  Suppose that the hypotheses of Theorem  and Theorem  are satisfied. Let


(λ, δ, x, y) =
∫ x+δ

x–δ

∫ y+δ

y–δ

Kλ

(√
(t – x) + (s – y)

)

× ∣
∣{μ

(|t – x|
)}′

t

∣
∣
∣
∣{μ

(|s – y|
)}′

s

∣
∣dt ds

for δ >  and the following assumptions be satisfied:
(i) 
(λ, δ, x, y) →  as (x, y,λ) → (x, y,λ) for some δ > .

(ii) For every ξ > 

Kλ(ξ ) = o
(

(λ, δ, x, y)

)

as (x, y,λ) → (x, y,λ).
(iii) For every ξ > 

∫∫

ξ≤√
s+t

Kλ

(√
t + s

)
dt ds = o

(

(λ, δ, x, y)

)

as (x, y,λ) → (x, y,λ).
Then at each μ-generalized Lebesgue point of f ∈ L(R) we have as (x, y,λ) → (x, y,λ)

∣
∣Lλ(f ; x, y) – f (x, y)

∣
∣ = o

(

(λ, δ, x, y)

)
.

Proof Under the hypotheses of Theorem  and Theorem  we can write

∣
∣Lλ(f ; x, y) – f (x, y)

∣
∣

≤ ε

∫ x+δ

x–δ

∫ y+δ

y–δ

Kλ

(√
(t – x) + (s – y)

)∣∣{μ
(|x – t|)}′

t

∣
∣
∣
∣{μ

(|y – s|)}′
s

∣
∣dt ds

+ εKλ()
(
μ(δ)μ

(|y – y|) + μ(δ)μ
(|x – x|))

+ εKλ()μ
(|x – x|)μ

(|y – y|)

+ Kλ

(
(
√

 – )δ/
√


)‖f ‖L(R) +

∣
∣f (x, y)

∣
∣
∫∫

(
√

–)δ/
√

≤√
s+t

Kλ

(√
t + s

)
dt ds

+
∣
∣f (x, y)

∣
∣
∣
∣
∣
∣

∫∫

R
Kλ

(√
(t – x) + (s – y)

)
dt ds – 

∣
∣
∣
∣.

From (i)-(iii) and using conditions of class A, we have the desired result i.e.,

∣
∣Lλ(f ; x, y) – f (x, y)

∣
∣ = o

(

(λ, δ, x, y)

)
. �
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Example  Let � = (,∞), λ = , and

Hλ(t, s) =


πλ
e

–(t+s)
λ .

To verify that Hλ(t, s) satisfies the hypotheses of Theorem  and Theorem  see [].
Let (x, y) = (, ), μ(t) = t and μ(s) = s. Hence we obtain


(λ, δ, x, y) =
∫ +δ

–δ

∫ +δ

–δ


πλ

e
–((t–x)+(s–y))

λ dt ds

=



(

Erf
(

δ – x

√

λ

)

+ Erf
(

x

√

λ

))(

Erf
(

δ – y

√

λ

)

+ Erf
(

y

√

λ

))

.

In order to find for which δ >  the condition (i) in Theorem  is satisfied, let 
(λ, δ, x, y) →
 as (x, y,λ) → (, , ). Hence

lim
(x,y,λ)→(,,)


(λ, δ, x, y) = 

if and only if δ = o(λ). Consequently, the following equality holds:


(λ, δ, x, y) = O(λ).

Finally, in order to get finite limit values from the expressions

lim
(x,y,λ)→(x,y,λ)

Kλ()μ
(|x – x|) = lim

(x,y,λ)→(,,)


πλ

e
–(x+y)

λ |x|,

lim
(x,y,λ)→(x,y,λ)

Kλ()μ
(|y – y|) = lim

(x,y,λ)→(,,)


πλ

e
–(x+y)

λ |y|,

the rates of convergence 
πλ

e
–(x+y)

λ → ∞ and |x| →  and also 
πλ

e
–(x+y)

λ → ∞ and
|y| →  must be equivalent. Note that |x| = |y| = O(λ).

Hence

∣
∣Lλ(f ; x, y) – f (x, y)

∣
∣ = o

(

(λ, δ, x, y)

)
= o(λ).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Faculty of Science, Karabuk University, Karabuk, Turkey. 2Department of Mathematics,
Faculty of Arts and Science, Gaziantep University, Gaziantep, Turkey. 3Department of Mathematics, Faculty of Science,
Ankara University, Tandogan, Ankara, Turkey.

Acknowledgements
The authors thank the referees for their valuable comments and suggestions for the improvement of the manuscript.

Received: 28 October 2014 Accepted: 27 February 2015



Uysal et al. Journal of Inequalities and Applications  (2015) 2015:94 Page 10 of 10

References
1. Taberski, R: Singular integrals depending on two parameters. Rocznicki Polskiego towarzystwa matematycznego,

Seria I. Prace matematyczne, VII (1962)
2. Gadjiev, AD: The order of convergence of singular integrals which depend on two parameters. In: Special Problems

of Functional Analysis and Their Applications to the Theory of Differential Equations and the Theory of Functions,
pp. 40-44. Izdat. Akad. Nauk Azerbaı̆džan. SSR., Baku (1968)

3. Rydzewska, B: Approximation des fonctions par des intégrales singulières ordinaires. Fasc. Math. 7, 71-81 (1973)
4. Karsli, H, Ibikli, E: Approximation properties of convolution type singular integral operators depending on two

parameters and of their derivatives in L1(a,b). In: Proc. 16th Int. Conf. Jangjeon Math. Soc., vol. 16, pp. 66-76 (2005)
5. Karsli, H, Ibikli, E: On convergence of convolution type singular integral operators depending on two parameters.

Fasc. Math. 38, 25-39 (2007)
6. Karsli, H: Convergence and rate of convergence by nonlinear singular integral operators depending on two

parameters. Appl. Anal. 85(6-7), 781-791 (2006)
7. Karsli, H: On the approximation properties of a class of convolution type nonlinear singular integral operators.

Georgian Math. J. 15(1), 77-86 (2008)
8. Karsli, H: Fatou type convergence of nonlinearm-singular integral operators. Appl. Math. Comput. 246, 221-228

(2014)
9. Bardaro, C, Gori Cocchieri, C: On the degree of approximation for a class of singular integrals. Rend. Mat. 4(4), 481-490

(1984) (in Italian)
10. Bardaro, C: On approximation properties for some classes of linear operators of convolution type. Atti Semin. Mat. Fis.

Univ. Modena 33(2), 329-356 (1984)
11. Bardaro, C, Mantellini, I: Pointwise convergence theorems for nonlinear Mellin convolution operators. Int. J. Pure Appl.

Math. 27(4), 431-447 (2006)
12. Bardaro, C, Vinti, G, Karsli, H: Nonlinear integral operators with homogeneous kernels: pointwise approximation

theorems. Appl. Anal. 90(3-4), 463-474 (2011)
13. Bardaro, C, Karsli, H, Vinti, G: On pointwise convergence of Mellin type nonlinearm-singular integral operators.

Commun. Appl. Nonlinear Anal. 20(2), 25-39 (2013)
14. Taberski, R: On double integrals and Fourier series. Ann. Pol. Math. 15, 97-115 (1964)
15. Siudut, S: On the convergence of double singular integrals. Comment. Math. Prace Mat. 28(1), 143-146 (1988)
16. Siudut, S: A theorem of Romanovski type for double singular integrals. Comment. Math. Prace Mat. 29, 277-289

(1989)
17. Yilmaz, MM, Serenbay, SK, Ibikli, E: On singular integrals depending on three parameters. Appl. Math. Comput. 218(3),

1132-1135 (2011)
18. Yilmaz, MM, Uysal, G, Ibikli, E: A note on rate of convergence of double singular integral operators. Adv. Differ. Equ.

2014, 287 (2014)
19. Angeloni, L, Vinti, G: Convergence and rate of approximation for linear integral operators in BV-ϕ spaces in

multidimensional setting. J. Math. Anal. Appl. 349, 317-334 (2009)
20. Angeloni, L, Vinti, G: Approximation with respect to Goffman-Serrin variation by means of non-convolution type

integral operators. Numer. Funct. Anal. Optim. 31, 519-548 (2010)
21. Bardaro, C, Karsli, H, Vinti, G: On pointwise convergence of linear integral operators with homogeneous kernel.

Integral Transforms Spec. Funct. 19(6), 429-439 (2008)
22. Costarelli, D, Vinti, G: Approximation by multivariate generalized sampling Kantorovich operator in the setting of

Orlicz spaces. Boll. UMI 4, 445-468 (2011)
23. Vinti, G, Zampogni, L: A unifying approach to convergence of linear sampling type operators in Orlicz spaces. Adv.

Differ. Equ. 16, 573-600 (2011)
24. Bochner, S, Chandrasekharan, K: Fourier Transforms. ix+219 pp. Annals of Mathematics Studies, vol. 19. Princeton

University Press, Princeton (1949)
25. Serenbay, SK, Dalmanoglu, O, Ibikli, E: On convergence of singular integral operators with radial kernels. In:

Approximation Theory XIV: San Antonio 2013. Springer Proceedings in Mathematics & Statistics, vol. 83, pp. 295-308
(2014)

26. Yilmaz, MM: On convergence of singular integral operators depending on three parameters with radial kernels. Int.
J. Math. Anal. 4(39), 1923-1928 (2010)

27. Ghorpade, SR, Limaye, BV: A Course in Multivariable Calculus and Analysis. xii+475 pp. Springer, New York (2010)


	A study on pointwise approximation by double singular integral operators
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Existence of the operator
	Pointwise convergence
	Rate of convergence
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


