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Abstract
We get a theorem which shows the existence of at least three solutions for some
elliptic system with Dirichlet boundary condition. We obtain this result by using the
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the infinite dimensional problem to the finite dimensional one. We also use critical
point theory on the reduced finite dimensional subspace.
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1 Introduction
In this paper we are concerned with multiple solutions for a class of systems of elliptic
equations with Dirichlet boundary condition

–�u = Fu (x, u, . . . , un) in �,

–�u = Fu (x, u, . . . , un) in �,

...

–�un = Fun (x, u, . . . , un) in �,

ui(x) = , i = , . . . , n, on ∂�,

(.)

where � is a bounded subset of Rn with smooth boundary ∂�, n ≥ , ui(x) ∈ W ,
 (�),

F : Rn × Rn → R is a C function such that F(x, θ ) = , θ = (, . . . , ) and Fui (x, u, . . . , un) =
∂F(x,u,...,un)

∂ui
, i = , . . . , n. Let U = (u, . . . , un) and ‖ · ‖Rn denote the Euclidean norm in Rn. Let

us define

dU F(x, U) = FU (x, U) = gradU F(x, U) =
(
Fu (x, u, . . . , un), . . . , Fun (x, u, . . . , un)

)

and

d
U F(U) · U = d

(
FU (x, U)

) · U ∀U ∈ E.

Let λ < λ ≤ · · · ≤ λk ≤ · · · be eigenvalues of the eigenvalue problem –�u = λu in �, u = 
on ∂�, and φk be an eigenfunction belonging to the eigenvalue λk , k ≥ .

We assume that F satisfies the following conditions:
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(F) F ∈ C(Rn × Rn, R), F(x, θ ) = , FU (x, θ ) = θ , x ∈ �, θ = (, . . . , ).
(F) There exist constants α and β (α, β are not eigenvalues of the elliptic eigenvalue

problem) such that α < β and

αI ≤ d
U F(x, U) ≤ βI ∀(x, U) ∈ Rn × Rn,

and there exists k ∈ N∗ such that αI < λkI < d
U F(x, U) < λk+I < βI for every U ,

where I is the n × n identity matrix.
(F) There exist eigenvalues λh+, . . . ,λh+m such that

λh < α < λh+ < · · · < λh+m < β < λh+m+,

where h ≥ , m ≥ .
(F) There exist γ and C such that λh+m < γ < β and

F(x, U) ≥ 

γ ‖U‖

Rn – C, ∀(x, U) ∈ Rn × Rn.

Some papers of Lee [–] concerning the semilinear elliptic system and some papers
of the other several authors [, ] have treated the system of this like nonlinear elliptic
equations. Some papers of Chang [] and Choi and Jung [] considered the existence and
multiplicity of weak solutions for nonlinear boundary value problems with asymptotically
linear term. The authors obtained some results for those problems by approaching the
variational method, critical point theory and the topological method.

Let W ,
 (�, R) be the Sobolev space with the norm

‖u‖
W ,

 (�,R)
=

∫

�

|∇u| dx for u ∈ W ,
 (�)

and the scalar product

(u, v)W ,
 (�,R) = (∇u,∇v)L(�,R).

Let E be a cartesian product of the Sobolev spaces W ,
 (�, R), i.e.,

E = W ,
 (�, R) × · · · × W ,

 (�, R).

We endow the Hilbert space E with the norm

‖U‖
E =

n∑

i=

‖ui‖
W ,

 (�)
,

where ‖ui‖
W ,

 (�,R)
=

∫
�

|∇ui(x)| dx. From now on we shall denote by W ,
 (�) instead of

W ,
 (�, R).
System (.) can be rewritten by

–�U = gradU F(x, U) in �,

U = θ on ∂�,

(.)



Jung and Choi Journal of Inequalities and Applications  (2015) 2015:96 Page 3 of 13

where –�U = (–�u, . . . , –�un) and θ = (, . . . , ). In this paper we are looking for weak
solutions of system (.) in E, that is, U = (u, . . . , un) ∈ E such that

∫

�

[–�U · V ] dx –
∫

�

FU (x, U) · V =  for all V ∈ E.

Our main result is the following.

Theorem . Assume that F satisfies conditions (F)-(F). Then system (.) has at least
three nontrivial weak solutions.

The proof of Theorem . is organized as follows: We approach the variational method
and use the finite dimensional reduction method for the dimension of the system, which
reduces the infinite dimensional problem to the finite dimensional one, and we get criti-
cal points of the functional on the infinite dimensional space E from that of the reduced
functional on the finite dimensional subspace of E. We also use critical point theory on
the reduced finite dimensional subspace. In Section , we approach the variational method
and the reduction method. We show that the reduced functional satisfies the (PS) condi-
tion. In Section , we prove Theorem ..

2 Reduction approach
We assume that F ∈ C(Rn × Rn, R), F(x, θ ) = , FU (x, θ ) = θ , θ = (, . . . , ) and there exist
constants α and β (α, β are not eigenvalues of the elliptic eigenvalue problem) such that
α < β and

αI ≤ d
UF(x, U) ≤ βI ∀(x, U) ∈ Rn × Rn,

and there exists k ∈ N∗ such that αI < λkI < d
UF(x, U) < λk+I < βI for every U , where

U = (u, . . . , un) and there exist eigenvalues λh+, . . . ,λh+m such that

λh < α < λh+ < · · · < λh+m < β < λh+m+,

where h ≥ , m ≥ .

Lemma . Let Fui (x, U) ∈ L(�), U = (u, . . . , ui, . . . , un), i = , . . . , n. Then all the solutions
of

–�U = gradU F(x, U)

belong to E.

Proof Let Fui (x, U) ∈ L(�). We note that {λn : |λn| < |c|} is finite. Then Fui (x, u, . . . , un) ∈
L(�), i = , . . . , n, can be expressed by

Fui (x, u, . . . , un) =
∞∑

k=

hkφk ,
∞∑

k=

h
k < ∞ for each i = , . . . , n.
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Then

(–�)–Fui (x, u, . . . , un) =
∑ 

λk
hkφk .

Hence we have the inequality

∥
∥(–�)–Fui (x, u, . . . , un)

∥
∥

W ,
 (�) =

∑
λk


λ

k
h

k ≤
∑

h
k < ∞,

which means that

∥∥(–�)–Fui (x, u, . . . , un)
∥∥

W ,
 (�) ≤ ∥∥Fui (x, u, . . . , un)

∥∥
L(�) < ∞,

so ‖ui‖W ,
 (�) < ∞. Thus

‖U‖E =

( n∑

i=

‖ui‖W ,
 (�)

) 


< ∞. �

By the following Lemma ., weak solutions of system (.) coincide with critical points
of the associated functional I

I ∈ C,(E, R),

I(U) =
∫

�

[


|∇U| – F(x, U)

]
dx, (.)

where U = (u, . . . , un) and
∫
�

|∇U| dx =
∑n

i=
∫
�

|∇ui| dx, n ≥ .

Lemma . Assume that F satisfies conditions (F)-(F). Then the functional I(U) is con-
tinuous, Fréchet differentiable with Fréchet derivative

DI(U) · V =
∫

�

[
(–�U) · V – FU (x, U) · V

]
dx.

Moreover, DI ∈ C. That is, I ∈ C.

Proof First we shall prove that I(U) is continuous. For U , V ∈ E,

∣∣I(U + V ) – I(U)
∣∣ =

∣
∣∣
∣




∫

�

(–�U – �V ) · (U + V ) dx –
∫

�

F(x, U + V ) dx

–



∫

�

(–�U) · U dx +
∫

�

F(x, U) dx
∣∣
∣∣

=
∣∣
∣∣




∫

�

(–�U · V – �V · U – �V · V ) dx

–
∫

�

(
F(x, U + V ) – F(x, U)

)
dx

∣
∣∣∣.

We have
∣∣
∣∣

∫

�

[
F(x, U + V ) – F(x, U)

]
dx

∣∣
∣∣ ≤

∣∣
∣∣

∫

�

[
FU (x, U) · V + O

(‖V‖E
)]

dx
∣∣
∣∣ = O

(‖V‖E
)
. (.)
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Thus we have

∣∣I(U + V ) – I(U)
∣∣ = O

(‖V‖E
)
, (.)

∣
∣I(U + V ) – I(U) – DI(U) · V

∣
∣ = O

(‖V‖
E
)
.

Next we shall prove that I(U) is Fréchet differentiable. For U , V ∈ E,

∣
∣I(U + V ) – I(U) – DI(U) · V

∣
∣

=
∣
∣∣
∣




∫

�

(–�U – �V ) · (U + V ) dx –
∫

�

F(x, U + V ) dx

–



∫

�

(–�U) · U dx +
∫

�

F(x, U) dx –
∫

�

(
–�U – FU (x, U)

) · V dx
∣∣
∣∣

=
∣∣
∣∣




∫

�

[–�U · V – �V · U – �V · V ] dx

–
∫

�

[
F(x, U + V ) – F(x, U)

]
dx –

∫

�

[(
–�U – FU (x, U)

) · V
]

dx
∣
∣∣∣.

By (.),

∥
∥I(U + V ) – I(U) – DI(U) · V

∥
∥ = O

(‖V‖
E
)
.

Thus I ∈ C. �

Let E = W ,
 (�, R)×· · ·×W ,

 (�, R) and let {e, e, . . . , en} be an orthonormal basis in Rn.
Then

L(�, Rn) =
⊕

m∈N

M(λm),

where N is a natural number and M(λm) = span{φme, . . . ,φmen} is the eigenspace of –�

with eigenvalue λm, dim M(λm) = n, m = , , . . . . Let

L =
⊕

–∞<λm<α

M(λm), L =
⊕

α<λm<β

M(λm), L =
⊕

β<λm<∞
M(λm).

Then

L(�, Rn) = L ⊕ L ⊕ L. (.)

For each X ∈ L(�, Rn), we have the composition

X = X + X + X,

where X ∈ L, X ∈ L, X ∈ L. Let P be the orthogonal projection from L(�, Rn) onto
L, P be that from L(�, Rn) onto L and P be that from L(�, Rn) onto L. Let

V = (–�)–L, W = (–�)–L, W = (–�)–L.
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Then E = V ⊕ W ⊕ W, and for U ∈ E, U has the decomposition U = Y + Z + Z ∈ E,
where

Y = (–�)–X ∈ V , Z = (–�)–X ∈ W, Z = (–�)–X ∈ W. (.)

Let W = W ⊕ W. Then W is the orthogonal complement of V in E. Let P : E → V be the
orthogonal projection of E onto V and I – P : E → W denote that of E onto W . Then every
element U ∈ E is expressed by U = Y + Z, Y = PU , Z = (I – P)U . Then (.) is equivalent
to the two systems in the two unknowns Y and Z:

–�Y = P
(
gradU F(x, Y + Z)

)
in �, (.)

–�Z = (I – P)
(
gradU F(x, Y + Z)

)
in �, (.)

Y = (, . . . , ), Z = (, . . . , ) on ∂�.

Let Y ∈ V be fixed and consider the function h : W × W → R defined by

h(Z, Z) = I(Y + Z + Z).

The function h has continuous partial Fréchet derivatives Dh and Dh with respect to its
first and second variables given by

Dih(Z, Z) · Xi = DI(Y + Z + Z) · Xi (.)

for Xi ∈ Wi, i = , . By Lemma ., I is a functional of class C.
By the following Lemma ., we can get critical points of the functional I(U) on the infi-

nite dimensional space E from that of the functional on the finite dimensional subspace V .

Lemma . (Reduction lemma) Assume that F satisfies conditions (F)-(F). Then
(i) there exists a unique solution Z ∈ W of the equation

–�Z = (I – P)
(
gradU F(x, Y + Z)

)
in �,

Z = (, . . . , ) on ∂�.

If we put Z = �(Y ), then � is continuous on V and satisfies a uniform Lipschitz condition
in V with respect to the L norm (also norm ‖ · ‖). Moreover,

DI
(
Y + �(Y )

) · X =  for all X ∈ W .

(ii) There exists m <  such that if Z and X are in W and Z ∈ W, then

(
Dh(Z, Z) – Dh(X, Z)

)
(Z – X) ≤ m‖Z – X‖.

(iii) There exists m >  such that if Z and X are in W and Z ∈ W, then

(
Dh(Z, Z) – Dh(Z, X)

) · (Z – X) ≥ m‖Z – X‖.



Jung and Choi Journal of Inequalities and Applications  (2015) 2015:96 Page 7 of 13

(iv) If Ĩ : V → R is defined by Ĩ(Y ) = I(Y + �(Y )), then Ĩ has a continuous Fréchet deriva-
tive DĨ with respect to Y , and

DĨ(Y ) · B = DI
(
Y + �(Y )

) · B for all Y , B ∈ V . (.)

(v) Y ∈ V is a critical point of Ĩ if and only if Y + �(Y) is a critical point of I .

Proof (i) Let δ = α+β

 . Equation (.) is equivalent to

Z = (–� – δ)–(I – P)
(
gradU F(x, Y + Z) – δ(Y + Z)

)
. (.)

System (.) can be rewritten as

zi = (–� – δ)–(I – P)
(
Fui (x, y + z, . . . , yn + zn) – δ(y + z, . . . , yn + zn)

)
,

i = , , . . . , n, (.)

y = · · · = yn = , z = · · · = zn =  on ∂�,

where ui = yi + zi, i = , , . . . , n, U = (u, . . . , un), Y = (y, . . . , yn), Z = (z, . . . , zn). The oper-
ator (–� – δ)–(I – P) is a self-adjoint, compact and linear map from (I – P)L(�, R) into
itself, and by condition (F) its L norm is min{λh+m+ – δ, δ – λh}–. Let U, U ∈ E. Since

(
Fui (x, U) – δU

)
–

(
Fui (x, U) – δU

)

≤ max
{|α – δ|, |β – δ|}‖U – U‖Rn =

α + β


‖U – U‖Rn ,

it follows that the right-hand side of (.) defines, for fixed Y ∈ V , a Lipschitz mapping of
(I – P)L(�, R) into itself with Lipschitz constant r = (min{λh+m+ – δ, δ – λh})– × α+β

 < 
because λh+m+ – δ > α+β

 and δ – λh > α+β

 . Therefore, by the contraction mapping prin-
ciple, for each given Y ∈ V , i = , , . . . , n, there exists a unique zi ∈ (I – P)L(�, R) which
satisfies (.). Thus, for fixed Y ∈ V , there exists a unique Z ∈ (I – P)L(�, Rn) which sat-
isfies (.). If �(Y ) denotes the unique Z ∈ (I – P)L(�, Rn) which solves (.), then � is
continuous and satisfies a uniform Lipschitz condition in Y with respect to the L norm
(also norm ‖ · ‖E). In fact, if Z = �(Y) and Z = �(Y), then

‖Z – Z‖L(�,Rn) =
∥∥(–� – δ)–(I – P)

(
gradU F(x, Y + Z) – δ(Y + Z)

)

–
(
gradU F(x, Y + Z) – δ(Y + Z)

)∥∥
L(�,Rn)

≤ r
∥∥(Y + Z) – (Y + Z)

∥∥
L(�,Rn)

≤ r
(‖Y – Y‖L(�,Rn) + ‖Z – Z‖L(�,Rn)

)

≤ r‖Y – Y‖E + r‖Z – Z‖E .

Hence

‖Z – Z‖L(�,Rn) ≤ C‖Y – Y‖L(�,Rn), C =
r

 – r
.
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Let U = Y + Z, Y ∈ V and Z = �(Y ). If X ∈ (I – P)L(�, Rn) ∩ E,

DI
(
Y + �(Y )

) · X =
∫

�

[
–�

(
Y + �(Y )

) · X – P
((

gradU F(x, Y + Z) – δ(Y + Z)
) · X

)

– (I – P)
((

gradU F(x, Y + Z) – δ(Y + Z)
) · X

)]
dx.

It follows from (.) that
∫

�

[
–�Z(x) · X(x) – gradU F

(
x, Y (x) + Z(x)

) · X(x)
]

dx = .

Since
∫

�

–�Y (x) · X(x) dx = ,

we have

DI
(
Y + �(Y )

) · X = . (.)

(ii) If Z and X are in W and Z ∈ W, then

(
Dh(Z, Z) – Dh(X, Z)

)
(Z – X) =

∫

�

[∣∣∇(Z – X)
∣∣ –

(
gradU F(x, Y + Z + Z)

– gradU F(x, Y + X + Z)
) · (Z – X)

]
dx.

Since
∫
�

|∇(Z – X)| = ‖Z – X‖
E ≤ λh‖Z – X‖

L(�,Rn) and

∫

�

(
gradU F(x, Y + Z + Z) – gradU F(x, Y + X + Z)

) · (Z – X)

≥ α‖Z – X‖L(�,Rn) ≥ α

λh
‖Z – X‖E ,

(
Dh(Z, Z) – Dh(X, Z)

)
(Z – X) ≤

(
 –

α

λh

)
‖Z – X‖

E ,

where  – α
λh

< .
(iii) Similarly, using the fact that

∫
�

|∇(Z – X)| dx = ‖Z – X‖
E ≥ λh+m+‖Z –

X‖
L(�,Rn) and

∫

�

(
gradU F(x, Y + Z + Z) – gradU F(x, Y + Z + X)

) · (Z – X)

≤ β‖Z – X‖L(�,Rn) ≤ β

λh+m+
‖Z – X‖

E ,

we see that if Z and X are in W and Z ∈ W, then

(
Dh(Z, Z) – Dh(Z, X)

)
(Z – X) ≥

(
 –

β

λh+m+

)
‖Z – X‖

E ,

where ( – β

λh+m+
) > .
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(iv) Since the functional I has a continuous Fréchet derivative DI , Ĩ has a continuous
Fréchet derivative DĨ with respect to Y .

(v) Suppose that there exists Y ∈ V such that DĨ(Y) = . From DĨ(Y )·B = DI(Y +�(Y ))·
B for all Y , B ∈ V , DI(Y +�(Y))(B) = DĨ(Y)(B) =  for all B ∈ V . Since DI(Y +�(Y )) ·B =
 for all B ∈ W and E is the direct sum of V and W , it follows that DI(Y + �(Y)) = .
Thus Y + �(Y) is a solution of (.). Conversely, if U is a solution of (.) and Y = PU ,
then DĨ(Y ) = . �

Remark We note that if Y ∈ V , then �(Y ) = .

3 Proof of Theorem 1.1
Lemma . ((PS) condition) Assume that F satisfies conditions (F)-(F). Then –Ĩ(v) is
bounded from below and Ĩ(v) satisfies the Palais-Smale condition.

Proof We have

Ĩ(Y ) = I
(
Y + �(Y ) + �(Y )

)

=



∫

�

(
–�

(
Y + �(Y ) + �(Y )

) · (Y + �(Y ) + �(Y )
))

dx

–
∫

�

F
(
x, Y + �(Y ) + �(Y )

)
dx

=



∫

�

(
–�

(
Y + �(Y )

) · (Y + �(Y )
))

dx

–
∫

�

F
(
x, Y + �(Y )

)
dx +




∫

�

(
–��(Y )

) · �(Y ) dx

–
∫

�

[
F
(
x, Y + �(Y ) + �(Y )

)
– F

(
x, Y + �(Y )

)]
dx.

We claim that




∫

�

(
–��(Y )

) · �(Y ) dx –
∫

�

[
F
(
x, Y + �(Y ) + �(Y )

)
– F

(
x, Y + �(Y )

)]
dx

≤ .

In fact, we note that




∫

�

(
–��(Y )

) · �(Y ) dx

= –



∫

�

(
–��(Y )

) · �(Y ) dx +
∫

�

(
–��(Y )

) · �(Y ) dx

= –



∫

�

(
–��(Y )

) · �(Y ) dx +
∫

�

FU
(
x, Y + �(Y ) + �(Y )

) · �(Y ) dx

by (.). We also note that

F
(
x, Y + �(Y ) + �(Y )

)
– F

(
x, Y + �(Y )

)

=
∫ 


FU

(
x, Y + �(Y ) + t�(Y )

) · �(Y ) dt.
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Thus we have




∫

�

(
–��(Y )

) · �(Y ) dx –
∫

�

[
F
(
x, Y + �(Y ) + �(Y )

)
– F

(
x, Y + �(Y )

)]
dx

= –



∫

�

(
–��(Y )

) · �(Y ) dx +
∫

�

FU
(
x, Y + �(Y ) + �(Y )

) · �(Y ) dx

–
∫ 



∫

�

FU
(
x, Y + �(Y ) + t�(Y )

) · �(Y ) dx dt.

We note that

d
dt

(
FU

(
x, Y + �(Y ) + t�(Y )

) · t�(Y )
)

=
(
d

U F
(
x, Y + �(Y ) + t�(Y )

) · t�(Y )
) · �(Y )

+ FU
(
x, Y + �(Y ) + t�(Y )

) · �(Y ),

which leads to

∫ 



d
dt

(
FU

(
x, Y + �(Y ) + t�(Y )

) · t�(Y )
)

dt

=
∫ 



(
d

UF
(
x, Y + �(Y ) + t�(Y )

) · t�(Y )
) · �(Y ) dt

+
∫ 


FU

(
x, Y + �(Y ) + t�(Y )

) · �(Y ) dt.

That is,

FU
(
x, Y + �(Y ) + �(Y )

) · �(Y )

=
∫ 



(
d

UF
(
x, Y + �(Y ) + t�(Y )

) · t�(Y )
) · �(Y ) dt

+
∫ 


FU

(
x, Y + �(Y ) + t�(Y )

) · �(Y ) dt.

Thus we have

FU
(
x, Y + �(Y ) + �(Y )

) · �(Y ) –
∫ 


FU

(
x, Y + �(Y ) + t�(Y )

) · �(Y ) dt

=
∫ 



(
d

UF
(
x, Y + �(Y ) + t�(Y )

) · t�(Y )
) · �(Y ) dt.

Thus we have




∫

�

(
–��(Y )

) · �(Y ) dx –
∫

�

[
F
(
x, Y + �(Y ) + �(Y )

)
– F

(
x, Y + �(Y )

)]
dx

= –



∫

�

(
–��(Y )

) · �(Y ) dx +
∫

�

FU
(
x, Y + �(Y ) + �(Y )

) · �(Y ) dx

–
∫ 



∫

�

FU
(
x, Y + �(Y ) + t�(Y )

) · �(Y ) dx dt
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= –



∫

�

(
–��(Y )

) · �(Y ) dx

+
∫ 



∫

�

(
d

UF
(
x, Y + �(Y ) + t�(Y )

) · t�(Y )
) · �(Y ) dx dt ≤ 

by condition (F). Thus by condition (F) we have

Ĩ(Y ) ≤ 


∫

�

(
–�

(
Y + �(Y )

) · (Y + �(Y )
))

dx –
∫

�

F
(
x, Y + �(Y )

)
dx

≤ 


(λh+m – γ )
∥
∥Y + �(Y )

∥
∥

E + C → –∞ as
∥
∥Y + �(Y )

∥
∥

E → ∞. (.)

Thus – ˜I(Y ) is bounded from below and satisfies the (PS) condition. �

Lemma . Assume that F satisfies conditions (F)-(F). Then Y = θ , θ = (, . . . , ) is nei-
ther minimum nor degenerate.

Proof By (.) we have

Ĩ(Y ) ≤ 


∫

�

(
–�

(
Y + �(Y )

) · (Y + �(Y )
))

dx –
∫

�

F
(
x, Y + �(Y )

)
dx. (.)

Since

F
(
x, Y + �(Y )

)
=

∫ 



dF
dt

(
x, t

(
Y + �(Y )

))
dt

=
∫ 


FU

(
x, t

(
Y + �(Y )

)) · (Y + �(Y )
)

dt,

we have that
∣∣
∣∣

∫

�

F
(
x, Y + �(Y )

)
–




∫

�

d
U F(x, θ ) · (Y + �(Y )

) · (Y + �(Y )
)

dx
∣∣
∣∣

=
∣∣
∣∣

∫ 



∫

�

[
FU

(
x, t

(
Y + �(Y )

))
–

(
d

U F(x, θ ) · t
(
Y + �(Y )

)) · (Y + �(Y )
)]

dx dt
∣∣
∣∣

≤ 


sup
<t<

∥
∥d

U F
(
x, t

(
Y + �(Y )

))
– d

U F(x, θ )
∥
∥
L(V ,V )

∥
∥Y + �(Y )

∥
∥

E .

Thus we have

–
∫

�

F
(
x, Y + �(Y )

)

≤ –



∫

�

(
d

UF(x, θ ) · (Y + �(Y )
)) · (Y + �(Y )

)
+ o

(∥∥Y + �(Y )
∥
∥)

E .

Since � ∈ C(V , W), it follows that if ‖Y‖ → , then ‖�(Y )‖E = O(‖Y‖E) because
�(θ ) = θ . Thus

∥∥Y + �(Y )
∥∥

E = O
(‖Y‖E

)
.
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Since FU (x, θ ) = θ , there exists a bounded self-adjoint operator A ∈ L(E, E) which com-
mutes with Po and P such that

λh+I ≤ A ≤ d
U F(x, θ ).

Thus we have

Ĩ(Y ) ≤ 


∫

�

(
–�

(
Y + �(Y )

) · (Y + �(Y )
))

dx

–



∫

�

(
d

UF(x, θ ) · (Y + �(Y )
)) · (Y + �(Y )

)
dx + o

(‖Y‖
E
)

≤ 


∫

�

(
–�

(
Y + �(Y )

) · (Y + �(Y )
))

dx

–



∫

�

A
(
Y + �(Y )

) · (Y + �(Y )
)

+ o
(‖Y‖

E
)

=



∫

�

(
–��(Y ) · �(Y )

)
dx –




∫

�

A
(
�(Y )

) · �(Y ) +



∫

�

(–�Y · Y ) dx

–



∫

�

A(Y ) · Y + o
(‖Y‖

E
)

as ‖Y‖E → . Since λh+I ≤ A, it follows that




∫

�

(
–��(Y ) · �(Y )

)
dx –




∫

�

A
(
�(Y )

) · �(Y )

≤ 


∫

�

(
–��(Y ) · �(Y )

)
dx –




∫

�

λh+�(Y ) · �(Y ) ≤ .

Therefore we have

Ĩ(Y ) ≤ 


∫

�

(–�Y · Y ) dx –



∫

�

A(Y ) · Y + o
(‖Y‖

E
)

≤ 


∫

�

[
(–�Y ) · Y – λh+Y ]dx + o

(‖Y‖
E
)

as ‖Y‖E → . Similarly we can choose a bounded self-adjoint operator B ∈ L(E, E) which
commutes with Po and P such that

d
U F(x, θ ) ≤ B ≤ λh+m+I.

This leads to

Ĩ(Y ) ≥ 


∫

�

(–�Y · Y ) dx –



∫

�

B(Y ) · Y + o
(‖Y‖

E
)

≥ 


∫

�

[
(–�Y ) · Y – λh+m+Y ]dx + o

(‖Y‖
E
)

as ‖Y‖E → . Thus Y = θ , θ = (, . . . , ) is neither minimum nor degenerate. �
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Lemma . Assume that F satisfies conditions (F)-(F). Then

Ĩ(Y ) → –∞ as ‖Y‖E → ∞.

Proof The proof can be found in the proof of Lemma .. �

Proof of Theorem . By Lemma ., Ĩ(Y ) is continuous and Fréchet differentiable in V . By
Lemma ., –Ĩ(Y ) satisfies the (PS) condition. By Lemma ., Y = θ is neither minimum
nor degenerate. By Lemma ., Ĩ(Y ) → –∞ as ‖Y‖E → ∞. We note that maxY∈V Ĩ(Y ) > 
is another critical value of Ĩ . Thus there exists the third critical point of Ĩ(Y ). Thus (.)
has at least three nontrivial solutions. �
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