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Abstract
In this paper, we introduce Chlodowsky-type q-Bernstein-Stancu-Kantorovich
operators on the unbounded domain. We should note that this generalization
includes various kinds of operators which have not been introduced earlier. We
calculate the error of approximation of these operators by using the modulus of
continuity and Lipschitz-type functionals. Finally, we give generalization of the
operators and investigate their approximations.
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1 Introduction
Generalizations of Bernstein polynomials and their q-analogues have been an inten-
sive research area of approximation theory (see [–]). In this paper, we introduce the
Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators and investigate their ap-
proximation properties.

Firstly, let us recall the following notions of q-integers []. Let q > . For any integer
k ≥ , the q-integer [k]q = [k] is defined by

[k] =

{
( – qk)/( – q), q �= ,
k, q = ,

[] = ,

the q-factorial [k]q! = [k]! is defined by

[k]! =

{
[k][k – ] · · · [], k = , , , . . . ,
, k = 

and for integers n ≥ k ≥ , q-binomial coefficients are defined by
[

n
k

]
=

[n]!
[n – k]![k]!

.

In , the q-based Bernstein-Schurer operators were defined by Muraru [] as

Bp
n(f ; q; x) =

n+p∑
k=

f
(

[k]
[n]

)[
n + p

k

]
xk

n+p–k–∏
s=

(
 – qsx

)
,  ≤ x ≤ . (.)
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Then she obtained the Korovkin-type theorem and the order of convergence by using
the modulus of continuity. She also mentioned that if q → – in (.), the operators re-
duce to the Schurer operators considered by Schurer [] and if p =  in (.), they con-
tain the q-Bernstein operators []. After that, different approximation properties of the
q-Bernstein-Schurer operators were studied in [].

Recently, the q-Bernstein-Schurer-Kantorovich operators were defined [] as

Kp
n (f ; q; x) =

n+p∑
k=

[
n + p

k

]
xk

n+p–k–∏
s=

(
 – qsx

)

×
∫ 


f
(

[k]
[n + ]

+
 + (q – )[k]

[n + ]
t
)

dqt. (.)

Then, the approximation rates of the q-Bernstein-Schurer-Kantorovich operators were
given by means of Lipschitz class functionals and the first and the second modulus of
continuity.

Notice that if we choose p =  in (.), we get the q-Bernstein-Kantorovich operators
which were defined by Mahmudov and Sabancıgil in []. We should also mention that in
[] the authors defined a different version of q-Bernstein-Kantorovich operators, where
they used the usual integral instead of q-integral in the definition.

In , the q-analogue of Bernstein-Schurer-Stancu operators Sα,β
n,p : C[,  + p] →

C[, ] was introduced by Agrawal et al. in [] by

S(α,β)
n,p (f ; q; x) =

n+p∑
k=

f
(

[k] + α

[n] + β

)[
n
k

]
xk

n–k–∏
s=

(
 – qsx

)
,

where α and β are real numbers which satisfy  ≤ α ≤ β and also p is a non-negative
integer.

Then, Ren and Zeng introduced the Kantorovich-type-q-Bernstein-Stancu operators
[]. They investigated the statistical approximation properties.

On the other hand, Karslı and Gupta [] introduced q-Chlodowsky operators as fol-
lows:

Cn,q(f ; x) =
n∑

k=

f
(

[k]
[n]

bn

)[
n
k

](
x
bn

)k n–k–∏
s=

(
 – qs x

bn

)
,  ≤ x ≤ bn,

where n ∈ N and (bn) is a positive increasing sequence with limn→∞ bn = ∞. Then, they
investigated the approximation properties of Cn,q(f ; x).

Recently, the Chlodowsky variant of q-Bernstein-Schurer-Stancu operators was intro-
duced by the authors in [] as

C(α,β)
n,p (f ; q; x) =

n+p∑
k=

f
(

[k] + α

[n] + β
bn

)[
n + p

k

](
x
bn

)k n+p–k–∏
s=

(
 – qs x

bn

)
, (.)

where n ∈N and p ∈ N and α,β ∈R with  ≤ α ≤ β ,  ≤ x ≤ bn,  < q < , and Korovkin-
type approximation theorems were proved in different function spaces. Moreover, the er-
ror of approximation was computed by using the modulus of continuity and Lipschitz-type
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functionals. Also, the generalization of the Chlodowsky variant of q-Bernstein-Schurer-
Stancu operators was studied. Notice that C(,)

n,p (f ; q; x) gives the q-Bernstein-Schurer-
Chlodowsky operators which have not been defined yet, and additionally taking p = ,
we get the q-Bernstein-Chlodowsky operators []. On the other hand, from [] the first
three moments of C(α,β)

n,p (f ; q; x) are as follows:

(i) C(α,β)
n,p (; q; x) = ,

(ii) C(α,β)
n,p (t; q; x) =

[n + p]x + αbn

[n] + β
,

(iii) C(α,β)
n,p

(
t; q; x

)
=


([n] + β)

{
[n + p – ][n + p]qx + (α + )[n + p]bnx + αb

n
}

.

The organization of this paper is as follows. In Section , we introduce the Chlodowsky-
type q-Bernstein-Stancu-Kantorovich operators and calculate the moments for them. In
Section , Korovkin-type theorems are proved. In Section , we obtain the rate of con-
vergence of the approximation process in terms of the first and the second modulus of
continuity and also by means of Lipschitz class functions. In Section , we study the gen-
eralization of the Kantorovich-Stancu type generalization of q-Bernstein-Chlodowsky op-
erators and study their approximation properties.

2 Construction of the operators
The Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators are introduced as

K (α,β)
n,p (f ; q; x) :=

n+p∑
k=

[
n + p

k

](
x
bn

)k n+p–k–∏
s=

(
 – qs x

bn

)

×
∫ 


f
(

( + (q – )[k])t + [k] + α

[n + ] + β
bn

)
dt, (.)

where n ∈ N and p ∈ N and α,β ∈ R with  ≤ α ≤ β ,  ≤ x ≤ bn,  < q < . Obviously,
K (α,β)

n,p is a linear and positive operator. We should notice that if we choose p = α = β =  in
(.) and taking into account that ( + (q – )[k])t = qkt, the operator K (α,β)

n,p (f ; q; x) reduces
to the Chlodowsky variant of the q-Bernstein Kantorovich operator [].

First of all let us give the following lemma which will be used throughout the paper.

Lemma . Let K (α,β)
n,p (f ; q; x) be given in (.). Then we have

(i) K (α,β)
n,p (; q; x) = ,

(ii) K (α,β)
n,p (t; q; x) =

[n + p][]x + (α + )bn

([n + ] + β)
,

(iii) K (α,β)
n,p

(
t; q; x

)
=


([n + ] + β)

{
[]


[n + p – ][n + p]qx

+
(

q + q + 


+ []α
)

[n + p]bnx +
(

α + α +



)
b

n

}
,

(iv) K (α,β)
n,p

(
(t – x); q; x

)
=

(
[n + p][]

([n + ] + β)
– 

)
x +

(α + )bn

([n + ] + β)
,
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(v) K (α,β)
n,p

(
(t – x); q; x

)
=

(
[][n + p – ][n + p]q

([n + ] + β) –
[][n + p]
[n + ] + β

+ 
)

x

+
(

(q + q +  + []α)[n + p]
([n + ] + β) –

(α + )
[n + ] + β

)
bnx

+
(α + α + )b

n
([n + ] + β) .

Proof (i) Using (.) and Cn,q(; x) = , we get

K (α,β)
n,p (; q; x) =

n+p∑
k=

[
n + p

k

](
x
bn

)k n+p–k–∏
s=

(
 – qs x

bn

)
= C(α,β)

n,p (; q; x) = . (.)

(ii) After some calculations, we obtain

K (α,β)
n,p (t; q; x)

=
n+p∑
k=

[
n + p

k

](
x
bn

)k n+p–k–∏
s=

(
 – qs x

bn

)∫ 



(
( + (q – )[k])t + [k] + α

[n + ] + β
bn

)
dt

=
n+p∑
k=

[
n + p

k

](
x
bn

)k n+p–k–∏
s=

(
 – qs x

bn

)(
[k] + α

[n + ] + β
bn +

 + (q – )[k]
([n + ] + β)

bn

)

=
[n + p][]x + (α + )bn

([n + ] + β)
.

Whence the result.
(iii) By (.) we can write

K (α,β)
n,p

(
t; q; x

)

=
n+p∑
k=

[
n + p

k

](
x
bn

)k n+p–k–∏
s=

(
 – qs x

bn

)∫ 



(
( + (q – )[k])t + [k] + α

[n + ] + β
bn

)

dt

=
n+p∑
k=

[
n + p

k

](
x
bn

)k n+p–k–∏
s=

(
 – qs x

bn

)
b

n
([n + ] + β)

{(
(q – )


+ q

)
[k]

+
(
 + []α

)
[k] + α + α +




}
.

After some calculations as in (i) and (ii), we get the desired result.
(iv) Using (i) and (ii), we get

K (α,β)
n,p

(
(t – x); q; x

)
= K (α,β)

n,p (t; q; x) – xK (α,β)
n,p (; q; x)

=
(

[n + p][]
([n + ] + β)

– 
)

x +
(α + )bn

([n + ] + β)
.

(v) It is known that

K (α,β)
n,p

(
(t – x); q; x

)
= K (α,β)

n,p
(
t; q; x

)
– xK (α,β)

n,p (t; q; x) + xK (α,β)
n,p (; q; x).

Then we obtain the result directly. �
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Lemma . For the second central moment, if we take supremum on [, bn], we get the
following estimate:

K (α,β)
n,p

(
(t – x); q; x

) ≤ b
n

{∣∣∣∣ [][n + p – ][n + p]q
([n + ] + β) –

[][n + p]
[n + ] + β

+ 
∣∣∣∣

+
∣∣∣∣ (q + q +  + []α)[n + p]

([n + ] + β) –
(α + )

[n + ] + β

∣∣∣∣
+

(α + α + )
([n + ] + β)

}
.

3 Korovkin-type approximation theorem
In this section, we study Korovkin-type approximation theorems of Chlodowsky-type
q-Bernstein-Stancu-Kantorovich operators. Let Cρ denote the space of all continuous
functions f such that the following condition

∣∣f (x)
∣∣ ≤ Mf ρ(x), –∞ < x < ∞

is satisfied.
It is clear that Cρ is a linear normed space with the norm

‖f ‖ρ = sup
–∞<x<∞

|f (x)|
ρ(x)

.

The following theorems play an important role in our investigations.

Theorem . (See []) There exists a sequence of positive linear operators Un, acting from
Cρ to Cρ , satisfying the conditions

lim
n→∞

∥∥Un(; x) – 
∥∥

ρ
= , (.)

lim
n→∞

∥∥Un(φ; x) – φ
∥∥

ρ
= , (.)

lim
n→∞

∥∥Un
(
φ; x

)
– φ∥∥

ρ
= , (.)

where φ(x) is a continuous and increasing function on (–∞,∞) such that limx→±∞ φ(x) =
±∞ and ρ(x) =  + φ, and there exists a function f ∗ ∈ Cρ for which limn→∞ ‖Unf ∗ –
f ∗‖ρ > .

Theorem . (See []) Conditions (.), (.), (.) imply

lim
n→∞‖Unf – f ‖ρ = 

for any function f belonging to the subset C
ρ := {f ∈ Cρ : lim|x|→∞ f (x)

ρ(x) is finite}.

Let us choose ρ(x) =  + x and consider the operators:

U (α,β)
n (f ; q; x) =

{
K (α,β)

n,p (f ; q; x) if x ∈ [, bn],
f (x) if x ∈ [,∞)/[, bn].
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It should be mentioned that the operators U (α,β)
n act from C+x to C+x . For all f ∈ C+x ,

we have

∥∥U (α,β)
n (f ; q; ·)∥∥+x ≤ sup

x∈[,bn]

|K (α,β)
n,p (f ; q; x)|

 + x + sup
bn<x<∞

|f (x)|
 + x

≤ ‖f ‖+x

[
sup

x∈[,∞)

|K (α,β)
n,p ( + t; q; x)|

 + x + 
]

.

Therefore, it is clear from Lemma . that

∥∥U (α,β)
n (f ; q; ·)∥∥+x ≤ M‖f ‖+x

provided that q := (qn) with  < qn < , limn→∞ qn = , limn→∞ qn
n = N < ∞ and

limn→∞ bn
[n] = . We have the following approximation theorem.

Theorem . For all f ∈ C
+x , we have

lim
n→∞

∥∥U (α,β)
n (f ; qn; ·) – f (·)∥∥+x = 

provided that q := (qn) with  < qn < , limn→∞ qn = , limn→∞ qn
n = N < ∞ and

limn→∞ bn
[n] = .

Proof With help of Theorem . and Lemma .(i), (ii) and (iii), we have the following
estimates, respectively:

sup
x∈[,∞)

|U (α,β)
n (; qn; x) – |

 + x = sup
≤x≤bn

|K (α,β)
n (; qn; x) – |

 + x = ,

sup
x∈[,∞)

|U (α,β)
n (t; qn; x) – t|

 + x

= sup
≤x≤bn

|K (α,β)
n (t; qn; x) – x|

 + x ≤ sup
≤x≤bn

| [n+p][]
([n+]+β) – |x + (α+)bn

([n+]+β)

( + x)

≤
∣∣∣∣ [n + p][]
([n + ] + β)

– 
∣∣∣∣ +

(α + )bn

([n + ] + β)
→ 

and

sup
x∈[,∞)

|U (α,β)
n (t; qn; x) – t|

 + x

= sup
≤x≤bn

|K (α,β)
n (t; qn; x) – x|

 + x

≤ sup
≤x≤bn


 + x

{∣∣∣∣ []


[n + p – ][n + p]q
([n + ] + β) – 

∣∣∣∣x

+
(

q + q + 


+ []α
)

[n + p]bn

([n + ] + β) x +
(

α + α +



)
b

n
([n + ] + β)

}
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≤
{∣∣∣∣ []


[n + p – ][n + p]q

([n + ] + β) – 
∣∣∣∣

+
(

q + q + 


+ []α
)

[n + p]bn

([n + ] + β) +
(

α + α +



)
b

n
([n + ] + β)

}
→ 

whenever n → ∞, since limn→∞ qn =  and bn
[n] =  as n → ∞. �

Lemma . Let A be a positive real number independent of n and f be a continuous
function which vanishes on [A,∞]. Assume that q := (qn) with  < qn < , limn→∞ qn = ,
limn→∞ qn

n = N < ∞ and limn→∞
b

n
[n] = . Then we have

lim
n→∞ sup

≤x≤bn

∣∣K (α,β)
n,p (f ; qn; x) – f (x)

∣∣ = .

Proof From the hypothesis on f , one can write |f (x)| ≤ M (M > ). For arbitrary small
ε > , we have

∣∣∣∣f
(

( + (q – )[k])t + [k] + α

[n + ] + β
bn

)
– f (x)

∣∣∣∣
< ε +

M
δ

(
( + (q – )[k])t + [k] + α

[n + ] + β
bn – x

)

for x ∈ [, bn] and δ = δ(ε). Using the following equality

n+p∑
k=

[
n + p

k

](
x
bn

)k n+p–k–∏
s=

(
 – qs x

bn

)∫ 



(
( + (q – )[k])t + [k] + α

[n + ] + β
bn – x

)

dt

= K (α,β)
n,p

(
(t – x); qn; x

)
,

we get by Lemma . that

sup
≤x≤bn

∣∣K (α,β)
n,p (f ; qn; x) – f (x)

∣∣
≤ ε +

M
δ

[∣∣∣∣ [][n + p – ][n + p]qn

([n + ] + β) –
[][n + p]
[n + ] + β

+ 
∣∣∣∣b

n

+
∣∣∣∣ (q

n + qn +  + []α)[n + p]
([n + ] + β) –

(α + )
[n + ] + β

∣∣∣∣b
n +

(α + α + )b
n

([n + ] + β)

]
.

Since  < qn < , limn→∞ qn = , limn→∞ qn
n = N < ∞ and limn→∞

b
n

[n] = , we have the de-
sired result. �

Theorem . Let f be a continuous function on the semi-axis [,∞) and

lim
x→∞ f (x) = kf < ∞.

Assume that q := (qn) with  < qn < , limn→∞ qn = , limn→∞ qn
n = K < ∞ and

limn→∞
b

n
[n] = . Then

lim
x→∞ sup

≤x≤bn

∣∣K (α,β)
n,p (f ; qn; x) – f (x)

∣∣ = .
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Proof If we apply the same techniques as in the proof of Theorem . in [] and use
Lemma ., we obtain the desired result. �

4 Order of convergence
In this section, we study the rate of convergence of the operators in terms of the elements
of Lipschitz classes and the first and the second modulus of continuity of the function.

Firstly, we give the rate of convergence of the operators K (α,β)
n,p in terms of the Lipschitz

class LipM(γ ). Let CB[,∞) denote the space of bounded continuous functions on [,∞)
endowed with the usual supremum norm. A function f ∈ CB[,∞) belongs to LipM(γ )
( < γ ≤ ) if the condition

∣∣f (t) – f (x)
∣∣ ≤ M|t – x|γ (

t, x ∈ [,∞)
)

is satisfied.

Theorem . Let f ∈ LipM(γ ). Then we have

∣∣K (α,β)
n,p (f ; q; x) – f (x)

∣∣ ≤ M
(
δn,q(x)

)γ /,

where

δn,q(x) =
(

[][n + p – ][n + p]q
([n + ] + β) –

[][n + p]
[n + ] + β

+ 
)

x

+
(

(q + q +  + []α)[n + p]
([n + ] + β) –

(α + )
[n + ] + β

)
bnx +

(α + α + )b
n

([n + ] + β) .

Proof Using the monotonicity and the linearity of the operators and taking into account
that f ∈ LipM(γ ), we get

∣∣K (α,β)
n,p (f ; q; x) – f (x)

∣∣
=

∣∣∣∣∣
n+p∑
k=

[
n + p

k

](
x
bn

)k n+p–k–∏
s=

(
 – qs x

bn

)

×
∫ 



(
f
(

( + (q – )[k])t + [k] + α

[n + ] + β
bn

)
– f (x)

)
dt

∣∣∣∣∣
≤

n+p∑
k=

[
n + p

k

](
x
bn

)k n+p–k–∏
s=

(
 – qs x

bn

)

×
∫ 



∣∣∣∣f
(

( + (q – )[k])t + [k] + α

[n + ] + β
bn

)
– f (x)

∣∣∣∣dt

≤ M
n+p∑
k=

[
n + p

k

](
x
bn

)k n+p–k–∏
s=

(
 – qs x

bn

)

×
∫ 



∣∣∣∣ ( + (q – )[k])t + [k] + α

[n + ] + β
bn – x

∣∣∣∣
γ

dt.
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Applying Hölder’s inequality with p = 
γ

and q = 
–γ

, we have the following inequalities by
(.):

∫ 



∣∣∣∣ ( + (q – )[k])t + [k] + α

[n + ] + β
bn – x

∣∣∣∣
γ

dt

≤
{∫ 



(
( + (q – )[k])t + [k] + α

[n + ] + β
bn – x

)

dt
} γ


{∫ 


dt

} –γ


=
{∫ 



(
( + (q – )[k])t + [k] + α

[n + ] + β
bn – x

)

dt
} γ


.

Then we get

∣∣K (α,β)
n,p (f ; q; x) – f (x)

∣∣ ≤ M
n+p∑
k=

{∫ 



(
( + (q – )[k])t + [k] + α

[n + ] + β
bn – x

)

dt
} γ


pn,k(q; x),

where pn,k(q; x) =
∑n+p

k=
[n + p

k

]
( x

bn
)k ∏n+p–k–

s= ( – qs x
bn

). Again using Hölder’s inequality with
p = 

γ
and q = 

–γ
, we have

∣∣K (α,β)
n,p (f ; q; x) – f (x)

∣∣
≤ M

{ n+p∑
k=

∫ 



(
( + (q – )[k])t + [k] + α

[n + ] + β
bn – x

)

dt pn,k(q; x)

} γ

{ n+p∑

k=

pn,k(q; x)

} –γ


= M

{ n+p∑
k=

pn,k(q; x)
∫ 



(
( + (q – )[k])t + [k] + α

[n + ] + β
bn – x

)

dt

} γ


= M
(
δn,q(x)

)γ /,

where δn,q(x) := K (α,β)
n,p ((t – x); q; x). �

Now, we give the rate of convergence of the operators by means of the modulus of conti-
nuity ω(f ; δ). Let f ∈ CB[,∞) such that f is uniformly continuous and x ≥ . The modulus
of continuity of f is given as

ω(f ; δ) = max
|t–x|≤δ

t,x∈[,∞)

∣∣f (t) – f (x)
∣∣. (.)

It is known that for any δ >  the following inequality

∣∣f (x) – f (y)
∣∣ ≤ ω(f ; δ)

( |x – y|
δ

+ 
)

(.)

is satisfied [].

Theorem . If f ∈ CB[,∞), we have

∣∣K (α,β)
n,p (f ; q; x) – f (x)

∣∣ ≤ ω
(
f ;

√
δn,q(x)

)
,

where δn,q(x) is the same as in Theorem ..



Vedi and Özarslan Journal of Inequalities and Applications  (2015) 2015:91 Page 10 of 15

Proof From monotonicity, we have

∣∣K (α,β)
n,p (f ; q; x) – f (x)

∣∣ ≤
n+p∑
k=

[
n + p

k

](
x
bn

)k n+p–k–∏
s=

(
 – qs x

bn

)

×
∫ 



∣∣∣∣f
(

( + (q – )[k])t + [k] + α

[n + ] + β
bn

)
– f (x)

∣∣∣∣dt.

Now by (.) we get

∣∣K (α,β)
n,p (f ; q; x) – f (x)

∣∣
≤

n+p∑
k=

∫ 



( | (+(q–)[k])t+[k]+α

[n+]+β
bn – x|

δ
+ 

)

× ω(f ; δ)

[
n + p

k

](
x
bn

)k n+p–k–∏
s=

(
 – qs x

bn

)
dt

= ω(f ; δ)
n+p∑
k=

[
n + p

k

](
x
bn

)k n+p–k–∏
s=

(
 – qs x

bn

)

+
ω(f ; δ)

δ

n+p∑
k=

∫ 



∣∣∣∣ ( + (q – )[k])t + [k] + α

[n + ] + β
bn – x

∣∣∣∣
×

[
n + p

k

](
x
bn

)k n+p–k–∏
s=

(
 – qs x

bn

)
dt.

Then, using the Cauchy-Schwarz inequality, we have

∣∣K (α,β)
n,p (f ; q; x) – f (x)

∣∣
≤ ω(f ; δ) +

ω(f ; δ)
δ

{ n+p∑
k=

pn,k(q; x)
∫ 



(
( + (q – )[k])t + [k] + α

[n + ] + β
bn – x

)

dt

} 


×
{ n+p∑

k=

pn,k(q; x)

} 


= ω(f ; δ) +
ω(f ; δ)

δ

{
K (α,β)

n,p
(
(t – x)); q; x

}/.

Finally, let us choose δn,q(x) the same as in Theorem .. Then we get

∣∣K (α,β)
n,p (f ; q; x) – f (x)

∣∣ ≤ ω
(
f ;

√
δn,q(x)

)
. �

Now let us denote by C
B[,∞) the space of all functions f ∈ CB[,∞) such that

f ′, f ′′ ∈ CB[,∞). Let ‖f ‖ denote the usual supremum norm of f . The classical Peetre’s
K-functional and the second modulus of smoothness of the function f ∈ CB[,∞) are de-
fined respectively as

K(f , δ) := inf
g∈C

B[,∞)

[‖f – g‖ + δ
∥∥g ′′∥∥]
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and

ω(f , δ) := sup
<h<δ,
x,x+h∈I

∣∣f (x + h) – f (x + h) + f (x)
∣∣,

where δ > . It is known that (see [], p.) there exists a constant A >  such that

K(f , δ) ≤ Aω(f ,
√

δ). (.)

Theorem . Let q ∈ (, ), x ∈ [, bn] and f ∈ CB[,∞). Then, for fixed p ∈ N, we have

∣∣K (α,β)
n,p (f ; q; x) – f (x)

∣∣ ≤ Cω
(
f ,

√
αn,q(x)

)
+ ω

(
f ,βn,q(x)

)
for some positive constant C, where

αn,q(x) :=
[((

[]


+
[]



)
[n + p]

([n + ] + β) – 
[][n + p]
[n + ] + β

+ 
)

x

+
(

q + q +  + []α
([n + ] + β) +

(α + )[][n + p]
([n + ] + β)

–
(α + )

[n + ] + β

)
bnx

+
(

α + α + 


)
b

n
([n + ] + β)

]
(.)

and

βn,q(x) :=
∣∣∣∣ [][n + p]
([n + ] + β)

– 
∣∣∣∣x +

(α + )bn

([n + ] + β)
. (.)

Proof Define an auxiliary operator K∗
n,p(f ; q; x) : CB[,∞) → CB[,∞) by

K∗
n,p(f ; q; x) := K (α,β)

n,p (f ; q; x) – f
(

[][n + p]x + (α + )bn

([n + ] + β)

)
+ f (x). (.)

Then by Lemma . we get

K∗
n,p(; q; x) = ,

K∗
n,p

(
(t – x); q; x

)
= .

(.)

For given g ∈ C
B[,∞), it follows by the Taylor formula that

g(y) – g(x) = (y – x)g ′(x) +
∫ y

x
(y – u)g ′′(u) du.

Taking into account (.) and using (.), we get

∣∣K∗
n,p(g; q; x) – g(x)

∣∣ =
∣∣K∗

n,p
(
g(y) – g(x); q; x

)∣∣
=

∣∣∣∣g ′(x)K∗
n,p

(
(u – x); q; x

)
+ K∗

n,p

(∫ y

x
(y – u)g ′′(u) du; q; x

)∣∣∣∣
=

∣∣∣∣K∗
n,p

(∫ y

x
(y – u)g ′′(u) du; q; x

)∣∣∣∣.
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Then by (.)

∣∣K∗
n,p(g; q; x) – g(x)

∣∣
=

∣∣∣∣K (α,β)
n,p

(∫ y

x
(y – u)g ′′(u) du; q; x

)

–
∫ [][n+p]x+(α+)bn

([n+]+β)

x

(
[][n + p]x + (α + )bn

([n + ] + β)
– u

)
g ′′(u) du

∣∣∣∣
≤

∣∣∣∣K (α,β)
n,p

(∫ y

x
(y – u)g ′′(u) du; q; x

)∣∣∣∣
+

∣∣∣∣
∫ [][n+p]x+(α+)bn

([n+]+β)

x

(
[][n + p]x + (α + )bn

([n + ] + β)
– u

)
g ′′(u) du

∣∣∣∣.
Since

∣∣∣∣K (α,β)
n,p

(∫ y

x
(y – u)g ′′(u) du; q; x

)∣∣∣∣ ≤ ∥∥g ′′∥∥K (α,β)
n,p

(
(y – x); q; x

)

and

∣∣∣∣
∫ [][n+p]x+(α+)bn

([n+]+β)

x

(
[][n + p]x + (α + )bn

([n + ] + β)
– u

)
g ′′(u) du

∣∣∣∣
≤ ∥∥g ′′∥∥((

[][n + p]
([n + ] + β)

– 
)

x +
(α + )bn

([n + ] + β)

)

,

we get

∣∣K∗
n,p(g; q; x) – g(x)

∣∣
≤ ∥∥g ′′∥∥K (α,β)

n,p
(
(y – x); q; x

)
+

∥∥g ′′∥∥((
[][n + p]

([n + ] + β)
– 

)
x +

(α + )bn

([n + ] + β)

)

.

Hence Lemma . implies that

∣∣K∗
n,p(g; q; x) – g(x)

∣∣
≤ ∥∥g ′′∥∥[(

[][n + p – ][n + p]q
([n + ] + β) –

[][n + p]
([n + ] + β)

+ 
)

x

+
(

(q + q +  + []α)[n + p]
([n + ] + β) –

(α + )
([n + ] + β)

)
bnx +

(α + α + )b
n

([n + ] + β)

+
((

[][n + p]
([n + ] + β)

– 
)

x +
(α + )bn

([n + ] + β)

)]
. (.)

Since ‖K∗
n,p(f ; q; ·)‖ ≤ ‖f ‖, considering (.) and (.), for all f ∈ CB[,∞) and g ∈

C
B[,∞), we may write from (.) that

∣∣K (α,β)
n,p (f ; q; x) – f (x)

∣∣
≤ ∣∣K∗

n,p(f – g; q; x) – (f – g)(x)
∣∣
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+
∣∣K∗

n,p(g; q; x) – g(x)
∣∣ +

∣∣∣∣f
(

[][n + p]x + (α + )bn

([n + ] + β)

)
– f (x)

∣∣∣∣
≤ ‖f – g‖ + αn,q(x)

∥∥g ′′∥∥ +
∣∣∣∣f

(
[][n + p]x + (α + )bn

([n + ] + β)

)
– f (x)

∣∣∣∣
≤ 

(‖f – g‖ + αn,q(x)
∥∥g ′′∥∥)

+ ω
(
f ,βn,q(x)

)
,

which yields that

∣∣K (α,β)
n,p (f ; q; x) – f (x)

∣∣ ≤ K
(
f ,αn,q(x)

)
+ ω

(
f ,βn,q(x)

)
≤ Cω

(
f ,

√
αn,q(x)

)
+ ω

(
f ,βn,q(x)

)
,

where

αn,q(x) :=
[((

[]


+
[]



)
[n + p]

([n + ] + β) – 
[][n + p]
[n + ] + β

+ 
)

x

+
(

q + q +  + []α
([n + ] + β) +

(α + )[][n + p]
([n + ] + β)

–
(α + )

[n + ] + β

)
bnx

+
(

α + α + 


)
b

n
([n + ] + β)

]

and

βn,q(x) :=
∣∣∣∣ [][n + p]
([n + ] + β)

– 
∣∣∣∣x +

(α + )bn

([n + ] + β)
.

Hence we get the result. �

5 Generalization of the Kantorovich-Stancu type generalization of
q-Bernstein-Chlodowsky operators

In this section, we introduce a generalization of Chlodowsky-type q-Bernstein-Stancu-
Kantorovich operators. For x ≥ , consider any continuous function ω(x) ≥  and define

Gf (t) = f (t)
 + t

ω(t)
.

Let us consider the generalization of K (α,β)
n,p (f ; q; x) as follows:

Lα,β
n,p (f ; q; x) =

ω(x)
 + x

n+p∑
k=

[
n + p

k

](
x
bn

)k n+p–k–∏
s=

(
 – qs x

bn

)

×
∫ 


Gf

(
[k] + α

[n + ] + β
bn +

 + (q – )[k]
[n + ] + β

tbn

)
dt,

where  ≤ x ≤ bn and (bn) has the same properties of Chlodowsky variant of q-Bernstein-
Schurer-Stancu-Kantorovich operators.

Notice that this kind of generalization was considered earlier for the Bernstein-
Chlodowsky polynomials [], q-Bernstein-Chlodowsky polynomials [] and Chlodowsky
variant of q-Bernstein-Schurer-Stancu operators [].

Now we have the following approximation theorem.
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Theorem . For the continuous functions satisfying

lim
x→∞

f (x)
ω(x)

= Kf < ∞,

we have

lim
n→∞ sup

≤x≤bn

|Lα,β
n,p (f ; q; x) – f (x)|

ω(x)
= 

provided that q := (qn) with  < qn < , limn→∞ qn =  and limn→∞ bn
[n] =  as n → ∞.

Proof Obviously,

Lα,β
n,p (f ; q; x) – f (x) =

ω(x)
 + x

( n+p∑
k=

[
n + p

k

](
x
bn

)k n+p–k–∏
s=

(
 – qs x

bn

)

×
∫ 


Gf

(
[k] + α

[n + ] + β
bn +

 + (q – )[k]
[n + ] + β

tbn

)
dt – Gf (x)

)
,

hence

sup
≤x≤bn

|Lα,β
n,p (f ; q; x) – f (x)|

ω(x)
= sup

≤x≤bn

|K (α,β)
n,p (Gf ; q; x) – Gf (x)|

 + x .

From |f (x)| ≤ Mf ω(x) and the continuity of the function f , we have |Gf (x)| ≤ Mf ( + x)
for x ≥  and Gf (x) is a continuous function on [,∞). Using Theorem ., we get the
desired result. �

Finally note that taking ω(x) =  + x, the operator Lα,β
n,p (f ; q; x) reduces to K (α,β)

n,p (f ; q; x).
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5. Büyükyazıcı, İ: On the approximation properties of two dimensional q-Bernstein-Chlodowsky polynomials. Math.

Commun. 14(2), 255-269 (2009)
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