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Abstract

In this paper, we introduce Chlodowsky-type g-Bernstein-Stancu-Kantorovich
operators on the unbounded domain. We should note that this generalization
includes various kinds of operators which have not been introduced earlier. We
calculate the error of approximation of these operators by using the modulus of
continuity and Lipschitz-type functionals. Finally, we give generalization of the
operators and investigate their approximations.
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1 Introduction
Generalizations of Bernstein polynomials and their g-analogues have been an inten-
sive research area of approximation theory (see [1-19]). In this paper, we introduce the
Chlodowsky-type g-Bernstein-Stancu-Kantorovich operators and investigate their ap-
proximation properties.

Firstly, let us recall the following notions of g-integers [20]. Let g > 0. For any integer
k = 0, the g-integer [k], = [k] is defined by

w1 -q"Il-q), q+#1,
k, q=1,
the g-factorial [k],! = [k]! is defined by

[k]': [k][k_l][]-]; k:1,2,3,...,
|y k=0

and for integers n > k > 0, g-binomial coefficients are defined by

ni [m]!
k| [m=kk)Y

In 2011, the g-based Bernstein-Schurer operators were defined by Muraru [21] as

n+p n+p—k-1
Bﬁ(f;q;x)=2f(%) ["Zp]x" [T t-4%), o=x=1 (L1)
k=0 s=0
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Then she obtained the Korovkin-type theorem and the order of convergence by using
the modulus of continuity. She also mentioned that if ¢ — 1~ in (1.1), the operators re-
duce to the Schurer operators considered by Schurer [22] and if p = 0 in (1.1), they con-
tain the g-Bernstein operators [16]. After that, different approximation properties of the
g-Bernstein-Schurer operators were studied in [23].

Recently, the g-Bernstein-Schurer-Kantorovich operators were defined [24] as

n+p 4 n+p—k-1
K,’f(f;q;x):Z[ kpi|xk H (1-¢°x)

k=0 s=0

! (kK]  1+(g-1)k]
X /0 f( 1] + ) L‘) dgt. (1.2)

Then, the approximation rates of the g-Bernstein-Schurer-Kantorovich operators were
given by means of Lipschitz class functionals and the first and the second modulus of
continuity.

Notice that if we choose p = 0 in (1.2), we get the g-Bernstein-Kantorovich operators
which were defined by Mahmudov and Sabancigil in [25]. We should also mention that in
[26] the authors defined a different version of g-Bernstein-Kantorovich operators, where
they used the usual integral instead of g-integral in the definition.

In 2013, the g-analogue of Bernstein-Schurer-Stancu operators Sﬁf : C[0,1 + p] —
C[0,1] was introduced by Agrawal et al. in [2] by

S (F; i) = %( (k] + oz) am n—k_l(l ¥
wem +B/) k| o ’

k=0

where o and B are real numbers which satisfy 0 < « < 8 and also p is a non-negative
integer.

Then, Ren and Zeng introduced the Kantorovich-type-g-Bernstein-Stancu operators
[27]. They investigated the statistical approximation properties.

On the other hand, Karsli and Gupta [13] introduced g-Chlodowsky operators as fol-

lows:

n [k] " x k n—k-1 x
Cn,q(f;x):Zf(mbn) k <b_n> 1_[ (1—qsb—>, Ofxfb,,,

k=0 5=0 n

where n € N and (b,,) is a positive increasing sequence with lim,,_,~ b, = co. Then, they
investigated the approximation properties of C,, ,(f;x).

Recently, the Chlodowsky variant of g-Bernstein-Schurer-Stancu operators was intro-
duced by the authors in [28] as

oA (K] +a nip | x\"¥ K x
(B) (£. 70 20) — —_gF=
CeP(f;q5x) =) f([n]+ﬂbn>|: ‘ (bn> [ (1 qsb,,>’ 1.3)

k=0 s=0

wheren e Nandp e Ny and o, 8 e Rwith0 <« < 8,0 <x < b,, 0 < g <1, and Korovkin-
type approximation theorems were proved in different function spaces. Moreover, the er-
ror of approximation was computed by using the modulus of continuity and Lipschitz-type
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functionals. Also, the generalization of the Chlodowsky variant of g-Bernstein-Schurer-
Stancu operators was studied. Notice that Cf,(;',o)(f; q;x) gives the g-Bernstein-Schurer-
Chlodowsky operators which have not been defined yet, and additionally taking p = 0,
we get the g-Bernstein-Chlodowsky operators [13]. On the other hand, from [28] the first
three moments of Ci,‘f;;’g )(f ;q;x) are as follows:

i) CPLgx) =1,

.. a [n +plx

(if) Qowm)——Eﬁ———
1

(i) CP(25q5x) = " [n+p-1][n+plgx® + 2o + 1)[n + plbux + b2},

([n] ﬂ)z{

The organization of this paper is as follows. In Section 2, we introduce the Chlodowsky-
type g-Bernstein-Stancu-Kantorovich operators and calculate the moments for them. In
Section 3, Korovkin-type theorems are proved. In Section 4, we obtain the rate of con-
vergence of the approximation process in terms of the first and the second modulus of
continuity and also by means of Lipschitz class functions. In Section 5, we study the gen-
eralization of the Kantorovich-Stancu type generalization of g-Bernstein-Chlodowsky op-

erators and study their approximation properties.

2 Construction of the operators
The Chlodowsky-type g-Bernstein-Stancu-Kantorovich operators are introduced as

) n+p nep x k n+p—k-1 x
K&P(fq0) =) e 1\ [1 1-4-

k=0 s=0
L7+ (g-=D[kDt+ [k] +
X /o f< PEIEY; b,,) dt, (2.1)

where ne Nand p e Ny and o, 8 e Rwith 0 <o < 8,0 <x <b,, 0 <g <1. Obviously,
I(,(,Oft;‘6 )is a linear and positive operator. We should notice that if we choose p a=B=0in
(2.1) and taking into account that (1 + (g — 1)[k])¢ = g*¢, the operator K,, g (f q;x) reduces
to the Chlodowsky variant of the g-Bernstein Kantorovich operator [26].

First of all let us give the following lemma which will be used throughout the paper.

Lemma 2.1 Let K,(,‘;,’ﬂ)(f; q;x) be given in (2.1). Then we have

i) K9P Lgx) =1,

[+ p][2]x + 2a + 1)b,
2(n+1]+ B)

(i) K9 (6q%) =

’

1
(iii) KD (%5 q3x) = m{[ ][n +p —1][n + plgx*
+ (q-i-?)—q-'-Z + [2]01) [n+plbux + <a2 +o+ %)bi},

‘ [n + p][2] (2a +1)by,
@B ((f—a)egon) = | £ —_—
(iv) K@D ((t-x);q5%) = <2([,,, 1+ B) 1)" * 2([n+1]+ B)’

Page 3 of 15
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W) K,%;ﬁ)((t—x)z;q;x) _ ([3][1’1 +p-1n+plg [2][n+p] +1>x2

3((n+1]+B)?2  [m+1]+8
(g% +3g + 2+ 3[2]a)[n + p] (e +1)
< 3(n+1] + B)2 _[n+1]+,3)

(3a? + 3 + 1)b2
T 3+ 1] + B

Proof (i) Using (2.1) and C,, ,(1;%) = 1, we get

n+p k n+p—k-1
@B) (1. g+ ) = nrpi(x Y\ c@h 1 gy) =
I<n,p (L%x)—Z|: k i|(b_n> 1_[ (l_qsb_,,> _Cn,p (Lq;x)_L (2'2)

k=0 s=0

(ii) After some calculations, we obtain

KD (8 5%)

n+p k n+p—k-1 1
B n+p|(x X 1+ (g-DIk]t + [k] +
;[ K }(b) [T (o) [(F e o)

=0
4 k n+p—k-1
x k] + « 1+ (g-1)[k]
kZ[ }( > [ <l_qsb_n><[n+1]+ﬁbn+2([ﬂ+1]+/3)b")
[ pl2lx + 2a + 1)b,

2(m+1] + B)

Whence the result.
(iii) By (2.1) we can write

n+p k n+p—k-1 1 2
B n+p|(x X 1+ (@-D[kDt+[k] +«
;[ k }(h) (l "Sbn)/o( i+ 1]+ 5 b”) at
n+p k n+p—k-1 5 2
- nrp(x X b, 2(q-1) 2
‘kzo[ k }(b) [ (1 qsbn>([n+1]+ﬂ)2{< 3 +q)[k]

+ (1+[2]a)[k]+a2+a+%}.

After some calculations as in (i) and (ii), we get the desired result.
(iv) Using (i) and (ii), we get

K& ((t — x); q5x6) = KD (65 q3.%) — 2K (15 g3.%)

_< [n+p][2] _1)x+ (2 +1)b,
“\2(n+1]+B) 2n+1] + B)

(v) It is known that
KD (- %)% q3x) = K&P (85 q3x) — 20K (8 q3.%) + 6 K%P (1 43 %).

Then we obtain the result directly. O
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Lemma 2.2 For the second central moment, if we take supremum on [0,b,], we get the

following estimate:
Blln+p-1lln+plg [2]n+p]
@B (£ — 5% g 2 _
Ky (=05 :2) Sb”{ 3(n+U+pP  [n+1+B ”‘
(@ +3g+2+32]la)n+p] (Qa+1)
3(m+1] + B)? Cm+1]+ 8

(30 + 30 +1)
31+ B }

3 Korovkin-type approximation theorem
In this section, we study Korovkin-type approximation theorems of Chlodowsky-type
q-Bernstein-Stancu-Kantorovich operators. Let C, denote the space of all continuous

functions f such that the following condition
[fx)| < Msp(x), -o0o0<x<o0

is satisfied.
It is clear that C,, is a linear normed space with the norm

Ifll,= sup M

—oo<x<oo 0 (x) '

The following theorems play an important role in our investigations.

Theorem 3.1 (See [9]) There exists a sequence of positive linear operators U,, acting from
C, to C,, satisfying the conditions

Jlim |ur,(1;x) - 1||p =0, (3.1)
lim [[t2,(¢5%) - 9], =0, (32)
lim |U,(¢% %) - 0?[, =0, (33)

where ¢(x) is a continuous and increasing function on (—00,00) such that limy_, 4o ¢(x) =
+o0 and p(x) = 1 + 2, and there exists a function f* € C, for which 1im,,_ o0 | U, f* —

f*llp>0.
Theorem 3.2 (See [9]) Conditions (3.1), (3.2), (3.3) imply
lim | Uyf = fll, =0
n—00
for any function f belonging to the subset Cg ={feC,:limy_ % is finite}.

Let us choose p(x) = 1 + #> and consider the operators:

I(E&;ﬁ)(f’ q’x) 1fx € [0; bn]r

@B) (£. . -
u,; (frq’x)—!f(x) if x € [0,00)/[0, by].
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It should be mentioned that the operators U*?) act from Ciyp2 to Cp 2. Forall f € Cp, 0,

we have

@f)
KB (f, 0 5 .
[P Fiq )|, o < sup Rz LI V)
T xel0,bn] 1+x2 by <o 1 + 42

(a,8) 2

K, 1+t q;x

< ”f”1+x2 sup | np ( q ) w1l
x€[0,00) 1+a2

Therefore, it is clear from Lemma 2.1 that

[ i) 0 = MIf o

provided that g := (g,) with 0 < ¢, < 1, lim,, g, = 1, lim, g} = N < 00 and
lim,— o0 f;—”] = 0. We have the following approximation theorem.

Theorem 3.3 Forallf CfMZ, we have

: @B (f. . . =
nhan;o” una (f: qn; ) _f(')||1+x2 =0
provided that q = (gq,) with 0 < q, < 1, limy_ocq, = 1, lim,.cq), = N < 00 and

lim,,_ o [”n—] =0.

Proof With help of Theorem 3.2 and Lemma 2.1(i), (ii) and (iii), we have the following

estimates, respectively:

U (15 qi%) ~ 1 K" (15 s ) 1]
sup 2 = sup 2 =0,
2el000) 1+x 0=x=by 1+

\UP (8 s %) — t]

sup

x€[0,00) 1+x2
, [n+p](2] (2a+1)by,
= K (8 s %) — x| - |5t ~ ¥+ atniiep
0=x=<by 1+ " 0=x<by (1+x?)
[n + p][2] 2a +1)b,
— |t —
“2([r+1] +B) 2(n+1] + B)
and
(P (% g x) - 12
sup .
x€[0,00) l+x
K P8 g ) - o)
= sup
0<x<bn 1+x2
< 1 (B8] [n+p—1]ln+plqg 2
=< Ssu _ —
o<x<b, L+x2 || 3 ([n+1]+pB)?

P +3q+2 [n + plb, > 1 b
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- ”@[n+p—1][ﬂ+p]q_l‘
3 ([m+1]+B)?

G +3q+2 [+ plb, 1 b,

whenever n — 0o, since lim,,_, o, g, = 1 and 2 o= =0asn— oo. O

Lemma 3.4 Let A be a positive real number independent of n and f be a continuous

function which vanishes on [A, 00). Assume that q = (q,) with 0 < q,, <1, lim,, . g, = 1,
2

lim,,—, o gy = N < 00 and lim,_, [% = 0. Then we have

lim sup |K°‘ﬂ)(f qn; %) f(x)|

nﬁ>000<x<

Proof From the hypothesis on f, one can write |f(x)] <M (M > 0). For arbitrary small
€ >0, we have

L+ (g-DIkDt + [k] +«
P( [r+1]+p b") _f(x))

2M((1+(q—1)[k])t+[k]+a )2
e by —x
52 (n+1] + B

<&+

for x € [0, b,] and & = §(¢). Using the following equality

n+p k n+p—k-1 1 2
n+p x x A+ (g-DkDt + k] + o
Z[ X }(?) [T (o) [ (g o)

k=0 s=0

= I(V(f;ﬁ) ((t = %)% qus %),
we get by Lemma 2.2 that

sup |KP(f; s x) - f ()|

0<x<by,
Blln+p-1lln+plg, [2]ln+p] )
”a_ZH T T R A

‘ (42 +3q, +2 +3[2]a)[n + p] (2o +1)
([n+1] + B)? _[n+1]+ﬁ

) (3a2+3a+1)bfl]
T 3(n+1]+ B

2
Since 0 < g, < 1, limy 00 g = 1, lim,, .o g} = N < 00 and lim,,, o fbn—”] =0, we have the de-
sired result. O

Theorem 3.5 Let f be a continuous function on the semi-axis [0,00) and
lim f(x) = kr < 00,
X—> 00

Assume that q := (q,) with 0 < q, < 1, lim,,oq, = 1, lim,q); = K < 00 and
2
lim,,_ 5 [bn—"] =0. Then

lim sup |K°‘ﬂ(fqn,x) f(x)‘

x—>000<x<
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Proof If we apply the same techniques as in the proof of Theorem 3.5 in [28] and use
Lemma 3.4, we obtain the desired result. O

4 Order of convergence

In this section, we study the rate of convergence of the operators in terms of the elements

of Lipschitz classes and the first and the second modulus of continuity of the function.
Firstly, we give the rate of convergence of the operators KV(,‘;,”S ) in terms of the Lipschitz

class Lip,,(y). Let Cg[0, 00) denote the space of bounded continuous functions on [0, c0)

endowed with the usual supremum norm. A function f € Cz[0, 00) belongs to Lip,(y)

(0 <y <1) if the condition

[f@®) - f(x)| <Mt —x"  (t,x€[0,00))
is satisfied.

Theorem 4.1 Letf € Lip,,(y). Then we have

KA g50) = f ()] < M(8g(6))"",

where

) = ([3][n+p—1][n +plg _ [2]ln+p] +1)x2

3([n+1] + B)? (n+1]+ B
(g% +3q +2 + 3[2]a)[n + p] (2 +1) (3a? + 3 + 1)b2
+( (n+1]+ B2 _[n+1]+ﬁ> S+ 1] + B

Proof Using the monotonicity and the linearity of the operators and taking into account
that f' € Lip,,(y), we get

KD q5) — f ()]
26 )
8 /ol(f(u +(q Enli[li]])f ; [K] + (xbn> _f(x)> W
2] <£>"“ﬁj’l<1—f:—n>
e )
ST o)

=0
1
X /
0

dt

1+ (g-1)[k]t + [k] + &
m+1]+ 8

b, —x
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Applying Holder’s inequality with p = = and q=5,we have the following inequalities by

(2.2):
1
J
=1/ 1(<1+ @Dk Kre, —x>2’”}
A (m+1]+B

1 2 %
={/ ((1+(q—1)[k])t+[k]+abn_x> dt} .
0 [n+1]+8

Then we get

14

1+ (g-DIkDt + [k] + o at

(n+1]+ 8 bn—x

IR
—_—
S~
>
QU
AN
[S——
4

)4

o A YA+ (g-DIKE+[K] + 22
| KO (f; ;%) —f(x)lsMk;:{/o ( TEREY. bn—x) dt} Pni(g;%),

where p, «(g; x) [ [” or ]( > YT k= Y- q ﬁ). Again using Hélder’s inequality with
p—— and g = ,wehave

|KP(f; ;%) - f ()|

2-y

SR A+ @D K e, § (i B
iZf( [n+1]+ B b~ ) Aatpui(q;x ankq,

Al A+ (g -kt + [k] + L
{ank(q,x)/ < TESVIY bn—x) dt

M(8,,))"?,

where §,,4(x) := K,(,?;ﬁ)((t - %)% q;%). O

Now, we give the rate of convergence of the operators by means of the modulus of conti-
nuity o(f;3). Let f € Cg[0, 00) such that f is uniformly continuous and x > 0. The modulus
of continuity of f is given as

o(f;8) = max If() —f(x)]. (4.1)
t,x€[0,00)

It is known that for any § > O the following inequality

fo-ro)| <o (“52 41) @2)
is satisfied [8].

Theorem 4.2 Iff € Cp[0,00), we have

’Kr(:,x GrE: | <20(f; V/ Onqx ),

where 8,,4(x) is the same as in Theorem 4.1.
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Proof From monotonicity, we have

@)(f. 7 Slnep| (=" x
K Gan-f@l <3010 ) TT (-2

k=0 s=0

(1+ (g - DIKDE + K] +
N R

Now by (4.2) we get

|KP(f; ;%) — £ ()|

(1+(g-1)[k]) t+[k]+rxb

Iy
x w(f;8) |:nzpi| (bﬁn)kmﬁl(l—qsb%) dt

s

& V)W e

s=0

n+p

w(fS)
Zf [n+1]+/3

k n+p—k-1
n+p x x
[ i }(F) [T (15 )

Then, using the Cauchy-Schwarz inequality, we have

1+

K f; g;0) - f ()|

1

Ly A+ (g -kt + [k] + L
[ank(q’ )/ < n+1]+ B bn—x) dt

1

n+p
{ank(q» ]

otf) + L Klen (- %) i)

Sw(f;5)+

Finally, let us choose §,,,(x) the same as in Theorem 4.1. Then we get

(K@ f; g;0) = f )| < 20(F3 [ 8ng ). 0

Now let us denote by C3[0,00) the space of all functions f € Cz[0,00) such that
f.f" € Cp[0,00). Let ||[f|| denote the usual supremum norm of f. The classical Peetre’s
K-functional and the second modulus of smoothness of the function f € Cz[0, oo) are de-
fined respectively as

K(f,8):= inf [If-gll+8[g"[]
£g€Cg[0,00)
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and

wy(f,8) := sup [f(x +2h) = 2f(x + h) + f(x)
0<h<$,
xx+hel

’

where § > 0. It is known that (see [8], p.177) there exists a constant A > 0 such that
K(f,8) < Aws(f,/9). (4.3)
Theorem 4.3 Let g € (0,1), x € [0,b,] and f € Cg[0,00). Then, for fixed p € Ny, we have

K (f; ;%) — £ ()| < Can (fs /g (%)) + (F, Bug ()

for some positive constant C, where

CT((B] 2P\ [P Rlnep] L\
g (%) := [((? * T) e+ B2 “Tnsll+p +2>"

@ +3q+2+312la QRa+D[2][n+p] 2Qa+1)
( 3m+1+ B2 2(n+1]+p) _[n+1]+ﬁ)”

240? + 240 +7 b2 (4.4)
+( 12 )([n+1]+ﬁ)2] ‘
and
Brgl) = ‘ [2][n + p] ‘ . 2 +1)b, 45)

2m+1]+B) 2n+1]+pB)

Proof Define an auxiliary operator K,’;p(f; q;x) : Cg[0,00) — C3[0,00) by

2a +1)b,
Kiplfiain) = Ky i) - (PN P D0 “6)
Then by Lemma 2.1 we get
K;f,p(l; q;x) =1,
(4.7)

K:l‘,p((t - X);q; x) =0.
For given g € C3[0,00), it follows by the Taylor formula that
/ 4 I
¢0)-g) = 0-2)g w) + | (r—u)g"tu)
X
Taking into account (4.5) and using (4.7), we get
Ko@) — )| = K5, (€00) - g(); )|

y
g’(x)[(j,‘,p((u - X);q; x) + I(,’;p (/ (y—u)g" (u)du; q; x)

y
K, < / (v — u)g" (u) du; g; x)
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Then by (4.6)

’K,’f'p(g;q'x -glx ‘

= I("‘ﬂ </ (v —u)g" (u) du; q; >

[2][n+plx+(2a+1)bn

BV [2][n + plx + 2a + 1)b, p
‘/ ( 2n+11+ ) ”)g ()

(f(y Wy’ u)duq,)

PIEssEs™ / [2](n + plx + Qa + Db, o
1, ( 2([n+1]+ ) _”)g |

Since

< " [K%7 (0 - %)% g:%)

y
K,S‘;;m </ (v —uwg' (u)du; q;x)

and

[2][n+p)x+(2a+1)by

/W ([2][1’1 +plx+ 2a + )b, u) () du

; 2([n+1] +B) ¢
({2 p) o+ Dby \?

<le ”((ml>2a—um) ’

we get
K, (g 4:%) — g()|
e , [21[n + p] (20 + Db, \?
<1215 (09509 + 1) (et - ey

Hence Lemma 2.1 implies that

K, (g5 q5%) — g ()|
< /,“[([3 n+p-1ln+plg  [2]ln+p] +1)x2
3(n+1]+B2  (m+1]+p)
((q +3g+2+3[2]a)[n+p] (2 +1) > (3a* + 3 + 1)1
311+ B2 (n++p)) " B(n+1l+ B

(2][n +p] Qa+1)b, \*
' ((m 'l>’” m) ] (4.8)

Since ||K;f,p(f; ¢ )|l < 3|fll, considering (4.4) and (4.5), for all f € C3[0,00) and g €
C2[0,00), we may write from (4.8) that

K3 452) ~f ()]
<|K;:,(f g @%) - (f -9 )|
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[2][n + plx + 2o + 1)b,
2n+11+ ) ) Kb

, 2101 + plx + 2a + b,
<alf gl + @, @)|¢| +}/( ”;(ffq ’:] +°‘ﬂ; )—f(x)‘

= 4(|Lf gl + an,q(x)”g// ”) + a)(f7 ﬂn,q(x))¢

+| K (g 45%) — g(%)| + P(

which yields that

KD (f5 q5%) — £ (%)| < 4K (f, 0 (%)) + @ (f, Brg (%))
S Cw2 (f: \ an,q(x)) + a)(fr ,Bn,q(x))r

where

(B 2P\ epP Rlnepl L\
g (¥) := [((? " T) e+ B2 “Tnellsp +2>x

P +3g+2+32la Qa+1)[2][n+p] 2Qa+1)
( 311+ B> 2n+1]+p) _[n+1]+ﬁ)"

(24a2+24a+7> b2 ]
+

12 ([n+1]+ B)?
and
[2][n + p] 2a +1)b,
Hence we get the result. O

5 Generalization of the Kantorovich-Stancu type generalization of
g-Bernstein-Chlodowsky operators

In this section, we introduce a generalization of Chlodowsky-type g-Bernstein-Stancu-

Kantorovich operators. For x > 0, consider any continuous function w(x) > 1 and define

2
Gy(t) :f(th:T;.

Let us consider the generalization of K,(f;;ﬂ )(f ;g5 %) as follows:

o®) <A|n+p| (= kmipk-l x
OB e nr) — - _ S5
v 2| G T (-05)

s=0

1 k] + o 1+ (g—-1)[k]
X/o Gf<[71+1]+;3b”+ n+1]+8 tb")dt'

where 0 < x < b, and (b,) has the same properties of Chlodowsky variant of g-Bernstein-
Schurer-Stancu-Kantorovich operators.

Notice that this kind of generalization was considered earlier for the Bernstein-
Chlodowsky polynomials [9], g-Bernstein-Chlodowsky polynomials [5] and Chlodowsky
variant of g-Bernstein-Schurer-Stancu operators [28].

Now we have the following approximation theorem.
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Theorem 5.1 For the continuous functions satisfying

lim —)—Kf<oo,

x—>00 a)(x
we have
. Ly (3 43%) —f ()]
lim sup =0
=00 0<x<b, w(x)

provided that q := (q,) with 0 < g, <1, lim,_ o g, = 1 and lim,,_, o, ; =0asn— oo.

Proof Obviously,

k n+p—k-1

@, o) — Flx) = 25 nip|(x o x
LG -1 15 (2] (b) Il (1 qsb)

! (k] + o 1+ (g -1)[K]

X/ Gf([n+1]+,3b + i+ 1]+ tbn>dt—Gf(x) ,
hence
(@B) (. 7o a) _

sup n (F33%) = f ()] sup | Ko (Gf,q,xz) Gyl
0<x<by, o(x) nggbn l+x

From |f(x)| < Mrw(x) and the continuity of the function f, we have |G¢(x)| < M/(1 + x%)
for x > 0 and Gy(x) is a continuous function on [0, 00). Using Theorem 3.3, we get the
desired result. O

Finally note that taking w(x) = 1 + x?, the operator Lj; (f q;x) reduces to K (f G5 %).
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