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Abstract
Let w and ω be weight functions on R

d . In this work, we define Aw,ωα,p (R
d) to be the

vector space of f ∈ L1w(R
d) such that the fractional Fourier transform Fα f belongs to

Lpω(Rd) for 1 ≤ p <∞. We endow this space with the sum norm ‖f‖Aw,ωα,p
= ‖f‖1,w +

‖Fα f‖p,ω and show that Aw,ωα,p (R
d) becomes a Banach space and invariant under

time-frequency shifts. Further we show that the mapping y → Tyf is continuous from
R

d into Aw,ωα,p (R
d), the mapping z → Mzf is continuous from R

d into Aw,ωα,p (R
d) and

Aw,ωα,p (R
d) is a Banach module over L1w(R

d) with � convolution operation. At the end of
this work, we discuss inclusion properties of these spaces.

Keywords: fractional Fourier transform; convolution; Banach module

1 Introduction
In this work, for any function f : Rd → C, the translation and modulation operator are
defined as Txf (t) = f (t – x) and Mwf (t) = eiwtf (t) for all y, w ∈ R

d , respectively. Also we
write the Lebesgue space (Lp(Rd),‖ · ‖p), for  ≤ p < ∞. Let w be a weight function on R

d ,
that is, a measurable and locally bounded function w satisfying w(x) ≥  and w(x + y) ≤
w(x)w(y) for all x, y ∈ R

d . We define, for  ≤ p < ∞,

Lp
w
(
R

d) =
{

f |fw ∈ Lp(
R

d)}.

It is well known that Lp
w(Rd) is a Banach space under the norm ‖f ‖p,w = ‖fw‖p.

Let w and w are two weight functions. We say that w ≺ w if there exists c > , such
that w(x) ≤ cw(x) for all x ∈R

d [, ].
The Fourier transform f̂ (or F f ) of f ∈ L(R) is given by

f̂ (w) =
√
π

∫ +∞

–∞
f (t)e–iwt dt.

The fractional Fourier transform is a generalization of the Fourier transform with a pa-
rameter α and can be interpreted as a rotation by an angle α in the time-frequency plane.
The fractional Fourier transform with angle α of a function f is defined by

Fαf (u) =
∫ +∞

–∞
Kα(u, t)f (t) dt,
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where

Kα(u, t) =

⎧
⎪⎪⎨

⎪⎪⎩

√
–i cotα

π
ei( u+t

 ) cotα–iut cosecα , if α is not multiple of π ,
δ(t – u), if α = kπ , k ∈ Z,
δ(t + u), if α = (k + )π , k ∈ Z,

and δ is a Dirac delta function. The fractional Fourier transform with α = π
 corresponds

to the Fourier transform [–].
The fractional Fourier transform can be extended to higher dimensions as []:

(Fα,...,αn f )(u, . . . , un)

=
∫ +∞

–∞
· · ·

∫ +∞

–∞
Kα,...,αn (u, . . . , un; t, . . . , tn)f (t, . . . , tn) dt · · · dtn,

or shortly

Fαf (u) =
∫ +∞

–∞
· · ·

∫ +∞

–∞
Kα(u, t)f (t) dt,

where

Kα(u, t) = Kα,...,αn (u, . . . , un; t, . . . , tn) = Kα (u, t)Kα (u, t) · · ·Kαn (un, tn).

In this work we define the function spaces with fractional Fourier transform in weighted
Lebesgue spaces and discuss some properties of these spaces.

2 On function spaces with fractional Fourier transform in weighted Lebesgue
spaces

Definition  Let w and ω be weight functions on R
d and  ≤ p < ∞. The space Aw,ω

α,p (Rd)
consist of all f ∈ L

w(Rd) such that Fαf ∈ Lp
ω(Rd). The norm on the vector space Aw,ω

α,p (Rd)
is

‖f ‖Aw,ω
α,p = ‖f ‖,w + ‖Fαf ‖p,ω.

Theorem  (Aw,ω
α,p (Rd),‖ · ‖Aw,ω

α,p ) is a Banach space for  ≤ p < ∞.

Proof Let (fn)n∈N is a Cauchy sequence in Aw,ω
α,p (Rd). Thus (fn)n∈N and (Fαfn)n∈N are Cauchy

sequences in L
w(Rd) and Lp

ω(Rd), respectively. Since L
w(Rd) and Lp

ω(Rd) are Banach spaces,
there exist f ∈ L

w(Rd) and g ∈ Lp
ω(Rd) such that ‖fn – f ‖,w → , ‖Fαfn – g‖p,ω →  and

hence ‖fn – f ‖ →  and ‖Fαfn – g‖p → . Then (Fαfn)n∈N has a subsequence (Fαfnk )nk∈N
that converges pointwise to g almost everywhere. Also it is easy to see that ‖fnk – f ‖ → .
Then we have

∣
∣Fαf (u) – g(u)

∣
∣ ≤ ∣

∣Fα(fnk – f )(u)
∣
∣ +

∣
∣Fαfnk (u) – g(u)

∣
∣

≤
d∏

j=

∣∣
∣∣

√
 – i cotαj

π

∣∣
∣∣
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×
∫

Rd

∣∣(fnk – f )(t)
∣∣∣∣e

∑d
j= ( i

 (uj+tj) cotαj–iujtj cosecαj)
∣∣dt

+
∣
∣Fαfnk (u) – g(u)

∣
∣

=
d∏

j=

∣∣
∣∣

√
 – i cotαj

π

∣∣
∣∣‖fnk – f ‖ +

∣
∣Fαfnk (u) – g(u)

∣
∣.

From this inequality, we obtain Fαf = g almost everywhere. Thus ‖fn – f ‖Aw,ω
α,p

→  and
f ∈ Aw,ω

α,p (Rd). Hence (Aw,ω
α,p (Rd),‖ · ‖Aw,ω

α,p ) is a Banach space. �

The following proposition is generalization of the one-dimensional and two-dimen-
sional versions. The proof of this proposition is very similar to the proofs of one-
dimensional and two-dimensional versions in [, , , ], and we omit the details.

Proposition  Let α = (α,α, . . . ,αd), where αi 
= kπ for each index i with  ≤ i ≤ d and
k ∈ Z. Then

() Fα(Tyf )(u) = e
∑d

j= ( i
 y

j sinαj cosαj–iujyj sinαj)Fαf (u – y cosα, . . . , ud – yd cosαd) ()

for all f ∈ L(Rd) and y ∈R
d ;

() Fα(Mvf )(u) = e
∑d

j= (– i
 v

j sinαj cosαj+iujvj cosαj)Fαf (u – v sinα, . . . , ud – vd sinαd)

for all f ∈ L(Rd) and v ∈R
d .

Theorem  Let α = (α,α, . . . ,αd), where αi 
= kπ for each index i with  ≤ i ≤ d and
k ∈ Z.

() Let  ≤ p < ∞, w and ω be weight functions on R
d . Then the space Aw,ω

α,p (Rd) is
translation invariant.

() Let ω be a bounded weight function on R
d . Then the mapping y → Tyf of Rd into

Aw,ω
α,p (Rd) is continuous.

Proof () Let f ∈ Aw,ω
α,p (Rd). Then f ∈ L

w(Rd) and Fαf ∈ Lp
ω(Rd). It is well known that the

space L
w(Rd) is translation invariant and holds ‖Tyf ‖,w ≤ w(y)‖f ‖,w for all y ∈ R

d [].
Let b = (y cosα, . . . , yd cosαd). By using the equality (), we get

∥∥Fα(Tyf )
∥∥

p,ω =
(∫

Rd

∣∣Fα(Tyf )(u)
∣∣p

ωp(u) du
) 

p

=
(∫

Rd

∣∣Fαf (u – y cosα, . . . , ud – yd cosαd)
∣∣p

× ∣
∣e

∑d
j= ( i

 yj sinαj cosαj–iujyj sinαj)
∣
∣
p
ωp(u) du

) 
p

≤
(∫

Rd

∣∣Fαf (u – b)
∣∣p

ωp(u – b)ωp(b) du
) 

p

= ω(b)‖Fαf ‖p,ω
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for all y ∈R
d . Hence, we have

‖Tyf ‖Aw,ω
α,p ≤ w(y)‖f ‖,w + ω(b)‖Fαf ‖p,ω < ∞.

This means that Aw,ω
α,p (Rd) is translation invariant.

() Let f ∈ Aw,ω
α,p (Rd). We will show that if limn→∞ yn =  for any sequence (yn)n∈N ⊂ R

d ,
then limn→∞ Tyn f = f , which will complete the proof. It is well known that the mapping
y → Tyf is continuous from R

d into L
w(Rd) (see []). Thus, we have

‖Tyn f – f ‖,w →  ()

as n → ∞. Also,

∥∥Fα(Tyn f – f )
∥∥

p,ω =
∥∥Fα(Tyn f ) – Fαf

∥∥
p,ω

=
∥∥e

∑d
j= ( i

 (yj
n)


sinαj cosαj–iujy

j
n sinαj)T(y

n cosα,...,yd
n cosαd)(Fαf ) – Fαf

∥∥
p,ω

≤ ∥
∥(

T(y
n cosα,...,yd

n cosαd)(Fαf ) – Fαf
)∥∥

p,ω

+
∥∥(

e
∑d

j= ( i
 (yj

n)


sinαj cosαj–iujy
j
n sinαj) – 

)
Fαf

∥∥
p,ω.

Since Fαf ∈ Lp
ω(Rd), the mapping y → Ty(Fαf ) is continuous from R

d into Lp
ω(Rd) for

all y ∈ R
d []. Then we obtain ‖T(y

n cosα,...,yd
n cosαd)(Fαf ) – Fαf ‖p,ω →  as n → ∞. Now

let hyn (u) = |e
∑d

j= ( i
 (yj

n)


sinαj cosαj–iujy
j
n sinαj) – ||Fαf (u)|. Since limn→∞ yn =  and ω is a

bounded weight function on R
d , we see that limn→∞ hp

yn (u)ωp(u) =  for all u ∈ R
d . Also,

since

hyn (u) =
∣∣e

∑d
j= ( i

 (yj
n)


sinαj cosαj–iujy

j
n sinαj) – 

∣∣∣∣Fαf (u)
∣∣ ≤ 

∣∣Fαf (u)
∣∣

and Fαf ∈ Lp
ω(Rd), we can write hp

yn (u)ωp(u) ≤ p|Fαf (u)|pωp(u). Thus, by the Lebesgue
dominated convergence theorem,

∥
∥(

e
∑d

j= ( i
 (yj

n)


sinαj cosαj–iujy
j
n sinαj) – 

)
Fαf

∥
∥

p,ω → 

as limn→∞ yn = . Hence,

‖Tyn f – f ‖Aw,ω
α,p →  ()

as n → ∞. Combining () and (),

‖Tyn f – f ‖Aw,ω
α,p = ‖Tyn f – f ‖,w +

∥∥Fα(Tyn f – f )
∥∥

p,ω → 

as n → ∞. This is the desired result. �

Theorem  Let α = (α,α, . . . ,αd), where αi 
= kπ for each index i with  ≤ i ≤ d and
k ∈ Z.
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() Let  ≤ p < ∞, w and ω be weight functions on R
d . Then Aw,ω

α,p (Rd) is invariant under
modulations.

() Let ω be a bounded weight function on R
d . Then the mapping z → Mzf is continuous

from R
d into Aw,ω

α,p (Rd).

Proof () Let f ∈ Aw,ω
α,p (Rd). Then f ∈ L

w(Rd) and Fαf ∈ Lp
ω(Rd). It is easy to see that

‖Mηf ‖,w = ‖f ‖,w and Mηf ∈ L
w(Rd). Let c = (η sinα, . . . ,ηd sinαd) ∈R

d . Thus by Propo-
sition , we have

∥
∥Fα(Mηf )

∥
∥

p,ω =
(∫

Rd

∣
∣Fα(Mηf )(u)

∣
∣p

ωp(u) du
) 

p

=
(∫

Rd

∣∣Fαf (u – η sinα, . . . , ud – ηd sinαd)
∣∣
p

× ∣∣e
∑d

j= (– i
 η

j sinαj cosαj+iujηj cosαj)∣∣
p
ωp(u) du

) 
p

≤
(∫

Rd

∣
∣Fαf (u – c)

∣
∣p

ωp(u – c)ωp(c) du
) 

p

= ω(c)‖Fαf ‖p,ω

for all η ∈ R
d . Hence, we get

‖Mηf ‖Aw,ω
α,p ≤ ‖f ‖,w + ω(c)‖Fαf ‖p,ω < ∞.

() The proof technique of this part is the same as that of Theorem (). So, for the sake
of brevity, we will not prove it. �

The following definition is an extension of the convolution in [, ] of two functions
to n dimensions.

Definition  Let α = (α,α, . . . ,αd), where αi 
= kπ for each index i with  ≤ i ≤ d and
k ∈ Z. Then the convolution of two functions f , g ∈ L(Rd) is the function f �g defined by

(f �g)(x) =
∫

Rd
f (y)g(x – y)e

∑d
j= iyj(yj–xj) cotαj dy.

It is easy to see that f �g belongs to L(Rd) by Fubini’s theorem.

Theorem  Let α = (α,α, . . . ,αd), where αi 
= kπ for each index i with  ≤ i ≤ d and k ∈ Z,
and f , g ∈ L(Rd). Then

Fα(f �g)(u) =

[ d∏

j=

√
π

 – i cotαj

]

e
∑d

j= – i
 u

j cotαjFαf (u)Fαg(u),

where Fαf and Fαg are the fractional Fourier transforms of functions f and g , respec-
tively.
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Proof Let α = (α,α, . . . ,αd), where αi 
= kπ for each index i with  ≤ i ≤ d and k ∈ Z, and
f , g ∈ L(Rd). We can write from the definition of the fractional Fourier transform

Fα(f �g)(u) =

[ d∏

j=

√
 – i cotαj

π

]∫

Rd
(f �g)(t)e

∑d
j= ( i

 (u
j +t

j ) cotαj–iujtj cosecαj) dt

=

[ d∏

j=

√
 – i cotαj

π

]∫

Rd

∫

Rd
f (y)g(t – y)e

∑d
j= iyj(yj–tj) cotαj

× e
∑d

j= ( i
 (u

j +t
j ) cotαj–iujtj cosecαj) dt dy.

We make the substitution t – y = k and obtain

Fα(f �g)(u) =

[ d∏

j=

√
 – i cotαj

π

]∫

Rd

(∫

Rd
f (y)e

∑d
j= ( i

 (u
j +y

j ) cotαj–iujyj cosecαj) dy
)

× g(k)e
∑d

j= ( i
 k

j cotαj–iujkj cosecαj) dk

=

[ d∏

j=

√
π

 – i cotαj

]

e
∑d

j= – i
 u

j cotαj

[ d∏

j=

√
 – i cotαj

π

]

×
∫

Rd

(∫

Rd
f (y)e

∑d
j= ( i

 (u
j +y

j ) cotαj–iujyj cosecαj) dy
)

× g(k)e
∑d

j= ( i
 (k

j +u
j ) cotαj–iujkj cosecαj) dk

=

[ d∏

j=

√
π

 – i cotαj

]

e
∑d

j= – i
 u

j cotαj

[ d∏

j=

√
 – i cotαj

π

]

×
∫

Rd
Fαf (u)g(k)e

∑d
j= ( i

 (k
j +u

j ) cotαj–iujkj cosecαj) dk

=

[ d∏

j=

√
π

 – i cotαj

]

e
∑d

j= – i
 u

j cotαjFαf (u)Fαg(u).
�

Theorem  Let α = (α,α, . . . ,αd), where αi 
= kπ for each index i with  ≤ i ≤ d and k ∈ Z.
L

w(Rd) is a Banach algebra under � convolution.

Proof It is well known that L
w(Rd) is a Banach space []. Let f , g ∈ L

w(Rd), then we have

‖f �g‖,w =
∫

Rd
|f �g|w(x) dy

=
∫

Rd

∣∣
∣∣

∫

Rd
f (y)g(x – y)e

∑d
j= iyj(yj–xj) cotαj dy

∣∣
∣∣w(x) dx

≤
∫

Rd

(∫

Rd

∣
∣g(x – y)

∣
∣w(x – y) dx

)∣
∣f (y)

∣
∣w(y) dy

= ‖g‖,w

∫

Rd

∣
∣f (y)

∣
∣w(y) dy

= ‖g‖,w‖f ‖,w. ()

It is easy to show that the other conditions of the Banach algebra are satisfied. �
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Theorem  Let α = (α,α, . . . ,αd), where αi 
= kπ for each index i with  ≤ i ≤ d and k ∈ Z.
Aw,ω

α,p (Rd) is a Banach �-convolution module over L
w(Rd).

Proof It is well known that Aw,ω
α,p (Rd) is a Banach space by Theorem . Let f ∈ Aw,ω

α,p (Rd)
and g ∈ L

w(Rd). By using the inequality (), we get

∥∥Fα(f �g)
∥∥

p,ω =

∥
∥∥
∥∥

[ d∏

j=

√
π

 – i cotαj

]

e
∑d

j= – i
 u

j cotαjFαf (u)Fαg(u)

∥
∥∥
∥∥

p,ω

=
∣∣
∣∣

d∏

j=

√
π

 – i cotαj

∣∣
∣∣

(∫

Rd

∣
∣Fαf (u)

∣
∣p∣∣Fαg(u)

∣
∣p

ωp(u) du
) 

p

=
∣
∣∣
∣

d∏

j=

√
π

 – i cotαj

∣
∣∣
∣

(∫

Rd

∣∣Fαf (u)
∣∣p

∣∣∣
∣∣

d∏

j=

√
 – i cotαj

π

∣∣∣
∣∣

p

×
∣
∣∣
∣

∫

Rd
g(t)e

∑d
j= ( i

 (u
j +t

j ) cotαj–iujtj cosecαj) dt
∣
∣∣
∣

p

ωp(u) du

) 
p

≤
(∫

Rd

∣∣Fαf (u)
∣∣p

(∫

Rd

∣∣g(t)
∣∣dt

)p

ωp(u) du
) 

p

= ‖g‖

(∫

Rd

∣
∣Fαf (u)

∣
∣p

ωp(u) du
) 

p

≤ ‖g‖,w‖Fαf ‖p,ω. ()

Combining () and (), we obtain

‖f �g‖Aw,ω
α,p = ‖f �g‖,w +

∥
∥Fα(f �g)

∥
∥

p,ω

≤ ‖g‖,w‖f ‖,w + ‖g‖,w‖Fαf ‖p,ω

= ‖f ‖Aw,ω
α,p ‖g‖,w.

This is the desired result. It is easy to see that the other conditions of the module are
satisfied. �

3 Inclusion properties of the space Aw,ω
α,p (Rd)

Proposition  For every  
= f ∈ Aw,
α,p(Rd) there exists c(f ) >  such that

c(f )w(x) ≤ ‖Txf ‖Aw,
α,p

≤ w(x)‖f ‖Aw,
α,p

.

Proof Let  
= f ∈ Aw,
α,p(Rd). By [], there exists c(f ) >  such that

c(f )w(x) ≤ ‖Txf ‖,w ≤ w(x)‖f ‖,w. ()

By using () and the equality ‖Fα(Txf )‖p = ‖Fαf ‖p, we obtain

c(f )w(x) ≤ ‖Txf ‖,w ≤ ‖Txf ‖,w +
∥
∥Fα(Txf )

∥
∥

p

≤ w(x)‖f ‖,w + ‖Fαf ‖p
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≤ w(x)‖f ‖,w + w(x)‖Fαf ‖p

= w(x)‖f ‖Aw,
α,p

for all f ∈ Aw,
α,p(Rd). �

Lemma  Let w, w, ω and ω be weight functions on R
d . If Aw,ω

α,p (Rd) ⊂ Aw,ω
α,p (Rd),

then Aw,ω
α,p (Rd) is a Banach space under the norm ‖|f ‖| = ‖f ‖Aw,ω

α,p
+ ‖f ‖Aw,ω

α,p
.

Proof Let (fn)n∈N is a Cauchy sequence in (Aw,ω
α,p (Rd),‖| · ‖|). Then (fn)n∈N is a Cauchy

sequence in (Aw,ω
α,p (Rd),‖ · ‖Aw,ω

α,p
) and (Aw,ω

α,p (Rd),‖ · ‖Aw,ω
α,p

). As these spaces are Ba-
nach spaces, there exist f ∈ Aw,ω

α,p (Rd) and g ∈ Aw,ω
α,p (Rd) such that ‖fn – f ‖Aw,ω

α,p
→

, ‖fn – g‖Aw,ω
α,p

→ . Using the inequalities ‖ · ‖ ≤ ‖ · ‖,w ≤ ‖ · ‖Aw,ω
α,p

and ‖ · ‖ ≤
‖ · ‖,w ≤ ‖ · ‖Aw,ω

α,p
, we obtain ‖fn – f ‖ →  and ‖fn – g‖ → . Also ‖f – g‖ ≤ ‖fn – f ‖ +

‖fn – g‖, we have f = g . Hence ‖|fn – f ‖| →  and f ∈ Aw,ω
α,p (Rd). That means (Aw,ω

α,p (Rd),
‖| · ‖|) is a Banach space. �

Theorem  Let w and w be weight functions on R
d . Then Aw,

α,p (Rd) ⊂ Aw,
α,p (Rd) if and

only if w ≺ w.

Proof Suppose that w ≺ w. Thus there exists c >  such that w(x) ≤ cw(x) for all x ∈
R

d . Also let f ∈ Aw,
α,p (Rd). Then we write

‖f ‖,w ≤ c‖f ‖,w < ∞.

Hence we have

‖f ‖Aw,
α,p

= ‖f ‖,w + ‖Fαf ‖p ≤ c‖f ‖,w + c‖Fαf ‖p = c‖f ‖Aw,
α,p

.

Therefore, Aw,
α,p (Rd) ⊂ Aw,

α,p (Rd).
Conversely, suppose that Aw,

α,p (Rd) ⊂ Aw,
α,p (Rd). For every f ∈ Aw,

α,p (Rd), we have f ∈
Aw,

α,p (Rd). By Proposition , there are constants c, c, c, c >  such that

cw(x) ≤ ‖Txf ‖Aw,
α,p

≤ cw(x) ()

and

cw(x) ≤ ‖Txf ‖Aw,
α,p

≤ cw(x) ()

for all x ∈ R
d . It is well known from Lemma  that the space Aw,

α,p (Rd) is a Banach space
under the norm ‖|f ‖|, f ∈ Aw,

α,p (Rd). Then by the closed graph theorem the norms ‖ · ‖Aw,
α,p

and ‖ · ‖Aw,
α,p

are equivalent on Aw,
α,p (Rd). So, there exists c >  such that ‖f ‖Aw,

α,p
≤ ‖f ‖Aw,

α,p

for all f ∈ Aw,
α,p (Rd). Moreover, as Txf ∈ Aw,

α,p (Rd), we have

‖Txf ‖Aw,
α,p

≤ c‖Txf ‖Aw,
α,p

. ()
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Then, combining (), (), and (), we obtain

cw(x) ≤ ‖Txf ‖Aw,
α,p

≤ c‖Txf ‖Aw,
α,p

≤ ccw(x).

Thus, w(x) ≤ cc
c

w(x). Let cc
c

= k. Then we find w(x) ≤ kw(x) for all x ∈R
d . �

Proposition  Let w, w, ω and ω be weight functions on R
d . If w ≺ w and ω ≺ ω,

then Aw,ω
α,p (Rd) ⊂ Aw,ω

α,p (Rd).

Proof Assume that w ≺ w and ω ≺ ω. Then there exist c, c >  such that w(x) ≤
cw(x) and ω(x) ≤ cω(x) for all x ∈ R

d . Let f ∈ Aw,ω
α,p (Rd). As f ∈ L

w (Rd) and Fαf ∈
Lp

ω (Rd), we have ‖f ‖,w ≤ c‖f ‖,w < ∞ and ‖Fαf ‖p,ω ≤ c‖Fαf ‖p,ω < ∞. Hence, we
obtain f ∈ Aw,ω

α,p (Rd), and then Aw,ω
α,p (Rd) ⊂ Aw,ω

α,p (Rd). �

4 Duality
Let the mapping � : Aw,ω

α,p (Rd) → L
w(Rd) × Lp

ω(Rd) be defined by �(f ) = (f ,Fαf ) for  ≤
p < ∞ and let H = �(Aw,ω

α,p (Rd)). Then

∥∥�(f )
∥∥ =

∥∥(f ,Fαf )
∥∥ = ‖f ‖,w + ‖Fαf ‖p,ω

is a norm on H for all f ∈ Aw,ω
α,p (Rd). Moreover, we define a set K as

K =
{

(ϕ,ψ) :
(
(ϕ,ψ) ∈ L∞

w–
(
R

d) × Lp′
ω–

(
R

d)),

∫

Rd
f (x)ϕ(x) dx +

∫

Rd
Fαf (y)ψ(y) dy =  for all (f ,Fαf ) ∈ H

}
,

where 
p + 

p′ = .
The following proposition is proved by the duality theorem, Theorem . in [].

Proposition  Let  ≤ p < ∞, and w and ω be weight functions on R
d . The dual space of

Aw,ω
α,p (Rd) is isomorphic to L∞

w– (Rd) × Lp′
ω– (Rd)/K where 

p + 
p′ = .
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