RESEARCH Open Access

Ray's theorem revisited: a fixed point free firmly nonexpansive mapping in Hilbert spaces

Fumiaki Kohsaka*

*Correspondence: f-kohsaka@oita-u.ac.jp Department of Computer Science and Intelligent Systems, Oita University, Dannoharu, Oita-shi, Oita, 870-1192, Japan

Abstract

We give another proof of a strong version of Ray's theorem ensuring that every unbounded closed convex subset of a Hilbert space admits a fixed point free firmly nonexpansive mapping.

MSC: Primary 47H09; secondary 47H10; 46C05

Keywords: firmly nonexpansive mapping; fixed point; Hilbert space; Ray's theorem; unbounded set

1 Ray's theorem and its strong version

In 1965, Browder [1] showed the following fixed point theorem for nonexpansive mappings in Hilbert spaces.

Theorem 1.1 (Browder's theorem [1]) Let C be a nonempty closed convex subset of a Hilbert space H. If C is bounded, then every nonexpansive self-mapping on C has a fixed point.

Ray [2] showed that the converse of Browder's theorem holds.

Theorem 1.2 (Ray's theorem [2]) Let C be a nonempty closed convex subset of a Hilbert space H. If every nonexpansive self-mapping on C has a fixed point, then C is bounded.

Later, Sine [3] gave a simple proof of Theorem 1.2 by applying a version of the uniform boundedness principle and the convex combination of a sequence of metric projections onto closed and convex sets.

Recently, Aoyama *et al.* [4], obtained a counterpart of Theorem 1.2 for λ -hybrid mappings in Hilbert spaces by using the following strong version of Ray's theorem.

Theorem 1.3 (A strong version of Ray's theorem [4]) Let C be a nonempty closed convex subset of a Hilbert space H. If every firmly nonexpansive self-mapping on C has a fixed point, then C is bounded.

It should be noted that Theorem 1.3 was actually shown by using Theorem 1.2 in [4]. See also [5, 6] on generalizations of Theorem 1.3 for firmly nonexpansive type mappings in Banach spaces.

In this paper, motivated by the papers mentioned above, we give another proof of Theorem 1.3 by using a version of the uniform boundedness principle and a single metric projection onto a closed and convex set. Since every firmly nonexpansive mapping is nonexpansive, Theorem 1.3 immediately implies Theorem 1.2.

2 A fixed point free firmly nonexpansive mapping

Throughout this paper, every linear space is real. The inner product and the induced norm of a Hilbert space H are denoted by $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$, respectively. The dual space of a Banach space X is denoted by X^* . The following is a version of the uniform boundedness principle.

Theorem 2.1 (see, for instance, [7]) *If* C *is a nonempty subset of a Banach space* X *such that* $x^*(C)$ *is bounded for each* $x^* \in X^*$ *, then* C *is bounded.*

Let C be a nonempty closed convex subset of a Hilbert space H. Then a self-mapping T on C is said to be nonexpansive if $\|Tx - Ty\| \le \|x - y\|$ for all $x, y \in C$; firmly nonexpansive [8, 9] if $\|Tx - Ty\|^2 \le \langle Tx - Ty, x - y \rangle$ for all $x, y \in C$. The set of all fixed points of T is denoted by F(T). The mapping T is said to be fixed point free if F(T) is empty. It is well known that for each $x \in H$, there exists a unique $z_x \in C$ such that $\|z_x - x\| \le \|y - x\|$ for all $y \in C$. The metric projection P_C of H onto C, which is defined by $P_C x = z_x$ for all $x \in H$, is a firmly nonexpansive mapping of H onto C. This fact directly follows from the fact that the equivalence

$$z = P_C x \iff \sup_{y \in C} \langle y - z, x - z \rangle \le 0$$
 (2.1)

holds for all $(x, z) \in H \times C$. See [10–12] for more details on nonexpansive mappings. We first show the following lemma.

Lemma 2.2 Let C be a nonempty closed convex subset of a Hilbert space H, a be an element of H, and T be the mapping defined by $Tx = P_C(x + a)$ for all $x \in C$. Then T is a firmly nonexpansive self-mapping on C such that

$$F(T) = \left\{ u \in C : \langle u, a \rangle = \sup_{y \in C} \langle y, a \rangle \right\}. \tag{2.2}$$

Proof Since P_C is firmly nonexpansive, we have

$$||Tx - Ty||^2 \le \langle P_C(x+a) - P_C(y+a), (x+a) - (y+a) \rangle = \langle Tx - Ty, x - y \rangle$$

for all $x, y \in C$. Thus T is a firmly nonexpansive self-mapping on C. Fix any $u \in C$. According to (2.1), we know that

$$Tu = u \iff \sup_{y \in C} \langle y - u, (u + a) - u \rangle \le 0 \iff \langle u, a \rangle = \sup_{y \in C} \langle y, a \rangle$$

and hence (2.2) holds. \Box

Using Theorem 2.1 and Lemma 2.2, we give another proof of Theorem 1.3.

Proof of Theorem 1.3 If C is unbounded, then Theorem 2.1 implies that $x^*(C)$ is unbounded for some $x^* \in H^*$. Since H is a real Hilbert space, we have $a \in H$ such that $\sup_{y \in C} \langle y, a \rangle = \infty$. By Lemma 2.2 and the choice of a, the mapping T defined as in Lemma 2.2 is a fixed point free firmly nonexpansive self-mapping on C.

Competing interests

The author declares that he has no competing interests.

Acknowledgements

The author would like to thank the anonymous referees for carefully reading the original version of the manuscript. The author is supported by Grant-in-Aid for Young Scientists No. 25800094 from the Japan Society for the Promotion of Science.

Received: 30 October 2014 Accepted: 23 February 2015 Published online: 06 March 2015

References

- Browder, FE: Fixed-point theorems for noncompact mappings in Hilbert space. Proc. Natl. Acad. Sci. USA 53, 1272-1276 (1965)
- 2. Ray, WO: The fixed point property and unbounded sets in Hilbert space. Trans. Am. Math. Soc. 258, 531-537 (1980)
- 3. Sine, R: On the converse of the nonexpansive map fixed point theorem for Hilbert space. Proc. Am. Math. Soc. 100, 489-490 (1987)
- Aoyama, K, Iemoto, S, Kohsaka, F, Takahashi, W: Fixed point and ergodic theorems for λ-hybrid mappings in Hilbert spaces. J. Nonlinear Convex Anal. 11, 335-343 (2010)
- 5. Takahashi, W, Yao, J-C, Kohsaka, F: The fixed point property and unbounded sets in Banach spaces. Taiwan. J. Math. 14, 733-742 (2010)
- 6. Kohsaka, F: Existence of fixed points of nonspreading mappings with Bregman distances. In: Nonlinear Mathematics for Uncertainty and Its Applications, pp. 403-410. Springer, Berlin (2011)
- 7. Brezis, H: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2011)
- 8. Browder, FE: Convergence theorems for sequences of nonlinear operators in Banach spaces. Math. Z. **100**, 201-225 (1967)
- 9. Bruck, RE Jr: Nonexpansive projections on subsets of Banach spaces. Pac. J. Math. 47, 341-355 (1973)
- 10. Goebel, K, Kirk, WA: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)
- 11. Goebel, K, Reich, S: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Dekker, New York (1984)
- 12. Takahashi, W: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com