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Abstract
We introduce α-admissible Meir-Keller and generalized α-admissible Meir-Keller
contractions on quasi-metric spaces and discuss the existence of fixed points of such
contractions. We apply our results to G-metric spaces and express some fixed point
theorems in G-metric spaces as consequences of the results in quasi-metric spaces.
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1 Introduction and preliminaries
One of the generalizations of the metric spaces are the so-called quasi-metric spaces in
which the commutativity condition does not hold in general. Recently, Jleli and Samet
[] obtained a relation between G-metric spaces introduced by Mustafa and Sims [] and
quasi-metric spaces. This work increased the interest to quasi-metric spaces (see [, ] for
details).

In this paper, we investigate the existence of fixed points of Meir-Keeler type contrac-
tions defined on quasi-metric spaces and apply our results to G-metric spaces.

First, we recall the definition of a quasi-metric and quasi-metric space and some topo-
logical concepts on these spaces.

Definition  Let X be a nonempty set and d : X × X → [,∞) be a function which satis-
fies:

(d) d(x, y) =  if and only if x = y;
(d) d(x, y) ≤ d(x, z) + d(z, y).

Then d called a quasi-metric and the pair (X, d) is called a quasi-metric space.

Remark  Any metric space is a quasi-metric space, but the converse is not true in gen-
eral.

Definition  Let (X, d) be a quasi-metric space.
() A sequence {xn} in X is said to be convergent to x if

limn→∞ d(xn, x) = limn→∞ d(x, xn) = .
() A sequence {xn} in X is called left-Cauchy if for every ε >  there exists a positive

integer N = N(ε) such that d(xn, xm) < ε for all n ≥ m > N .
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() A sequence {xn} in X is called right-Cauchy if for every ε >  there exists a positive
integer N = N(ε) such that d(xn, xm) < ε for all m ≥ n > N .

() A sequence {xn} in X is called Cauchy sequence if for every ε >  there exists a
positive integer N = N(ε) such that d(xn, xm) < ε for all m, n > N .

Remark  From Definition  it is obvious that a sequence {xn} in a quasi-metric space is
Cauchy if and only if it is both left-Cauchy and right-Cauchy.

Definition  Let (X, d) be a quasi-metric space. Then:
() (X, d) is said to be left-complete if every left-Cauchy sequence in X is convergent.
() (X, d) is said to be right-complete if every right-Cauchy sequence in X is convergent.
() (X, d) is said to be complete if every Cauchy sequence in X is convergent.

In the sequel, we shall denote byN the set of nonnegative integers, that is,N = {, , , . . .}.
We next define the concept of α-admissible mappings which have been recently intro-
duced by Samet [] and used by many authors to generalize contraction mappings of var-
ious types; see [–] for details.

Definition  A mapping T : X → X is called α-admissible if for all x, y ∈ X we have

α(x, y) ≥  ⇒ α(Tx, Ty) ≥ , (.)

where α : X × X → [,∞) is a given function.

In the existence and uniqueness proofs of fixed points of α-admissible maps, an addi-
tional property is required. This property is given below.

Definition  A mapping T : X → X is called triangular α-admissible if it is α-admissible
and satisfies

α(x, y) ≥ ,
α(y, z) ≥ 

}
⇒ α(x, z) ≥ , (.)

where x, y, z ∈ X and α : X × X → [,∞) is a given function.

The following auxiliary result is going to be used in the proof of existence theorems.

Lemma  [] Let T : X → X be a triangular α-admissible mapping. Assume that there
exists x ∈ X such that α(x, Tx) ≥  and α(Tx, x) ≥ . If xn = Tnx, then α(xm, xn) ≥ 
for all m, n ∈N.

Proof Let x ∈ X satisfies α(x, Tx) ≥  and α(Tx, x) ≥ . Define the sequence {xn} in X
as xn+ = Txn for n ∈N. Since T is α-admissible, we have

α(x, Tx) = α(x, x) ≥  ⇒ α(x, x) ≥  ⇒ ·· · ⇒ α(xn, xn+) ≥ ,

α(Tx, x) = α(x, x) ≥  ⇒ α(x, x) ≥  ⇒ ·· · ⇒ α(xn+, xn) ≥ ,
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for all n = , , . . . . On the other hand, since T is triangular α-admissible, we get

α(xm, xm+) ≥ ,
α(xm+, xm+) ≥ 

}
�⇒ α(xm, xm+) ≥ ,

and

α(xm, xm–) ≥ ,
α(xm–, xm–) ≥ 

}
�⇒ α(xm, xm–) ≥ .

Similarly,

α(xm, xm+) ≥ ,
α(xm+, xm+) ≥ 

}
�⇒ α(xm, xm+) ≥ ,

and

α(xm, xm–) ≥ ,
α(xm–, xm–) ≥ 

}
�⇒ α(xm, xm–) ≥ .

Continuing in this way, we obtain, for all m, n ∈N,

α(xm, xn) ≥ . �

In this paper we study α-admissible Meir-Keeler (or shortly α-Meir-Keeler) contractions
which can be regarded as generalizations of the Meir-Keeler contractions defined in []. In
fact, we insert α-admissibility into the definition of the original Meir-Keeler contraction.

Definition  Let (X, d) be a quasi-metric space. Let T : X → X be a triangular α-
admissible mapping. Suppose that for every ε >  there exists δ >  such that

ε ≤ d(x, y) < ε + δ implies α(x, y)d(Tx, Ty) < ε, (.)

for all x, y ∈ X. Then T is called α-Meir-Keeler contraction.

Remark  Let T be an α-Meir-Keeler contractive mapping. Then

α(x, y)d(Tx, Ty) < d(x, y),

for all x, y ∈ X when x 	= y. Also, if x = y then d(Tx, Ty) = , i.e.,

α(x, y)d(Tx, Ty) ≤ d(x, y),

for all x, y ∈ X.

We also generalize the α-Meir-Keeler contraction by using a more general expression in
the contractive condition. Specifically, we define two types of generalized α-Meir-Keeler
contraction, say type (I) and type (II) as follows.
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Definition  Let (X, d) be a quasi-metric space. Let T : X → X be a triangular α-
admissible mapping. Assume that for every ε >  there exists δ >  such that

ε ≤ M(x, y) < ε + δ implies α(x, y)d(Tx, Ty) < ε, (.)

where

M(x, y) = max
{

d(x, y), d(Tx, x), d(Ty, y)
}

, (.)

for all x, y ∈ X. Then T is called a generalized α-Meir-Keeler contraction of type (I).

Definition  Let (X, d) be a quasi-metric space. Let T : X → X be a triangular α-
admissible mapping. Assume that for every ε >  there exists δ >  such that

ε ≤ N(x, y) < ε + δ implies α(x, y)d(Tx, Ty) < ε, (.)

where

N(x, y) = max

{
d(x, y),



[
d(Tx, x) + d(Ty, y)

]}
, (.)

for all x, y ∈ X. Then T is called a generalized α-Meir-Keeler contraction of type (II).

Remark  Let T : X → X be a generalized α-Meir-Keeler contraction of type (I) (respec-
tively, type (II)). Then

α(x, y)d(Tx, Ty) < M(x, y)
(
respectively, N(x, y)

)
,

for all x, y ∈ X when M(x, y) >  (respectively, N(x, y) > ). Also, if M(x, y) =  (respectively,
N(x, y) = ), then x = y, which implies d(x, y) = , i.e.,

α(x, y)d(Tx, Ty) ≤ M(x, y)
(
respectively, N(x, y)

)
,

for all x, y ∈ X.

Remark  It is obvious that N(x, y) ≤ M(x, y) for all x, y ∈ X, where M(x, y) and N(x, y)
are defined in (.) and (.), respectively.

2 Main results
Our first result is a fixed point theorem for generalized α-Meir-Keeler contractions of
type (I) on quasi-metric spaces.

Theorem  Let (X, d) be a complete quasi-metric space and T : X → X be a continuous
generalized α-Meir-Keeler contraction of type (I). If α(x, Tx) ≥  and α(Tx, x) ≥  for
some x ∈ X, then T has a fixed point in X.
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Proof Let x ∈ X satisfy α(x, Tx) ≥  and α(Tx, x) ≥ . Define the sequence {xn} in X
as

xn+ = Txn for n ∈ N.

Notice that if xn = xn+ for some n > , then xn is a fixed point of T and the proof is
done. Assume that xn 	= xn+ for all n ≥ . Since T is α-admissible,

α(x, Tx) = α(x, x) ≥  ⇒ α(Tx, Tx) = α(x, x) ≥ , (.)

and continuing we obtain

α(xn, xn+) ≥  ∀n ∈N. (.)

Upon substituting x = xn and y = xn+ in (.) we find that for every ε >  there exists δ > 
such that

ε ≤ M(xn, xn+) < ε + δ �⇒ α(xn, xn+)d(Txn, Txn+) < ε, (.)

where

M(xn, xn+) = max
{

d(xn, xn+), d(xn+, xn), d(xn+, xn+)
}

.

In what follows, we examine three cases.
Case . Assume that M(xn, xn+) = d(xn, xn+). Then (.) becomes

ε ≤ d(xn, xn+) < ε + δ �⇒ α(xn, xn+)d(Txn, Txn+) < ε.

Therefore, we deduce that

d(xn+, xn+) ≤ α(xn, xn+)d(Txn, Txn+) < ε ≤ d(xn, xn+),

for all n. That is, {d(xn, xn+)} is a decreasing positive sequence in R+ and it converges to
some r ≥ . To show that r = , we assume the contrary, that is, r > . Then we must have

 < r ≤ d(xn, xn+) for all n ∈N. (.)

Since the condition (.) holds for every ε > , we may choose ε = r. For this ε, there exists
δ(ε) >  satisfying (.). In other words,

r ≤ dn = d(xn, xn+) < r + δ �⇒ α(xn, xn+)d(Txn, Txn+) < r.

However, this implies

r ≤ M(xn, xn+) = d(xn, xn+) < r + δ

�⇒ d(xn+, xn+) ≤ α(xn, xn+)d(Txn, Txn+) < r, (.)
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which contradicts (.). Thus, r = , that is,

lim
n→∞ d(xn, xn+) = . (.)

Case . Assume that M(xn, xn+) = d(xn+, xn). In this case (.) becomes

ε ≤ d(xn+, xn) < ε + δ �⇒ α(xn, xn+)d(Txn, Txn+) < ε,

from which it follows that

d(xn+, xn+) ≤ α(xn, xn+)d(Txn, Txn+) < ε ≤ d(xn+, xn).

Therefore, we obtain

d(xn+, xn+) < d(xn+, xn), (.)

for all n ∈N. Note that by Remark , since

M(xn, xn–) = max
{

d(xn, xn–), d(xn+, xn), d(xn, xn–)
}

> ,

we get

d(xn+, xn) = d(Txn, Txn–) ≤ α(xn, xn–)d(Txn, Txn–) < M(xn, xn–), (.)

where

M(xn, xn–) = max
{

d(xn, xn–), d(xn+, xn), d(xn, xn–)
}

= max
{

d(xn, xn–), d(xn+, xn)
}

.

Then (.) becomes

d(xn+, xn) < max
{

d(xn, xn–), d(xn+, xn)
}

, (.)

for all n ∈N.
Clearly, the case max{d(xn, xn–), d(xn+, xn)} = d(xn+, xn) is not possible. Indeed, in this

case we would get

 < d(xn+, xn) < d(xn+, xn).

Therefore, we should have max{d(xn, xn–), d(xn+, xn)} = d(xn, xn–), which implies

 < d(xn+, xn) < d(xn, xn–), (.)

for all n ∈ N. That is, the sequence {d(xn+, xn)} is decreasing and positive sequence and
hence it converges to L ≥ . In fact, the limit L of this sequence is , which can be shown
by mimicking the proof of (.) done above. In other words, we get

lim
n→∞ d(xn+, xn) = . (.)
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Finally, taking the limit as n → ∞ in (.) and using (.) we obtain

lim
n→∞ d(xn+, xn+) = . (.)

Case . Assume that M(xn, xn+) = d(xn+, xn+). In this case (.) becomes

ε ≤ d(xn+, xn+) < ε + δ �⇒ α(xn, xn+)d(Txn, Txn+) < ε,

or

d(xn+, xn+) ≤ α(xn, xn+)d(Txn, Txn+) < ε ≤ d(xn+, xn+).

Therefore, we deduce

d(xn+, xn+) < d(xn+, xn+), (.)

for all n ∈N. By Remark , we have

d(xn+, xn+) = d(Txn+, Txn) ≤ α(xn+, xn)d(Txn+, Txn) < M(xn+, xn), (.)

where

M(xn+, xn) = max
{

d(xn+, xn), d(xn+, xn+), d(xn+, xn)
}

= max
{

d(xn+, xn), d(xn+, xn+)
}

is clearly positive. Then (.) becomes

d(xn+, xn+) < max
{

d(xn+, xn), d(xn+, xn+)
}

, (.)

for all n ∈N.
The case max{d(xn+, xn), d(xn+, xn+)} = d(xn+, xn+) is impossible, since it yields

 < d(xn+, xn+) < d(xn+, xn+).

The other case, that is, max{d(xn+, xn), d(xn+, xn+)} = d(xn+, xn) implies

 < d(xn+, xn+) < d(xn+, xn), (.)

for all n ∈ N. As in Case , the sequence {d(xn+, xn)} is decreasing and positive sequence
and hence it converges to L = . Finally, taking the limit as n → ∞ in (.) we end up with

lim
n→∞ d(xn+, xn+) = . (.)

As a result, we see that in all three cases, the sequence {dn} defined by dn := d(xn, xn+)
converges to  as n → ∞. Using similar arguments, it can be shown that the sequence {fn}
where fn := d(xn+, xn) also converges to . We first note that

α(Tx, x) = α(x, x) ≥  ⇒ α(Tx, Tx) = α(x, x) ≥ , (.)
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and continuing in this way, we obtain

α(xn+, xn) ≥  ∀n ∈N. (.)

Substituting x = xn+ and y = xn in (.) we find that for every ε >  there exists δ >  such
that

ε ≤ M(xn+, xn) < ε + δ �⇒ α(xn+, xn)d(Txn+, Txn) < ε, (.)

where

M(xn+, xn) = max
{

d(xn+, xn), d(xn+, xn+), d(xn+, xn)
}

= max
{

d(xn+, xn), d(xn+, xn+)
}

.

We need to examine two cases.
Case . Assume that M(xn+, xn) = d(xn+, xn). Then (.) becomes

ε ≤ d(xn+, xn) < ε + δ �⇒ α(xn+, xn)d(Txn+, Txn) < ε.

Then we have

d(xn+, xn+) ≤ α(xn+, xn)d(Txn+, Txn) < ε ≤ d(xn+, xn),

for all n. That is, {d(xn+, xn)} is a decreasing positive sequence in R+ and it converges to
L ≥ . As above, it can be shown that L = .

Case . Assume that M(xn+, xn) = d(xn+, xn+). In this case (.) becomes

ε ≤ d(xn+, xn+) < ε + δ �⇒ α(xn+, xn)d(Txn+, Txn) < ε,

or

d(xn+, xn+) ≤ α(xn+, xn)d(Txn+, Txn) < ε ≤ d(xn+, xn+),

which results in

 < d(xn+, xn+) < d(xn+, xn+), (.)

for all n ∈N and is not possible.
Thus, we have only one possibility, M(xn+, xn) = d(xn+, xn), which leads to the fact that

the sequence {fn} = {d(xn+, nn)} converges to .
We next show that the sequence {xn} is both right and left Cauchy. First, we show that

{xn} is a right-Cauchy sequence in (X, d). We will prove that for every ε >  there exists
N ∈ N such that

d(xl, xl+k) < ε, (.)
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for all l ≥ N and k ∈ N. Since the sequences {dn} and {fn} both converge to  as n → ∞,
for every δ >  there exist N, N ∈N such that

d(xn, xn+) < δ for all n ≥ N ∈N and d(xn+, xn) < δ for all n ≥ N ∈N. (.)

Choose δ such as δ < ε. We will prove (.) by using induction on k. For k = , (.)
becomes

d(xl, xl+) < ε, (.)

and clearly holds for all l ≥ N = max{N, N} due to (.) and the choice of δ. Assume
that the inequality (.) holds for some k = m, that is,

d(xl, xl+m) < ε, for all l ≥ N . (.)

For k = m +  we have to show that d(xl, xl+m+) < ε for all l ≥ N . From the triangle inequal-
ity, we have

d(xl–, xl+m) < d(xl–, xl) + d(xl, xl+m) < δ + ε, (.)

for all l ≥ N . If d(xl–, xl+m) ≥ ε, then for

M(xl–, xl+m) = max
{

d(xl–, xl+m), d(xl, xl–), d(xl+m+, xl+m)
}

,

we have

ε ≤ d(xl–, xl+m) ≤ M(xl–, xl+m)

= max
{

d(xl–, xl+m), d(xl, xl–), d(xl+m+, xl+m)
}

< {ε + δ, δ, δ} ≤ ε + δ,

and because of Lemma , the contractive condition (.) with x = xl– and y = xl+m yields

ε ≤ M(xl–, xl+m) < δ + ε

�⇒ d(xl, xl+m+) ≤ α(xl–, xl+m)d(xl, xl+m+) = α(xl–, xl+m)d(Txl–, Txl+m) < ε,

and hence (.) holds for k = m + .
If d(xl–, xl+m) < ε, then

M(xl–, xl+m) = max
{

d(xl–, xl+m), d(xl, xl–), d(xl+m+, xl+m)
}

< {ε, δ, δ} ≤ ε.

Regarding Remark , we deduce

d(xl, xl+m+) ≤ α(xl–, xl+m)d(xl, xl+m+)

≤ M(xl–, xl+m) < ε,
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that is, inequality (.) holds for k = m + . Hence d(xl, xl+k) < ε for all l ≥ N and k ≥ ,
which means

d(xn, xm) < ε, for all m ≥ n ≥ N . (.)

Consequently, {xn} is a right-Cauchy sequence in (X, d). Due to the similarity, the proof
that {xn} is a left-Cauchy sequence in (X, d) is omitted. By Remark , we deduce that {xn}
is a Cauchy sequence in complete quasi-metric space (X, d). Therefore, there exists z ∈ X
such that

lim
n→∞ d(xn, z) = lim

n→∞ d(z, xn) = . (.)

Employing the property (d) and the continuity of T we get

lim
n→∞ d(xn, Tz) = lim

n→∞ d(Txn–, Tz) =  (.)

and

lim
n→∞ d(Tz, xn) = lim

n→∞ d(Tz, Txn–) = . (.)

Combining (.) and (.), we deduce

lim
n→∞ d(xn, Tz) = lim

n→∞ d(Tz, xn) = . (.)

From (.) and (.), due to the uniqueness of the limit, we conclude that z = Tz, that is,
z is a fixed point of T . �

Below we state an existence theorem for fixed point of generalized α-Meir-Keeler con-
traction of type (II). Taking Remark  into account, we observe that the proof of this
theorem is similar to the proof of Theorem .

Theorem  Let (X, d) be a complete quasi-metric space and T : X → X be a continuous
generalized α-Meir-Keeler contraction of type (II). If α(x, Tx) ≥  and α(Tx, x) ≥  for
some x ∈ X, then T has a fixed point in X.

One advantage of α-admissibility is that the continuity of the contraction is not required
whenever the following condition is satisfied.

(A) If {xn} is a sequence in X which converges to x and satisfies α(xn+, xn) ≥  and
α(xn, xn+) ≥  for all n then there exists a subsequence {xn(k)} of {xn} such that
α(x, xn(k)) ≥  and α(xn(k), x) ≥  for all k.

Replacing the continuity of the contraction in Theorem  by the condition (A) on the
space (X, d) we deduce another existence theorem.

Theorem  Let (X, d) be a complete quasi-metric space and T : X → X be a gener-
alized α-Meir-Keeler contraction of type (II) and let (X, d) satisfies the condition (A). If
α(x, Tx) ≥  and α(Tx, x) ≥  for some x ∈ X, then T has a fixed point in X.
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Proof Following the lines of the proof of Theorem , we know that the sequence {xn}
defined by xn+ = Txn, where x ∈ X satisfies α(x, Tx) ≥  and α(Tx, x) ≥ , converges
to some z ∈ X. From (.) and condition (A), there exists a subsequence {xn(k)} of {xn} such
that α(z, xn(k)) ≥  and α(xn(k), z) ≥  for all k. Regarding Remark  we have for all k ∈N

d(Tz, xn(k)+) = d(Tz, Txn(k)) ≤ α(z, xn(k))d(Tz, Txn(k)) ≤ N(z, xn(k)),

d(xn(k)+, Tz) = d(Txn(k), Tz) ≤ α(xn(k), z)d(Txn(k), Tz) ≤ N(xn(k), z),
(.)

where

N(z, xn(k)) = max

{
d(z, xn(k)),



[
d(Tz, z) + d(Txn(k), xn(k))

]}
,

N(xn(k), z) = max

{
d(xn(k), z),



[
d(Txn(k), xn(k)) + d(Tz, z)

]}
.

(.)

Letting k → ∞ in (.) we obtain

lim
k→∞

N(z, xn(k)) = max

{
,

d(Tz, z)


}
=

d(Tz, z)


,

lim
k→∞

N(xn(k), z) = max

{
,

d(Tz, z)


}
=

d(Tz, z)


.

Thus, upon taking the limit in (.) as k → ∞, we conclude

 ≤ d(Tz, z) ≤ d(Tz, z)


,

 ≤ d(z, Tz) ≤ d(Tz, z)


.
(.)

The first inequality implies d(Tz, z) = , and hence Tz = z, which completes the proof. �

We next consider a particular case of the main theorems in which the mapping is an
α-Meir-Keeler contractive mapping, that is, it satisfies Definition .

Corollary  Let (X, d) be a complete quasi-metric space and T : X → X be a continuous,
α-Meir-Keeler contraction, that is, for every ε >  there exists δ >  such that

ε ≤ d(x, y) < ε + δ �⇒ α(x, y)d(Tx, Ty) < ε, (.)

holds for all x, y ∈ X. If α(x, Tx) ≥  and α(Tx, x) ≥  for some x ∈ X, then T has a fixed
point in X.

Proof It is obvious that if (.) holds, then using the fact that

d(x, y) ≤ M(x, y) = max
{

d(x, y), d(Tx, x), d(Ty, y)
}

,

we conclude

ε ≤ M(x, y) < ε + δ �⇒ ε ≤ d(x, y) < ε + δ �⇒ α(x, y)d(Tx, Ty) < ε, (.)
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for all x, y ∈ X. In other words, T satisfies the conditions in the statement of Theorem 
and hence has a fixed point. �

Finally, we replace the continuity of the contraction in Corollary  by the condition (A)
on the space (X, d), which results in the following existence theorem the proof of which is
identical to the proof of Theorem .

Corollary  Let (X, d) be a complete quasi-metric space satisfying the condition (A) and
let T : X → X be an α-Meir-Keeler contractive mapping. If there exists x ∈ X such that
α(x, Tx) ≥  and α(Tx, x) ≥ , then T has a fixed point.

We end this section with an example of an α-Meir-Keeler contraction defined on a quasi-
metric space.

Example  Let X = [,∞). Define

d(x, y) =

{
x – y if x ≥ y,
y–x

 if x < y.

The function d(x, y) is a quasi-metric but not a metric on X. Indeed, note that d(, ) =
 	= d(, ) = . The space (X, d) is a complete quasi-metric space. Define the mappings
T : X → X and α : X × X → [,∞) as follows:

Tx =

{
x

 if x ∈ [, ],
x if x ∈ (,∞),

α(x, y) =

{
 if x, y ∈ [, ],
– otherwise.

It is easy to see that T is triangular α-admissible. Note that if α(x, y) ≥ , then x, y ∈ [, ]
and hence both Tx and Ty are also in [, ]. Thus, α(Tx, Ty) = α( x

 , y

 ) =  ≥ . Also, if
α(x, z) ≥  and α(z, y) ≥ , then x, y, z ∈ [, ] and thus, α(x, y) =  ≥ . The map T is not
continuous, however, the condition (A) holds on X. More precisely, if the sequence {xn} ⊂
X satisfies α(xn, xn+) ≥  and α(xn+, xn) ≥ , and if limn→∞ xn = x, then {xn} ⊂ [, ], and
hence x ∈ [, ]. Then α(xn, x) ≥ .

Note that for x, y ∈ [, ], we have x + y ≤ .
If x ≥ y then for ε >  we choose δ = ε so that ε ≤ d(x, y) = x – y < ε + δ implies

α(x, y)d(Tx, Ty) = x–y

 = (x–y)(x+y)
 < (ε+δ)

 = ε.
If x < y then for ε >  we choose again δ = ε so that ε ≤ d(x, y) = y–x

 < ε + δ implies
α(x, y)d(Tx, Ty) = x/–y/

 = (x–y)(x+y)
 < (ε+δ)

 = ε
 .

In other words, for every ε > , there exists δ which is actually δ = ε. Therefore, the
map T is an α-Meir-Keeler contraction. Finally, note that α(, T) ≥  and α(T, ) ≥ .
All conditions of Corollary  are satisfied and T has a fixed point x = .

3 Consequences: G-metric spaces
In this section, we present some results which show that several fixed point theorems on
G-metric spaces are in fact direct consequences of the existence theorems given in the
previous section.

First, we briefly recollect some basic notions of G-metric and G-metric space [].



Alsulami et al. Journal of Inequalities and Applications  (2015) 2015:84 Page 13 of 15

Definition  Let X be a nonempty set, G : X × X × X → [,∞) be a function satisfying
the following conditions:

(G) G(x, y, z) =  if x = y = z,
(G)  < G(x, x, y) for all x, y ∈ X with x 	= y,
(G) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 	= y,
(G) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all variables),
(G) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).

Then the function G is called a G-metric on X and the pair (X, G) is called a G-metric
space.

It is obvious that for every G-metric on the set X, the expression

dG(x, y) = G(x, x, y) + G(x, y, y)

is a standard metric on X.

Definition  (see []) Let (X, G) be a G-metric space and let {xn} be a sequence in X.
() A point x ∈ X is said to be the limit of the sequence {xn} if

lim
n,m→∞ G(x, xn, xm) = 

and the sequence {xn} is said to be G-convergent to x.
() A sequence {xn} is called a G-Cauchy sequence if for every ε > , there is a positive

integer N such that G(xn, xm, xl) < ε for all n, m, l ≥ N ; that is, if G(xn, xm, xl) →  as
n, m, l → ∞.

() (X, G) is said to be G-complete (or a complete G-metric space) if every G-Cauchy
sequence in (X, G) is G-convergent in X .

Theorem  [] Let (X, G) be a G-metric space. Let d : X × X → [,∞) be the function
defined by d(x, y) = G(x, y, y). Then

() (X, d) is a quasi-metric space;
() {xn} ⊂ X is G-convergent to x ∈ X if and only if {xn} is convergent to x in (X, d);
() {xn} ⊂ X is G-Cauchy if and only if {xn} is Cauchy in (X, d);
() (X, G) is G-complete if and only if (X, d) is complete.

Admissible mappings in the context of G-metric spaces can be defined as follows [].

Definition  A mapping T : X → X is called β-admissible if for all x, y ∈ X we have

β(x, y, y) ≥  ⇒ β(Tx, Ty, Ty) ≥ , (.)

where β : X × X × X → [,∞) is a given function. If in addition,

β(x, y, y) ≥ ,
β(y, z, z) ≥ 

}
⇒ β(x, z, z) ≥ , (.)

for all x, y, z ∈ X, then T is called triangular β-admissible.
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Definition  Let (X, G) be a G-metric space. Let T : X → X be a triangular β-admissible
mapping. Suppose that for every ε >  there exists δ >  such that

ε ≤ G(x, y, y) < ε + δ implies β(x, y, y)G(Tx, Ty, Ty) < ε, (.)

for all x, y ∈ X. Then T is called β-Meir-Keeler contraction.

For more details on β-admissible maps on G-metric spaces we refer the reader to [].

Definition  (I) Let (X, G) be a G-metric space. Let T : X → X be a triangular β-
admissible mapping. Suppose that for every ε >  there exists δ >  such that

ε ≤ M(x, y, y) < ε + δ implies β(x, y, y)G(Tx, Ty, Ty) < ε, (.)

for all x, y ∈ X, where

M(x, y, y) = max
{

G(x, y, y), G(Tx, x, x), G(Ty, y, y)
}

. (.)

Then T is called a generalized β-Meir-Keeler contraction of type (I).
(II) Let (X, G) be a G-metric space. Let T : X → X be a triangular β-admissible mapping.

Suppose that for every ε >  there exists δ >  such that

ε ≤ N(x, y, y) < ε + δ implies β(x, y, y)G(Tx, Ty, Ty) < ε, (.)

for all x, y ∈ X, where

M(x, y, y) = max

{
G(x, y, y),

G(Tx, x, x) + G(Ty, y, y)


}
. (.)

Then T is called a generalized β-Meir-Keeler contraction of type (II).

Lemma  Let T : X → X where X is nonempty set. Then T is β-admissible on (X, G) if
and only if T is α-admissible on (X, d).

Proof The proof is obvious by taking α(x, y) = β(x, y, y). �

The next theorem is a consequence of Corollary .

Theorem  Let (X, G) be a complete G-metric space and T : X → X be a continuous,
β-Meir-Keeler contraction. If β(x, Tx, Tx) ≥  and β(Tx, Tx, x) ≥  for some x ∈ X,
then T has a fixed point in X.

Proof Consider the quasi-metric d(x, y) = G(x, y, y) for all x, y ∈ X. Due to Lemma  and
(.), we find that for every ε >  there exists δ >  such that

ε ≤ d(x, y) < ε + δ implies α(x, y)d(Tx, Ty) < ε, (.)

for all x, y ∈ X. Then the proof follows from Corollary . �

Our last theorem is a consequence of Theorems  and .
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Theorem  Let (X, G) be a complete G-metric space and T : X → X be a continu-
ous, generalized β-Meir-Keeler contraction of type (I) or (II). If β(x, Tx, Tx) ≥  and
α(Tx, Tx, x) ≥  for some x ∈ X, then T has a fixed point in X.

Proof Since the function d(x, y) = G(x, y, y) is a quasi-metric on X, employing Lemma 
and (.) (respectively (.)), we see that for every ε >  there exists δ >  such that

ε ≤ M(x, y) < ε + δ implies α(x, y)d(Tx, Ty) < ε, or

ε ≤ N(x, y) < ε + δ implies α(x, y)d(Tx, Ty) < ε,
(.)

for all x, y ∈ X for the generalized α-Meir-Keeler mappings of types (I) or (II), respectively.
Then the proof follows from Theorem  (respectively, Theorem ). �
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