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established results dealing with the forced oscillations of solutions of second order elliptic
equations [, ].
We consider a damped linear elliptic operator

�(u) = ∇ · (a(x)∇u
)
+ b(x) · ∇u + c(x)u (.)

with forced nonlinear elliptic operator with a damped term of the form

Pα(v) = ∇ · (A(x)|∇v|α–∇v
)
+ (α + )|∇v|α–B(x) · ∇v+ g(x,v), (.)

g(x,v) = C(x)|v|α–v+
�∑

i=

Di(x)|v|βi–v+
m∑

j=

Ej(x)|v|γj–v,

where | · | denotes the Euclidean length, · denotes the scalar product. It is assumed that
 < γj < α < βi (i = , , . . . ,�; j = , , . . . ,m).
Although there are plenty of results related to Sturm comparison (or oscillation results)

of linear equations, there are only a few results dealing with nonlinear equations [, ].
By investigating the behavior of solutions of linear equations, we can establish consider-
able results for the behavior of solutions of nonlinear equations. Motivated by this idea,
we give some Sturm comparison theorems via Picone-type inequalities for �(u) =  and
Pα(v) = f (x). To the best of our knowledge, the above damped elliptic operators � and Pα

have not been studied.
Note that the principal part of (.) are reduced to the p-Laplacian ∇ · (|∇u)|p–∇u (p =

α + ). We know that a variety of physical phenomena are modeled by equations the p-
Laplacian [–]. We refer the reader to Diaz [] for detailed references on physical
background of the p-Laplacian.
We organize this paper as follows: In Section , we establish Picone-type inequalities for

a pair of {�,Pα}. In Section  we present Sturmian comparison theorems and Section  is
left for an application.

2 Picone-type inequalities
In this section, we establish Picone-type inequalities for a pair of differential equations
�(u) =  and Pα(v) = f (x) defined by (.) and (.), respectively. Let G be a bounded
domain in Rn with piecewise smooth boundary ∂G. We assume that a(x) ∈ C(Ḡ,R+),
A(x) ∈ C(Ḡ,R+), b(x) ∈ C(Ḡ,Rn), B(x) ∈ C(Ḡ,Rn), c(x) ∈ C(Ḡ,R), C(x) ∈ C(Ḡ,R), Di(x) ∈
C(Ḡ,R+ ∪ {}), Ej(x) ∈ C(Ḡ,R+ ∪ {}) (i = , , . . . ,�; j = , , . . . ,m) and f (x) ∈ C(Ḡ,R).
The domain D�(G) of � is defined to be set of all functions u of class C(Ḡ,R) with the

property that a(x)∇u ∈ C(Ḡ,Rn)∩C(Ḡ,Rn). The domain DPα (G) of Pα is defined to be the
set of all functions v with the property that A(x)|∇v|α–∇v ∈ C(Ḡ,Rn)∩ C(Ḡ,Rn).
Let N = min{�,m} and

G
(
β ,α,D(x), f (x)

)
=

(
β

α

)(
β – α

α

) α–β
β (

D(x)
) α

β
∣∣f (x)

∣∣
β–α
β .

We need the following lemma in order to give the proof of our results.
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Lemma . The inequality

|ξ |α+ + α|η|α+ – (α + )|η|α–ξ · η ≥ 

is valid for anyξ ∈ Rn and η ∈ Rn, where the equality holds if and only ifξ = η.

For the proof of the lemma see [], Lemma ..

Theorem . If u ∈ D�(G) of�(u) = , v ∈ DPα (G), and v �=  in G and vf(x)≤  in G, then

for any u∈ C(G,R) the following Picone-type inequality holds:

∇ ·
(

u
ϕ(v)

[
ϕ(v)a(x)∇u – ϕ(u)A(x)|∇v|α–∇v

])

≥ –A(x)
∣∣
∣∣∇u –

uB(x)
A(x)

∣∣
∣∣

α+

+ (∇u)T
(
a(x) –

∣
∣b(x)

∣
∣)(∇u) –

(∣∣b(x)
∣
∣ + c(x)

)
(u)

+ C(x)|u|α+ – uϕ(u)
ϕ(v)

[
Pα(v) – f (x)

]

+ A(x)
[∣
∣∣
∣∇u –

uB(x)
A(x)

∣
∣∣
∣

α+

+ α

∣
∣∣
∣
u
v
∇v

∣
∣∣
∣

α+

– (α + )
(

∇u –
uB(x)
A(x)

)



(
u
v
∇v

)]
. (.)

Here ϕ(s) = |s|α–s, s∈ R, 
(ξ ) = |ξ |α–ξ , ξ ∈ Rn, and

C(x) = C(x) +
N∑

i=

G
(
βi ,α,Di(x), f (x)

)
.

Proof We easily see that

∇ · (ua(x)∇u
)
= (∇u)T a(x)(∇u) – b(x)u · ∇u – c(x)u, (.)

and using Young’s inequality we have

ub(x) · ∇u ≤ ∣∣b(x)
∣∣(u + (∇u)

)
. (.)

Using (.) and (.), we obtain the following inequality:

∇ ·
(

u
ϕ(v)

[
ϕ(v)a(x)∇u

]) ≥ (∇u)T
(
a(x) –

∣
∣b(x)

∣
∣)(∇u) –

(∣∣b(x)
∣
∣ + c(x)

)
u. (.)

On the other hand we observe that the following identity holds:

–∇ ·
(

uϕ(u)
A(x)|∇v|α–∇v

ϕ(v)

)

= –A(x)
∣
∣∣
∣∇u –

uB(x)
A(x)

∣
∣∣
∣

α+

+
uϕ(u)
ϕ(v)

(
g(x,v) – f (x)

)
–

uϕ(u)
ϕ(v)

[
Pα(v) – f (x)

]

+ A(x)
[∣
∣∣
∣∇u –

uB(x)
A(x)

∣
∣∣
∣

α+

+ α

∣
∣∣
∣
u
v
∇v

∣
∣∣
∣

α+

– (α + )
(

∇u –
uB(x)
A(x)

)



(
u
v
∇v

)]
(.)
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and it is clear that

uϕ(u)
ϕ(v)

(

C(x)|v|α–v+
�∑

i=

Di(x)|v|βi–v+
m∑

j=

Ej(x)|v|γj–v– f (x)

)

≥
(

C(x) +
�∑

i=

Di(x)|v|βi–αv–
f (x)

|v|α–v

)

|u|α+.

It can be shown that by using vf (x) ≤  and Young’s inequality

C(x) +
�∑

i=

Di (x)|v|βi–αv–
f (x)

|v|α–v = C(x) +
�∑

i=

Di(x)|v|βi–αv–
|f (x)|
|v|α ≥ C(x).

This implies

uϕ(u)
ϕ(v)

(
g(x,v) – f (x)

) ≥ C(x)|u|α+ (.)

Combining (.), (.), and (.) we get the desired inequality (.). �

Theorem . If v ∈ DPα (G) of �(u) = , v �=  in G, and vf(x) ≤  in G, then for any u∈
C(G,R) the following Picone-type inequality holds:

–∇ ·
(

uϕ(u)
ϕ(v)

A(x)|∇v|α–∇v
)

≥ –A(x)
∣
∣∣
∣∇u –

uB(x)
A(x)

∣
∣∣
∣

α+

+ C(x)|u|α+ – uϕ(u)
ϕ(v)

[
Pα(v) – f (x)

]

+ A(x)
[∣
∣∣
∣∇u –

uB(x)
A(x)

∣
∣∣
∣

α+

+ α

∣
∣∣
∣
u
v
∇v

∣
∣∣
∣

α+

– (α + )
(

∇u –
uB(x)
A(x)

)



(
u
v
∇v

)]
, (.)

whereϕ(s) = |s|α–s, s∈ R, 
(ξ ) = |ξ |α–ξ , ξ ∈ Rn, and C(x) is de“ned as in Theorem..

Proof Combining (.) with (.) yields the desired inequality (.). �

By using the ideas in [], the condition on f (x) can be removed if we impose another
condition on v, as |v| ≥ k. The proofs of the following theorems are similar to the proofs
of Theorems . and . and the proof of the Lemma  in [], hence omitted.

Theorem . If u ∈ D�(G) of �(u) = , v ∈ DPα (G), and |v| ≥ k then the following Picone-
type inequality holds for any u∈ C(G,R):

∇ ·
(

u
ϕ(v)

[
ϕ(v)a(x)∇u – ϕ(u)A(x)|∇v|α–∇v

]
)

≥ –A(x)
∣∣
∣∣∇u –

uB(x)
A(x)

∣∣
∣∣

α+

+ (∇u)T
(
a(x) –

∣
∣b(x)

∣
∣)(∇u) –

(∣∣b(x)
∣
∣ + c(x)

)
(u)

+
(
C(x) – k–α


∣∣f (x)

∣∣)|u|α+ – uϕ(u)
ϕ(v)

[
Pα(v) – f (x)

]

+ A(x)
[∣∣
∣∣∇u –

uB(x)
A(x)

∣∣
∣∣

α+

+ α

∣∣
∣∣
u
v
∇v

∣∣
∣∣

α+

– (α + )
(

∇u –
uB(x)
A(x)

)



(
u
v
∇v

)]
, (.)
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whereϕ(s) = |s|α–s, s∈ R, 
(ξ ) = |ξ |α–ξ , ξ ∈ Rn, and

C(x) = C(x) +
N∑

i=

H
(
βi ,α,γi ,Di (x),Ei(x)

)
,

where

H
(
β ,α,γ ,D(x),E(x)

)
=

β – γ

α – γ

(
β – α

α – γ

) α–β
β–γ (

C(x)
) α–γ

β–γ
(
D(x)

) β–α
β–γ .

Theorem . If v ∈ DPα (G) and |v| ≥ k then the following Picone-type inequality holds
for any u∈ C(G,R):

∇ ·
(

uϕ(u)
ϕ(v)

[
A(x)|∇v|α–∇v

])

≥ –A(x)
∣∣
∣∣∇u –

uB(x)
A(x)

∣∣
∣∣

α+

+
(
C(x) – k–α


∣
∣f (x)

∣
∣)|u|α+

+ A(x)
[∣∣
∣∣∇u –

uB(x)
A(x)

∣∣
∣∣

α+

+ α

∣∣
∣∣
u
v
∇v

∣∣
∣∣

α+

– (α + )
(

∇u –
uB(x)
A(x)

)



(
u
v
∇v

)]

–
uϕ(u)
ϕ(v)

[
Pα(v) – f (x)

]
, (.)

whereϕ(s) = |s|α–s, s∈ R, 
(ξ ) = |ξ |α–ξ , ξ ∈ Rn, and C(x) is de“ned before in Theo-
rem..

3 Sturmian comparison theorems
In this section we establish some Sturmian comparison results on the basis of the Picone-
type inequalities obtained in Section . We begin with a theorem needed for comparison
results.

Theorem . If there is a nontrivial function u∈ C(Ḡ,R) such that u=  on ∂G and

M [u] :=
∫

G

{
A(x)

∣∣
∣∣∇u –

uB(x)
A(x)

∣∣
∣∣

α+

– C(x)|u|α+
}

dx ≤ , (.)

then every solution v∈ DPα (G) of Pα(v) = f (x) satisfying vf(x) ≤  in G vanishes at some
point ofḠ.Furthermore, if ∂G ∈ C, then every solution v∈ DPα (G) of Pα(v) = f (x) satisfying
vf (x)≤  in G has one of the following properties:

() v has a zero in G,
() u = ceα(x)v, where c �=  is a constant and ∇α(x) = B(x)

A(x) .

Proof (The first statement) Suppose to the contrary that there exists a solution v ∈ DPα (G)
of Pα(v) = f (x) satisfying vf (x) ≤  in G and v �=  on Ḡ. Then the inequality (.) of The-
orem . holds. Integrating (.) over G and then using the divergence theorem, we get

M [u] ≥
∫

G
A(x)

[∣
∣∣
∣∇u –

uB(x)
A(x)

∣
∣∣
∣

α+

+ α

∣
∣∣
∣
u
v
∇v

∣
∣∣
∣

α+

– (α + )
(

∇u –
uB(x)
A(x)

)



(
u
v
∇v

)]
dx. (.)



Şahiner et al. Journal of Inequalities and Applications  (2015) 2015:77 Page 6 of 15

Since u =  on ∂G and v �=  on Ḡ, we observe that u cannot be written in the form u =
ceα(x)v, and hence ∇( u

v ) –
B(x)
A(x)

u
v �= . Therefore from Lemma . we see that

∫

G
A(x)

[∣
∣∣
∣∇u –

uB(x)
A(x)

∣
∣∣
∣

α+

+ α

∣
∣∣
∣
u
v
∇v

∣
∣∣
∣

α+

– (α + )
(

∇u –
uB(x)
A(x)

)



(
u
v
∇v

)]
dx > ,

which together with (.) implies thatM [u] > . This contradicts the hypothesisM [u] ≤ .
The proof of the first statement () is complete.
(The second statement) Next we consider the case where ∂G ∈ C. Let v ∈ DPα (G) be

a solution of Pα(v) = f (x) satisfying vf (x) ≤  in G and v �=  on G. Since ∂G ∈ C, u ∈
C(Ḡ,R) and u =  on ∂G, we find that u belongs to the Sobolev space W ,α+

 (G), which is
the closure in the norm

‖w‖ :=
(∫

G

[|w|α+ + |∇w|α+]dx
) 

α+
(.)

of the class C∞
 (G) of infinitely differentiable functions with compact supports in G, [,

]. Let uk be a sequence of functions in C∞
 (G) converging to u in the norm (.). Inte-

grating (.) with u = uk over G and then applying the divergence theorem, we observe
that

M [uk] ≥
∫

G
A(x)

[∣
∣∣
∣∇uk –

ukB(x)
A(x)

∣
∣∣
∣

α+

+ α

∣
∣∣
∣
uk

v
∇v

∣
∣∣
∣

α+

– (α + )
(

∇uk –
ukB(x)
A(x)

)



(
uk

v
∇v

)]
dx ≥ . (.)

We first claim that limk→∞ M [uk] = M [u] = . Since A(x), C(x), Di (x) (i = , , . . . ,�), and
f (x) are bounded on Ḡ, there exists a constant K >  such that

A(x)≤ K and
∣
∣C(x)

∣
∣ ≤ K.

It is easy to see that

∣∣M [uk] – M [u]
∣∣ ≤ K

∫

G

∣
∣∣
∣

∣
∣∣
∣∇uk –

ukB(x)
A(x)

∣
∣∣
∣

α+

–
∣
∣∣
∣∇u –

uB(x)
A(x)

∣
∣∣
∣

α+∣∣∣
∣dx

+K

∫

G

∣∣|uk|α+ – |u|α+∣∣dx. (.)

It follows from the mean value theorem that

∣∣
∣∣

∣∣
∣∣∇uk –

ukB(x)
A(x)

∣∣
∣∣

α+

–
∣∣
∣∣∇u –

uB(x)
A(x)

∣∣
∣∣

α+∣∣
∣∣

≤ (α + )
(∣∣∣

∣∇uk –
ukB(x)
A(x)

∣∣∣
∣ +

∣∣∣
∣∇u –

uB(x)
A(x)

∣∣∣
∣

)α∣∣∣
∣∇(uk – u) +

B(x)
A(x)

(uk – u)
∣∣∣
∣

≤ (α + )
(

|∇uk| + |∇u| + |B(x)|
A(x)

|uk| + |B(x)|
A(x)

|u|
)α(∣∣∇(uk – u)

∣∣ +
|B(x)|
A(x)

|uk – u|
)
.
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Since also B(x) is bounded on Ḡ, then there is a constant K such that |B(x)|
A(x) ≤ K on Ḡ. Let

us take K = max{,K}. From the above inequality we have

∣∣
∣∣

∣∣
∣∣∇uk –

ukB(x)
A(x)

∣∣
∣∣

α+

–
∣∣
∣∣∇u –

uB(x)
A(x)

∣∣
∣∣

α+∣∣
∣∣

≤ (α + )Kα+


(|∇uk| + |∇u| + |uk| + |u|)α(∣∣∇(uk – u)
∣∣ + |uk – u|). (.)

Using (.) and applying Hölder’s inequality and then Minkowski’s inequality, we get

∫

G

∣∣∣
∣

∣∣∣
∣∇uk –

ukB(x)
A(x)

∣∣∣
∣

α+

–
∣∣∣
∣∇u –

uB(x)
A(x)

∣∣∣
∣

α+∣∣∣
∣dx

≤ (α + )Kα+


(∫

G

(|∇uk| + |∇u| + |uk| + |u|)α+
dx

) α
α+

×
(∫

G

(∣∣∇(uk – u)
∣∣ + |uk – u|)α+

dx
) 

α+

≤ (α + )Kα+


[(∫

G

(|∇uk| + |uk|
)α+

dx
) 

α+
+

(∫

G

(|∇u| + |u|)α+
dx

) 
α+

]α

×
(∫

G

(∣∣∇(uk – u)
∣∣ + |uk – u|)α+

dx
) 

α+

≤ (α + )Kα+


(‖uk‖ + ‖u‖)α‖uk – u‖. (.)

Similarly we obtain

∫

G

∣∣|uk|α+ – |u|α+∣∣dx ≤ (α + )
(‖uk‖ + ‖u‖)α‖uk – u‖. (.)

Combining (.), (.), and (.), we have

∣
∣M [uk] – M [u]

∣
∣ ≤ K

(‖uk‖ + ‖u‖)α‖uk – u‖

for some positive constant K depending only on K, K, K, and α, from which it follows
that limk→∞ M [uk] = M [u]. We see from (.) that M [u] ≥ , which together with (.)
implies M [u] = .
Let B be an arbitrary ball with B̄ ⊂ G and define

QB[w] :=
∫

B
A(x)

[∣∣
∣∣∇w–

wB(x)
A(x)

∣∣
∣∣

α+

+ α

∣∣
∣∣
w
v

∇v

∣∣
∣∣

α+

– (α + )
(

∇w–
wB(x)
A(x)

)



(
w
v

∇v
)]

(.)

for w ∈ C(G;R). It is easily verified that

 ≤ QB[uk] ≤ QG[uk] ≤ M [uk], (.)

where QG[uk] denotes the right-hand side of (.) with w= uk and with B replaced by G.
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A simple calculation yields

∣∣QB[uk] –QB[u]
∣∣ ≤ K

(‖uk‖B + ‖u‖B
)α‖uk – u‖B + K

(‖uk‖B
)α‖uk – u‖B

+K
∥
∥ϕ[uk] – ϕ[u]

∥
∥

Lq
(B)

‖u‖B , (.)

where q = α+
α
, the constants K, K, and K are independent of k, and the subscript B

indicates the integrals involved in the norm (.) are to be taken over B instead of G. It
is well known that the Nemitski operator ϕ : Lα+(G) → Lq(G) is continuous [] and it is
clear that ‖uk – u‖B →  as ‖uk – u‖G → .
Therefore, letting k → ∞ in (.), we find that QB(u) = . Since A(x) >  in B, it follows

that

[∣∣
∣∣∇u–

uB(x)
A(x)

∣∣
∣∣

α+

+α

∣∣
∣∣
u
v
∇v

∣∣
∣∣

α+

– (α+)
(

∇u–
uB(x)
A(x)

)
·


(
u
v
∇v

)]
≡  in B. (.)

From this, Lemma . implies that

∇u –
uB(x)
A(x)

≡ u
v
∇v i.e.∇

(
u
v

)
–

B(x)
A(x)

u
v

≡  in B.

Hence we observe that u
v = ceα(x) in B for some constant c and some continuous func-

tion α(x). Since B an arbitrary ball with B̄ ⊂ G, we conclude that u
v = ceα(x) in G where

c �= . �

Corollary . Assume that f(x) ≥  (or f (x) ≤ ) in G. If there is a nontrivial function

u ∈ C(G,R) such that u=  on ∂G and M[u] ≤ , then Pα(v) = f (x) has no negative(or

positive) solution onḠ.

Proof Suppose that Pα(v) = f (x) has a negative (or positive) solution v on Ḡ. It is easy to
see that vf (x) ≤  in G, and therefore it follows from Theorem . that v must vanish at
some point of Ḡ. This is a contradiction and the proof is complete. �

Theorem . (Sturmian comparison theorem) If there is a nontrivial solution u∈ D�(G)
of �(u) =  such that u=  on ∂G and

V [u] :=
∫

G
(∇u)T

(
a(x) –

∣∣b(x)
∣∣)(∇u) – A(x)

∣
∣∣∣∇u –

uB(x)
A(x)

∣
∣∣∣

α+

+C(x)|u|α+ – (∣∣b(x)
∣∣ + c(x)

)
u ≥ . (.)

Then every solution v∈ DPα (G) of Pα(v) = f (x) satisfying vf(x) ≤  in G must vanish at

some point ofḠ. Furthermore, if ∂G ∈ C, then every solution v∈ DPα (G) of Pα(v) = f (x)
satisfying vf(x)≤  in G has one of the following properties:

() v has a zero in G,
() u = ceα(x)v, where c �=  is a constant and ∇α(x) = B(x)

A(x) .

Proof The theorem can be proof via the inequality (.) by applying the same argument as
that use in the proof of Theorem .. But here we will give an alternative proof. By using
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the definition of M [u] and V [u], we have the following:

M [u] = –V [u] +
∫

G

{
(∇u)T

(
a(x) –

∣∣b(x)
∣∣)(∇u) –

(
c(x) +

∣∣b(x)
∣∣)u}dx.

For the last integral over G, considering the integral of the inequality (.) by using the
divergence theorem and in view of (.) implies that M [u] ≤ . Then the conclusion of
the theorem follows from Theorem .. �

Since the hypothesis V [u] ≥  contains the nontrivial solution u of �(u) = , Theo-
rem . is not efficient enough. But when we take α =  and B(x) ≡  in Pα(v) = f (x), that
is,

P(v) = ∇ · (A(x)∇v
)
+ C(x)v+

�∑

i=

Di (x)|v|βi–v+
m∑

j=

Ej(x)|v|γj–v= f (x), (.)

where βi , γj are real positive constants such that γj <  < βi (i = , , . . . ,�; j = , , . . . ,m),
we observe some interesting results for the pair of �(u) =  and P(v) = f (x). Now, we will
consider the equations �(u) =  and P(v) = f (x).

Corollary . If u ∈ D�(G) of�(u) = , v ∈ DP (G), and v �=  in G and vf(x) ≤  in G, then

for any u∈ C(G,R) the following Picone-type inequality holds:

∇ ·
(

u
ϕ(v)

[
ϕ(v)a(x)∇u – ϕ(u)A(x)∇v

]
)

≥ (∇u)T
(
a(x) –

∣
∣b(x)

∣
∣ –A(x)

)
(∇u) –

uϕ(u)
ϕ(v)

[
P(v) – f (x)

]

+

(

C(x) +
N∑

i=

G
(
βi , ,Di (x), f (x)

)
–

∣∣b(x)
∣∣ – c(x)

)

(u)

+ A(x)
(

∇u –
u
v
∇v

)

, (.)

whereβi , γj are real positive constants such thatγj <  < βi (i = , , . . . ,�; j = , , . . . ,m).

Corollary . If there is a nontrivial function u∈ C(Ḡ,R) such that u=  on ∂G and

MG[u] :=
∫

G

{

(∇u)T A(x)(∇u) –

(

C(x) +
N∑

i=

G
(
βi , ,Di(x), f (x)

)
)

u

}

dx ≤ , (.)

then every solution v∈ DP (G) of (.) satisfying vf(x) ≤  in G vanishes at some point

of Ḡ. Furthermore, if ∂G ∈ C, then every solution v∈ DP (G) of (.) satisfying vf(x) ≤ 
in G has one of the following properties:

() v has a zero in G,
() u = cv, where c �=  is a constant.

The proof can be given by using the same process as in the proof of Theorem ..



Şahiner et al. Journal of Inequalities and Applications  (2015) 2015:77 Page 10 of 15

Theorem . If there is a nontrivial solution u∈ D�(G) of �(u) =  such that u=  on ∂G
and

VG[u] :=
∫

G

{

(∇u)T
(
a(x) –

∣∣b(x)
∣∣ – A(x)

)
(∇u)

+

(

C(x) +
N∑

i=

G
(
βi , ,Di(x), f (x)

)
–

∣∣b(x)
∣∣ – c(x)

)

(x)(u)
}

dx ≥ . (.)

Then every solution v∈ DP (G) of (.) satisfying vf(x)≤  in G must vanish at some point
of Ḡ.

Proof Suppose that, contrary to our claim, there exists a solution v ∈ DP (G) of (.) sat-
isfying vf (x)≤  and v �=  on Ḡ. We integrate (.) over G and then apply the divergence
theorem to obtain

 ≥ VG[u] +
∫

G
A(x)

(
∇u –

u
v
∇v

)

dx ≥ ,

and therefore

∇u –
u
v
∇v ≡  i.e.∇

(
u
v

)
≡  in G,

that is, u/v = c on Ḡ for some constant c. Since u =  on ∂G we see that c = , which
contradicts the fact that u is nontrivial. The proof is complete. �

Corollary . Assume that

a(x)≥ ∣∣b(x)
∣∣ +A(x) (.)

and

C(x) +
N∑

i=

G
(
βi , ,Di(x), f (x)

) ≥ ∣∣b(x)
∣∣ + c(x) (.)

in G. If there exists a nontrivial solution u∈ D�(G) of �(u) =  such that u=  on ∂G, then
every solution v∈ DP (G) of (.) satisfying vf(x)≤  must vanish at some point of̄G.

In the special case b(x)≡  and f (x)≡  we consider the following equations:

∇ · (a(x)∇u
)
+ c(x)u =  (.)

and

∇ · (A(x)∇v
)
+C(x)v+

�∑

i=

Di(x)|v|βi–v+
m∑

j

Ej(x)|v|γj–v= . (.)

For (.) and (.) the following corollary can be given as a result of a special case of
Theorem ..
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Corollary . Assume that

a(x)≥ A(x)

and

C(x)≥ c(x) in G.

If there is a nontrivial solution u of(.) such that u=  on ∂G, then every solution v of

(.) must vanish at some point of̄G.

Note that when we take α =  and b(x) ≡ B(x) ≡ , we obtain interesting results for
the considered the pair of linear and nonlinear equations, that is, our results are reduced
to the well-known results in the literature. For example, if we omit the damped terms,
that is, b(x) ≡ B(x) ≡  and if we substitute C(x) ≡ , D(x) ≡ C(x), β = β , E(x) ≡ D(x),
γ = γ , and Di(x) ≡ Ej(x) ≡  (i = , , . . . ,�; j = , , . . . ,m), then it is seen that our results
are reduced to the results which are given in [] in the case aij (x)≡ a(x) andAij (x)≡ A(x).
In special cases these results are also reduced to the results in [, ].

Theorem . Suppose that G is divided into two subdomains G and G by (n – )-
dimensional piecewise smooth hypersurface in such a way that

f (x)≥  in G and f (x)≤  in G. (.)

If there are nontrivial functions uk ∈ C(Ḡk,R) such that uk =  on ∂Gk and

MGk [uk] :=
∫

Gk

{

(∇uk)T A(x)(∇uk)

–

(

C(x) +
N∑

i=

G
(
βi , Di (x), f (x)

)
)

u
k

}

dx ≤ , k = , , (.)

then every solution v∈ DP (G) of (.) has a zero on̄G.

Proof Suppose that (.) has a solution v ∈ DP (G) with no zero on Ḡ. Then either v<  on
Ḡ or v>  on Ḡ. If v<  on Ḡ, then v<  on Ḡ, so that vf (x)≤  in Ḡ. Using Corollary .,
we see that no solution of (.) can be negative on Ḡ. This contradiction shows that it is
impossible that v<  on Ḡ. In the case where v>  on Ḡ, a similar argument leads us to a
contradiction and the proof is complete. �

In [], Yoshida also studied a similar problem. Inspired by his results we establish the
following theorems by using Picone-type inequalities given in Theorems . and .. Since
the proofs of the theorems can be given by similar lines of thought to the proofs of Theo-
rems . and . and the proof of Theorem  in [], the proofs are omitted.
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Theorem . Let k >  be a constant. Assume that there exists a nontrivial function u∈
C(Ḡ;R) such that u=  on ∂G and

M̃ [u] :=
∫

G

{
A(x)

∣∣∣
∣∇u –

uB(x)
A(x)

∣∣∣
∣

α+

–
(
C(x) – k–α


∣∣f (x)

∣∣)|u|α+
}

dx ≤ . (.)

Then for every solution v∈ DPα (G) of (.), either v has a zero on̄G or |v(x)| < k for some
x ∈ G.

Theorem . If there is a nontrivial solution u∈ D�(G) of �(u) =  such that u=  on ∂G
and

Ṽ [u] :=
∫

G
(∇u)T

(
a(x) –

∣∣b(x)
∣∣)(∇u) – A(x)

∣
∣∣
∣∇u –

uB(x)
A(x)

∣
∣∣
∣

α+

+
(
C(x) – k–α


∣∣f (x)

∣∣)|u|α+ – (∣∣b(x)
∣∣ + c(x)

)
u ≥ . (.)

Then every solution v∈ DPα (G) of Pα(v) = f (x) in G must vanish at some point of̄G or
|v(x)| < k for x ∈ G.

Here we point out that, when we compare Theorems . and . with Theorems .
and ., respectively, we see that the condition on f (x) is removed, but, while Theorems .
and . cannot guarantee a zero in Ḡ, Theorems . and . guarantee a zero in Ḡ.

4 An application
Let � be an exterior domain in Rn, that is, � ⊃ {x ∈ R : |x| ≥ r} for some r > . We
consider the following equations:

�(u) =  in � (.)

and

P(v) = f (x) in �, (.)

where the operators � and P are defined before a,A ∈ C(�,R+), b,B ∈ C(�,Rn), c,C ∈
C(�,R), Di ,Ej ∈ C(�,R+ ∪ {}) (i = , , . . . ,�; j = , , . . . ,m) and f ∈ C(�,R), βi , γj are real
positive constants such that γj <  < βi .
The domain D�(�) of � is defined to be set of all functions u of class C(�,R) with the

property that a(x)∇u ∈ C(�,Rn). The domain DP (�)of is defined similarly. A solution of
(.) (or (.)) is said to be the oscillatory in � if it has a zero in �r for any r > , where

�r = � ∩ {
x ∈ Rn : |x| > r

}
.

Now we will give an oscillation result for (.) in an exterior domain � in Rn which
contains {x ∈ Rn : |x| ≥ r} for some r > .

Theorem . Assume that for any r>  there exists a bounded domain G in�r with piece-
wise smooth boundary which can be divided into subdomains G and G by an (n – )-
dimensional hypersurface in such a way that f(x) ≥  in G and f (x) ≤  in G. Assume
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furthermore that Di (x)≥  (i = , , . . . ,�) and Ej(x)≥  (j = , , . . . ,m) in G and that there
are nontrivial functions uk ∈ C(Ḡk,R) such that uk =  on ∂Gk and MGk [uk] ≤  (k = , )
where MGk are de“ned by(.). Then every solution v∈ DP (�) of (.) is oscillatory in�.

Proof We need to apply Theorem . tomake sure that vhas a zero in any domain Ḡ ⊂ �r

as mentioned in the hypotheses of Theorem .. For any r > , there exists a bounded
domain G as defined in Theorem .. this leads v is oscillatory in �. �

Example Let consider the forced elliptic equation:

∂v
∂x

+
∂v
∂x

+K(sin x sin x)|v|β–v+ K(sin x sin x)|v|β–v= cos x sin x, (.)

where β , K, and K are constants such that β > , K ≥ , and K ≥ , but they are not
equal zero at the same time, and � is unbounded domain in R containing a horizontal
strip such that

[π ,∞)× [,π ] ⊂ �.

Here � = , β = β , β = β , A(x) ≡ , C(x) ≡ , D(x) = K(sin x sin x), D(x) =
K(sin x sin x), Di ≡  (i = ,, . . . ,�), Ej(x) ≡  (j = , , . . . ,m) and f (x) = cos x sin x. For
any fixed j, we consider the rectangle

Gj =
(
jπ , (j + )π

) × (,π ),

which is divided into two subdomains,

Gj
 =

(
jπ ,

(
j + (/)

)
π

) × (,π ), Gj
 =

((
j + (/)

)
π , (j + )π

) × (,π ),

by the vertical line x = (j + (/))π . It is easy to see that f (x)≥  in Gj
 and f (x)≤  in Gj

.
Let uk = sinx sin x (k = , ), uk =  on ∂Gk , and by simple calculations we have

M
Gj

k
[uk]

=
∫

Gj
k

{(
∂uk

∂x

)

+
(

∂uk

∂x

)

–
[
β(β – )

–β
β (K sin x sin x)


β | cos x sin x|

β–
β

+ β(β – )
–β
β (K sin x sin x)


β | cos x sin x|

β–
β

]
u

k

}
dx

=
π


–



K /β
 β(β – )

–β
β B

(


+


β

,  –

β

)

–



β(β – )
–β
β K /β

 B
(


+


β

,  –

β

)
, (.)

whereB(s, t) is the beta function. IfK andK are chosen satisfying the following condition:

π


≤ K /β

 β(β – )
–β
β B

(


+


β

,  –

β

)

+ β(β – )
–β
β K /β

 B
(


+


β

,  –

β

)
,
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thenM
Gj

k
[uk] ≤  holds for k = ,  and for any fixed j ∈ N . Therefore, Theorem . implies

that every solution v of (.) is oscillatory in � for all sufficiently large β , K, and K. For
example, if we choose β = , K = , and K = , then the above inequality holds.
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