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Abstract
In this paper, we will study the boundedness of a large class of sublinear operators
with rough kernel T� on the generalized local Morrey spaces LM{x0}

p,ϕ , for s′ ≤ p, p �= 1 or
p < s, where � ∈ Ls(Sn–1) with s > 1 are homogeneous of degree zero. In the case
when b ∈ LC{x0}

p,λ is a local Campanato spaces, 1 < p <∞, and T�,b be is a sublinear
commutator operator, we find the sufficient conditions on the pair (ϕ1,ϕ2) which
ensures the boundedness of the operator T�,b from one generalized local Morrey
space LM{x0}

p,ϕ1 to another LM
{x0}
p,ϕ2 . In all cases the conditions for the boundedness of T�

are given in terms of Zygmund-type integral inequalities on (ϕ1,ϕ2), which do not
make any assumptions on the monotonicity of ϕ1, ϕ2 in r. Conditions of these
theorems are satisfied by many important operators in analysis, in particular
pseudo-differential operators, Littlewood-Paley operators, Marcinkiewicz operators,
and Bochner-Riesz operators.
MSC: 42B20; 42B25; 42B35
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1 Introduction
For x ∈ R

n and r > , let B(x, r) denote the open ball centered at x of radius r, �B(x, r)
denote its complement and |B(x, r)| is the Lebesgue measure of the ball B(x, r). Suppose
that Sn– is the unit sphere in R

n (n ≥ ) equipped with the normalized Lebesgue measure
dσ .

Let � ∈ Ls(Sn–) with  < s ≤ ∞ be homogeneous of degree zero. Suppose that T� rep-
resents a linear or a sublinear operator, which satisfies, for any f ∈ L(Rn) with compact
support and x /∈ supp f ,

∣
∣T�f (x)

∣
∣ ≤ c

∫

Rn

|�(x – y)|
|x – y|n

∣
∣f (y)

∣
∣dy, (.)

where c is independent of f and x.
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For a function b, suppose that the commutator operator T�,b represents a linear or a
sublinear operator, which satisfies, for any f ∈ L(Rn) with compact support and x /∈ supp f ,

∣
∣T�,bf (x)

∣
∣ ≤ c

∫

Rn

∣
∣b(x) – b(y)

∣
∣
|�(x – y)|
|x – y|n

∣
∣f (y)

∣
∣dy, (.)

where c is independent of f and x.
We point out that the condition (.) in the case � ≡  was first introduced by Soria and

Weiss in []. The condition (.) is satisfied by many interesting operators in harmonic
analysis, such as the Calderón-Zygmund operators, Carleson maximal operators, Hardy-
Littlewood maximal operators, C Fefferman singular multipliers, R Fefferman singular in-
tegrals, Ricci-Stein oscillatory singular integrals, the Bochner-Riesz means, and so on (see
[, ] for details).

Let � ∈ Ls(Sn–) with  < s ≤ ∞ be homogeneous of degree zero and satisfy the cancela-
tion condition

∫

Sn–
�

(

x′)dσ
(

x′) = ,

where x′ = x/|x| for any x �= . The homogeneous singular integral operator T� defined by

T�f (x) = p.v.
∫

Rn

�(x – y)
|x – y|n f (y) dy

satisfies the condition (.).
It is obvious that when � ≡ , T� is the singular integral operator T .

Theorem A ([]) Suppose that  ≤ p < ∞, � ∈ Ls(Sn–), s > , is homogeneous of degree
zero and has mean value zero on Sn–. If s′ ≤ p, p �=  or p < s, then the operator T� is
bounded on Lp(Rn). Also the operator T� is bounded from L(Rn) to WL(Rn).

Let b be a locally integrable function on R
n, then we shall define the commutators gen-

erated by singular integral operators with rough kernels and b as follows:

[b, T�]f (x) ≡ b(x)T�f(x) – T�(bf )(x) = p.v.
∫

Rn

[

b(x) – b(y)
]�(x – y)

|x – y|n f (y) dy.

Theorem B ([]) Suppose that � ∈ Ls(Sn–), s > , is homogeneous of degree zero and has
mean value zero on Sn–. Let  < p < ∞ and b ∈ BMO(Rn). If s′ ≤ p or p < s, then the com-
mutator operator [b, T�] is bounded on Lp(Rn).

The classical Morrey spaces Mp,λ were first introduced by Morrey in [] to study the
local behavior of solutions to second order elliptic partial differential equations. For the
boundedness of the Hardy-Littlewood maximal operator, the fractional integral operator
and the Calderón-Zygmund singular integral operator on these spaces, we refer the read-
ers to [–]. For the properties and applications of classical Morrey spaces, see [–] and
references therein. The generalized Morrey spaces Mp,ϕ are obtained by replacing rλ by a
function ϕ(r) in the definition of the Morrey space. During the last decades various classi-
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cal operators, such as maximal, singular, and potential operators, were widely investigated
in both in classical and generalized Morrey spaces.

In this paper, we prove the boundedness of the operators T� from one generalized lo-
cal Morrey space LM{x}

p,ϕ to another LM{x}
p,ϕ ,  < p < ∞, and from the space LM{x}

,ϕ to the
weak space WLM{x}

,ϕ . In the case b ∈ LC{x}
p,λ , we find the sufficient conditions on the pair

(ϕ,ϕ) which ensure the boundedness of the commutator operators [b, T�] from LM{x}
p,ϕ

to LM{x}
p,ϕ ,  < p < ∞, 

p = 
p

+ 
p

.
By A � B we mean that A ≤ CB with some positive constant C independent of appro-

priate quantities. If A � B and B � A, we write A ≈ B and say that A and B are equivalent.

2 Generalized local Morrey spaces
We find it convenient to define the generalized Morrey spaces in the form as follows.

Definition . Let ϕ(x, r) be a positive measurable function on R
n × (,∞) and  ≤ p <

∞. We denote by Mp,ϕ(Rn) the generalized Morrey space, the space of all functions f ∈
Lloc

p (Rn) with finite quasinorm

‖f ‖Mp,ϕ = sup
x∈Rn ,r>

ϕ(x, r)–‖f ‖Lp(B(x,r)). (.)

The generalized Morrey spaces Mp,ϕ(Rn) with norm (.) introduced by Mizuhara in
[], which was later extended and studied by many authors (see [, ]). Note that the
generalized Morrey spaces Mp,ϕ(Rn) with normalized form

‖f ‖Mp,ϕ = sup
x∈Rn ,r>

ϕ(x, r)–∣∣B(x, r)
∣
∣
– 

p ‖f ‖Lp(B(x,r)) (.)

were first defined by Guliyev in [].
Also, in [], there was defined the weak generalized Morrey space WMp,ϕ ≡ WMp,ϕ(Rn)

of all functions f ∈ WLloc
p (Rn) for which

‖f ‖WMp,ϕ = sup
x∈Rn ,r>

ϕ(x, r)–∣∣B(x, r)
∣
∣
– 

p ‖f ‖WLp(B(x,r)) < ∞.

According to this definition, we recover the Morrey space Mp,λ and weak Morrey space
WMp,λ under the choice ϕ(x, r) = r

λ–n
p :

Mp,λ = Mp,ϕ

∣
∣
∣
ϕ(x,r)=r

λ–n
p

, WMp,λ = WMp,ϕ

∣
∣
∣
ϕ(x,r)=r

λ–n
p

.

Recall that in  the doctoral thesis [] by Guliyev (see also [–]) introduced the
local Morrey-type space LMpθ ,w given by

‖f ‖LMpθ ,w =
∥
∥w(r)‖f ‖Lp(B(,r))

∥
∥

Lθ (,∞) < ∞,

where w is a positive measurable function defined on (,∞). The main purpose of []
(also of [–]) is to give some sufficient conditions for the boundedness of fractional
integral operators and singular integral operators defined on homogeneous Lie groups in
the local Morrey-type space LMpθ ,w. In a series of papers by Burenkov, H Guliyev and
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V Guliyev, etc. (see [–]), some necessary and sufficient conditions for the bounded-
ness of fractional maximal operators, fractional integral operators, and singular integral
operators in local Morrey-type spaces LMpθ ,w were given.

Definition . Let ϕ(x, r) be a positive measurable function onR
n ×(,∞) and  ≤ p < ∞.

We denote by LMp,ϕ ≡ LMp,ϕ(Rn) the generalized central (local) Morrey space, the space
of all functions f ∈ Lloc

p (Rn) with finite quasinorm

‖f ‖LMp,ϕ = sup
r>

ϕ(, r)–∣∣B(, r)
∣
∣
– 

p ‖f ‖Lp(B(,r)).

Also by WLMp,ϕ ≡ WLMp,ϕ(Rn) we denote the weak generalized Morrey space of all func-
tions f ∈ WLloc

p (Rn) for which

‖f ‖WLMp,ϕ = sup
r>

ϕ(, r)–∣∣B(, r)
∣
∣
– 

p ‖f ‖WLp(B(,r)) < ∞.

Particularly, if θ = ∞, LMp∞,w = LMp,w, then the generalized central Morrey spaces
LMp,ϕ are the same spaces as the local Morrey spaces LMpθ ,w with w(r) = ϕ(, r)–r–n/p.
Note that f ∈ Mp,ϕ if and only if f (· – x)x∈Rn forms a bounded set in LMpϕ .

Definition . Let ϕ(x, r) be a positive measurable function onR
n ×(,∞) and  ≤ p < ∞.

For any fixed x ∈ R
n we denote by LM{x}

p,ϕ ≡ LM{x}
p,ϕ (Rn) the generalized local Morrey

space, the space of all functions f ∈ Lloc
p (Rn) with finite quasinorm

‖f ‖LM{x}
p,ϕ

=
∥
∥f (x + ·)∥∥LMp,ϕ

.

Also by WLM{x}
p,ϕ ≡ WLM{x}

p,ϕ (Rn) we denote the weak generalized local Morrey space of
all functions f ∈ WLloc

p (Rn) for which

‖f ‖WLM{x}
p,ϕ

=
∥
∥f (x + ·)∥∥WLMp,ϕ

< ∞.

According to this definition, we recover the local Morrey space LM{x}
p,λ and weak local

Morrey space WLM{x}
p,λ under the choice ϕ(x, r) = r

λ–n
p :

LM{x}
p,λ = LM{x}

p,ϕ

∣
∣
∣
ϕ(x,r)=r

λ–n
p

, WLM{x}
p,λ = WLM{x}

p,ϕ

∣
∣
∣
ϕ(x,r)=r

λ–n
p

.

Wiener [, ] looked for a way to describe the behavior of a function at the infinity.
The conditions he considered are related to appropriate weighted Lq spaces. Beurling []
extended this idea and defined a pair of dual Banach spaces Aq and Bq′ , where /q + /q′ = .
To be precise, Aq is a Banach algebra with respect to the convolution, expressed as a union
of certain weighted Lq spaces; the space Bq′ is expressed as the intersection of the corre-
sponding weighted Lq′ spaces. Feichtinger [] observed that the space Bq can be described
by

‖f ‖Bq = sup
k≥

– kn
q ‖f χk‖Lq(Rn), (.)
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where χ is the characteristic function of the unit ball {x ∈ R
n : |x| ≤ }, χk is the charac-

teristic function of the annulus {x ∈ R
n : k– < |x| ≤ k}, k = , , . . . . By duality, the space

Aq(Rn), called the Beurling algebra now, can be described by

‖f ‖Aq =
∞

∑

k=

– kn
q′ ‖f χk‖Lq(Rn). (.)

Let Ḃq(Rn) and Ȧq(Rn) be the homogeneous versions of Bq(Rn) and Aq(Rn) by taking
k ∈ Z in (.) and (.) instead of k ≥  there.

If λ <  or λ > n, then LM{x}
p,λ (Rn) = �, where � is the set of all functions equivalent to 

on R
n. Note that LMp,(Rn) = Lp(Rn) and LMp,n(Rn) = Ḃp(Rn);

Ḃp,μ = LMp,ϕ
∣
∣
ϕ(,r)=rμn , W Ḃp,μ = WLMp,ϕ

∣
∣
ϕ(,r)=rμn .

Alvarez et al. [], in order to study the relationship between central BMO spaces and
Morrey spaces, introduced λ-central bounded mean oscillation spaces and central Morrey
spaces Ḃp,μ(Rn) ≡ LMp,n+npμ(Rn), μ ∈ [– 

p , ]. If μ < – 
p or μ > , then Ḃp,μ(Rn) = �. Note

that Ḃp,– 
p

(Rn) = Lp(Rn) and Ḃp,(Rn) = Ḃp(Rn). Also define the weak central Morrey spaces
W Ḃp,μ(Rn) ≡ WLMp,n+npμ(Rn).

Inspired by this, we consider the boundedness of singular integral operator with rough
kernel on generalized local Morrey spaces and give the central bounded mean oscillation
estimates for their commutators.

3 Sublinear operators with rough kernel generated by Calderón-Zygmund
operators in the spaces LM{x0}

p,ϕ

In this section we are going to use the following statement on the boundedness of the
weighted Hardy operator:

Hwg(t) :=
∫ ∞

t
g(s)w(s) ds,  < t < ∞,

where w is a fixed function non-negative and measurable on (,∞).
The following theorem was proved in [, ].

Theorem . Let v, v, and w be positive almost everywhere and measurable functions
on (,∞). The inequality

ess sup
t>

v(t)Hwg(t) ≤ C ess sup
t>

v(t)g(t) (.)

holds for some C >  for all non-negative and non-decreasing g on (,∞) if and only if

B := ess sup
t>

v(t)
∫ ∞

t

w(s) ds
ess sups<τ<∞ v(τ )

< ∞.

Moreover, the value C = B is the best constant for (.).

The following statement, containing the results obtained in [, ] was proved in [].
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Theorem . Suppose that � ∈ Ls(Sn–), s > , is homogeneous of degree zero and has mean
value zero on Sn–. Let  ≤ s′ < p < ∞ and ϕ(x, r) satisfy the conditions

c–ϕ(x, r) ≤ ϕ(x, t) ≤ cϕ(x, r) (.)

whenever r ≤ t ≤ r, where c (≥ ) does not depend on t, r, x ∈R
n, and

∫ ∞

r
ϕ(x, t)p dt

t
≤ Cϕ(x, r)p, (.)

where C does not depend on x and r. Then the operator T� is bounded on Mp,ϕ .

The following statement, containing the results obtained in [, ] was proved in [,
] (see also [, –, ]).

Theorem . Let  ≤ p < ∞ and (ϕ,ϕ) satisfy the condition

∫ ∞

r
ϕ(, t)

dt
t

≤ Cϕ(, r), (.)

where C does not depend on r. Then the operator T is bounded from LMp,ϕ to LMp,ϕ for
p >  and from LM,ϕ to WLM,ϕ for p = .

Corollary . Let  ≤ p < ∞ and (ϕ,ϕ) satisfy the condition

∫ ∞

r
ϕ(x, t)

dt
t

≤ Cϕ(x, r), (.)

where C does not depend on x and r. Then the operator T is bounded from Mp,ϕ to Mp,ϕ

for p >  and from M,ϕ to WM,ϕ for p = .

The following statement, containing results obtained in [, ], was proved in [].

Theorem . Let x ∈ R
n,  ≤ p < ∞, and � ∈ Ls(Sn–), s > , be a homogeneous of degree

zero. Let also, for s′ ≤ p or p < s, the pair (ϕ,ϕ) satisfy the condition

∫ ∞

r

ess inft<τ<∞ ϕ(x, τ )τ
n
p

t
n
p +

dt ≤ Cϕ(x, r), (.)

where C does not depend on r. Then the operator T� is bounded from LM{x}
p,ϕ to LM{x}

p,ϕ for
p >  and from LM{x}

,ϕ to WLM{x}
,ϕ for p = .

Corollary . Let  ≤ p < ∞, � ∈ Ls(Sn–), s > , be a homogeneous of degree zero. Let also,
for s′ ≤ p or p < s, the pair (ϕ,ϕ) satisfy the condition

∫ ∞

r

ess inft<τ<∞ ϕ(x, τ )τ
n
p

t
n
p +

dt ≤ Cϕ(x, r), (.)

where C does not depend on x and r. Then the operator T� is bounded from Mp,ϕ to Mp,ϕ

for p >  and from M,ϕ to WM,ϕ for p = .
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Lemma . Let x ∈ R
n,  ≤ p < ∞, T� be a sublinear operator satisfying condition (.)

with � ∈ Ls(Sn–), s > , be a homogeneous of degree zero, bounded on Lp(Rn) for p > , and
bounded from L(Rn) to WL(Rn).

If p >  and s′ ≤ p, then the inequality

‖T�f ‖Lp(B(x,r)) � r
n
p

∫ ∞

r
‖f ‖Lp(B(x,t))t– n

p – dt

holds for any ball B(x, r) and for all f ∈ Lloc
p (Rn).

If p >  and p < s, then the inequality

‖T�f ‖Lp(B(x,r)) � r
n
p – n

s

∫ ∞

r
‖f ‖Lp(B(x,t))t

n
s – n

p – dt

holds for any ball B(x, r) and for all f ∈ Lloc
p (Rn).

Moreover, for s >  the inequality

‖T�f ‖WL(B(x,r)) � rn
∫ ∞

r
t–n–‖f ‖L(B(x,t)) dt (.)

holds for any ball B(x, r) and for all f ∈ Lloc
 (Rn).

Proof Let  < p < ∞ and s′ ≤ p. Set B = B(x, r) for the ball centered at x and of radius r.
We represent f as

f = f + f, f(y) = f (y)χB(y), f(y) = f (y)χ�(B)(y), r > , (.)

and have

‖T�f ‖L(B) ≤ ‖T�f‖Lp(B) + ‖T�f‖Lp(B).

Since f ∈ Lp(Rn), T�f ∈ Lp(Rn) and from the boundedness of T� on Lp(Rn) it follows
that

‖T�f‖Lp(B) ≤ ‖T�f‖Lp(Rn) ≤ C‖f‖Lp(Rn) = C‖f ‖Lp(B),

where constant C >  is independent of f .
Note that

∥
∥�(x – ·)∥∥Ls(B(x,t)) =

(∫

B(x–x,t)

∣
∣�(y)

∣
∣
s dy

) 
s

≤
(∫

B(,t+|x–x|)

∣
∣�(y)

∣
∣
s dy

) 
s

=
(∫ t+|x–x|


rn– dr

∫

Sn–

∣
∣�

(

y′)∣∣sdσ
(

y′)
) 

s

= c‖�‖Ls(Sn–)
∣
∣B

(

, t + |x – x|
)∣
∣


s , (.)

where c = (nvn)–/s and vn = |B(, )|.
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It is clear that x ∈ B, y ∈ �(B) implies 
 |x – y| ≤ |x – y| ≤ 

 |x – y|. We get

∣
∣T�f(x)

∣
∣ ≤ nc

∫

�(B)

|f (y)||�(x – y)|
|x – y|n dy.

By the Fubini theorem we have

∫

�(B)

|f (y)||�(x – y)|
|x – y|n dy ≈

∫

�(B)

∣
∣f (y)

∣
∣
∣
∣�(x – y)

∣
∣

∫ ∞

|x–y|
dt

tn+ dy

≈

∫ ∞

r

∫

r≤|x–y|≤t

∣
∣f (y)

∣
∣
∣
∣�(x – y)

∣
∣dy

dt
tn+

�
∫ ∞

r

∫

B(x,t)

∣
∣f (y)

∣
∣
∣
∣�(x – y)

∣
∣dy

dt
tn+ .

Applying the Hölder inequality, we get
∫

�(B)

|f (y)||�(x – y)|
|x – y|n dy �

∫ ∞

r
‖f ‖Lp(B(x,t))

∥
∥�(x – ·)∥∥Ls(B(x,t))

∣
∣B(x, t)

∣
∣
– 

p – 
s dt

tn+

�
∫ ∞

r
‖f ‖Lp(B(x,t))

∣
∣B

(

x, t + |x – x|
)∣
∣


s
∣
∣B(x, t)

∣
∣
– 

p – 
s dt

tn+

�
∫ ∞

r
‖f ‖Lp(B(x,t))

∣
∣B(x, t)

∣
∣
– 

p dt
tn+

≈

∫ ∞

r
‖f ‖Lp(B(x,t))

dt

t
n
p +

. (.)

Moreover, for all p ∈ [,∞), the inequality

‖T�f‖Lp(B) � r
n
p

∫ ∞

r
‖f ‖Lp(B(x,t))

dt

t
n
p +

(.)

is valid. Thus

‖T�f ‖Lp(B) � ‖f ‖Lp(B) + r
n
p

∫ ∞

r
‖f ‖Lp(B(x,t))

dt

t
n
p +

.

On the other hand,

‖f ‖Lp(B) ≈ r
n
p ‖f ‖Lp(B)

∫ ∞

r

dt

t
n
p +

≤ r
n
p

∫ ∞

r
‖f ‖Lp(B(x,t))

dt

t
n
p +

. (.)

Thus

‖T�f ‖Lp(B) � r
n
p

∫ ∞

r
‖f ‖Lp(B(x,t))

dt

t
n
p +

.

When  < p < s, by the Fubini theorem, the Minkowski inequality and (.), we get

‖T�f‖Lp(B) ≤
(∫

B

(∫ ∞

r

∫

B(x,t)

∣
∣f (y)

∣
∣
∣
∣�(x – y)

∣
∣dy

dt
tn+

)p

dx
) 

p

≤
∫ ∞

r

∫

B(x,t)

∣
∣f (y)

∣
∣
∥
∥�(· – y)

∥
∥

Lp(B) dy
dt

tn+
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≤ ∣
∣B(x, r)

∣
∣


p – 

s

∫ ∞

r

∫

B(x,t)

∣
∣f (y)

∣
∣
∥
∥�(· – y)

∥
∥

Ls(B) dy
dt

tn+

≤ ∣
∣B(x, r)

∣
∣


p – 

s

∫ ∞

r

∫

B(x,t)

∣
∣f (y)

∣
∣
∣
∣B

(

x, r + |x – y|)∣∣ 
s dy

dt
tn+

� r
n
p – n

s

∫ ∞

r
‖f ‖L(B(x,t))

∣
∣B(x, t)

∣
∣


s dt

tn+

≈ r
n
p – n

s

∫ ∞

r
‖f ‖Lp(B(x,t))t

n
s – n

p – dt. (.)

Let p =  < s ≤ ∞. From the weak (, ) boundedness of T� and (.) it follows that

‖T�f‖WL(B) ≤ ‖T�f‖WL(Rn) � ‖f‖L(Rn)

= ‖f ‖L(B) � rn
∫ ∞

r
‖f ‖L(B(x,t))

dt
tn+ . (.)

Then from (.) and (.) we get the inequality (.). �

Theorem . Let x ∈R
n,  ≤ p < ∞, T� be a sublinear operator satisfying condition (.)

with � ∈ Ls(Sn–), s > , be a homogeneous of degree zero. Suppose that the operator T�

is bounded on Lp(Rn) for p >  and bounded from L(Rn) to WL(Rn). Let also, for s′ ≤ p,
p �= , the pair (ϕ,ϕ) satisfy the condition

∫ ∞

r

ess inft<τ<∞ ϕ(x, τ )τ
n
p

t
n
p +

dt ≤ Cϕ(x, r), (.)

and for  < p < s the pair (ϕ,ϕ) satisfy the condition

∫ ∞

r

ess inft<τ<∞ ϕ(x, τ )τ
n
p

t
n
p – n

s +
dt ≤ Cϕ(x, r)r

n
s , (.)

where C does not depend on r.
Then the operator T� is bounded from LM{x}

p,ϕ to LM{x}
p,ϕ . Moreover,

‖T�f ‖LM{x}
p,ϕ

� ‖f ‖LM{x}
p,ϕ

.

Also the operator T� is bounded from LM{x}
,ϕ to WLM{x}

,ϕ and

‖T�f ‖WLM{x}
,ϕ

� ‖f ‖LM{x}
,ϕ

.

Proof Let  < p < ∞ and s′ ≤ p. By Lemma . and Theorem . with v(r) = ϕ(x, r)–,
v(r) = ϕ(x, r)–r– n

p , g(r) = ‖f ‖Lp(B(x,r)), and w(r) = r– n
p – we have

‖T�f ‖LM{x}
p,ϕ

� sup
r>

ϕ(x, r)–
∫ ∞

r
‖f ‖Lp(B(x,t))

dt

t
n
p +

� sup
r>

ϕ(x, r)–r– n
p ‖f ‖Lp(B(x,r)) = ‖f ‖LM{x}

p,ϕ
.
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Let  < p < s. By Lemma . and Theorem . with v(r) = ϕ(x, r)–, v(r) = ϕ(x,
r)–r– n

p + n
s , g(r) = ‖f ‖Lp(B(x,r)), and w(r) = r– n

p + n
s – we have

‖T�f ‖LM{x}
p,ϕ

� sup
r>

ϕ(x, r)–r– n
s

∫ ∞

r
‖f ‖Lp(B(x,t))

dt

t
n
p – n

s +

� sup
r>

ϕ(x, r)–r– n
p ‖f ‖Lp(B(x,r)) = ‖f ‖LM{x}

p,ϕ
.

Also for p = 

‖T�f ‖WLM{x}
,ϕ

� sup
r>

ϕ(x, r)–
∫ ∞

r
‖f ‖L(B(x,t))

dt
tn+

� sup
r>

ϕ(x, r)–r–n‖f ‖Lp(B(x,r)) = ‖f ‖LM{x}
,ϕ

. �

Corollary . Let x ∈ R
n,  ≤ p < ∞, T� be a sublinear operator satisfying condition

(.), with � ∈ Ls(Sn–), s > , being a homogeneous of degree zero and bounded on Lp(Rn)
for p > , and bounded from L(Rn) to WL(Rn).

Let also, for s′ ≤ p, p �= , the pair (ϕ,ϕ) satisfy the condition

∫ ∞

r

ess inft<τ<∞ ϕ(x, τ )τ
n
p

t
n
p +

dt ≤ Cϕ(x, r), (.)

and, for  < p < s, the pair (ϕ,ϕ) satisfy the condition

∫ ∞

r

ess inft<τ<∞ ϕ(x, τ )τ
n
p

t
n
p – n

s +
dt ≤ Cϕ(x, r)r

n
s , (.)

where C does not depend on x and r.
Then the operator T� is bounded from Mp,ϕ to Mp,ϕ . Moreover,

‖T�f ‖Mp,ϕ
� ‖f ‖Mp,ϕ

.

Also the operator T� is bounded from M,ϕ to WM,ϕ and

‖T�f ‖WM,ϕ
� ‖f ‖M,ϕ

.

Corollary . Let  ≤ p < ∞ and (ϕ,ϕ) satisfy condition (.). Then the operator T is
bounded from LM{x}

p,ϕ to LM{x}
p,ϕ for p >  and from LM{x}

,ϕ to WLM{x}
,ϕ .

Let f ∈ Lloc
 (Rn). The rough Hardy-Littlewood maximal function M� is defined by

M�f (x) = sup
t>


|B(x, t)|

∫

B(x,t)

∣
∣�(x – y)

∣
∣
∣
∣f (y)

∣
∣dy.

Then we can give the following corollary.

Corollary . Let  ≤ p < ∞, � ∈ Ls(Sn–). For s′ ≤ p, p �= , the pair (ϕ,ϕ) satisfies con-
dition (.) and, for  < p < s, the pair (ϕ,ϕ) satisfies condition (.). Then the operators
M� and T� are bounded from LM{x}

p,ϕ to LM{x}
p,ϕ , for p > , and from LM{x}

,ϕ to WLM{x}
,ϕ .
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Corollary . Let  ≤ p < ∞, � ∈ Ls(Sn–). For s′ ≤ p, p �= , the pair (ϕ,ϕ) satisfies con-
dition (.) and, for  < p < s, the pair (ϕ,ϕ) satisfies condition (.). Then the operators
M� and T� are bounded from Mp,ϕ to Mp,ϕ and from M,ϕ to WM,ϕ .

Remark . Note that, in the case s = ∞, Corollary . was proved in []. The condition
(.) in Theorem . is weaker than condition (.) in Theorem . (see []).

4 Commutators of linear operators with rough kernel generated by
Calderón-Zygmund operators in the spaces LM{x0}

p,ϕ

Let T be a linear operator; for a function b, we define the commutator [b, T] by

[b, T]f (x) = b(x)Tf (x) – T(bf )(x)

for any suitable function f . Let T̃ be a Calderón-Zygmund singular integral operator.
A well-known result of Coifman et al. [] states that the commutator [b, T̃]f = bT̃f –
T̃(bf ) is bounded on Lp(Rn),  < p < ∞, if and only if b ∈ BMO(Rn). The commutator of
Calderón-Zygmund operators plays an important role in studying the regularity of solu-
tions of elliptic partial differential equations of second order (see, for example, [–, ]).

The definition of a local Campanato space is as follows.

Definition . Let  ≤ q < ∞ and  ≤ λ < 
n . A function f ∈ Lloc

q (Rn) is said to belong to
the LC{x}

q,λ (Rn) (local Campanato space), if

‖f ‖LC{x}
q,λ

= sup
r>

(


|B(x, r)|+λq

∫

B(x,r)

∣
∣f (y) – fB(x,r)

∣
∣
q dy

)/q

< ∞,

where

fB(x,r) =


|B(x, r)|
∫

B(x,r)
f (y) dy.

Define

LC{x}
q,λ (Rn) =

{

f ∈ Lloc
q (Rn) : ‖f ‖LC{x}

q,λ
< ∞}

.

In [], Lu and Yang introduced the central BMO space CBMOq(Rn) = LC{}
q, (Rn). Note

that BMO(Rn) ⊂ ⋂

q> CBMO{x}
q (Rn),  ≤ q < ∞. The space CBMO{x}

q (Rn) can be re-
garded as a local version of BMO(Rn), the space of bounded mean oscillation, at the origin.
But they have quite different properties. The classical John-Nirenberg inequality shows
that functions in BMO(Rn) are locally exponentially integrable. This implies that, for any
 ≤ q < ∞, the functions in BMO(Rn) can be described by means of the condition:

sup
B⊂Rn

(


|B|
∫

B

∣
∣f (y) – fB

∣
∣
q dy

)/q

< ∞,

where B denotes an arbitrary ball inR
n. However, the space CBMO{x}

q (Rn) depends on q. If
q < q, then CBMO{x}

q (Rn) � CBMO{x}
q (Rn). Therefore, there is no analogy of the famous
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John-Nirenberg inequality of BMO(Rn) for the space CBMO{x}
q (Rn). One can imagine that

the behavior of CBMO{x}
q (Rn) may be quite different from that of BMO(Rn).

We will use the following statement on the boundedness of the weighted Hardy operator:

H∗
wg(r) :=

∫ ∞

r

(

 + ln
t
r

)

g(t)w(t) dt, r ∈ (,∞),

where w is a weight.
The following theorem was proved in [].

Theorem . ([]) Let v, v, and w be positive almost everywhere and measurable func-
tions on (,∞). The inequality

ess sup
r>

v(r)H∗
wg(r) ≤ C ess sup

r>
v(r)g(r) (.)

holds, for some C >  for all non-negative and non-decreasing g on (,∞), if and only if

B := sup
r>

v(r)
∫ ∞

r

(

 + ln
t
r

)
w(t) dt

supt<s<∞ v(s)
< ∞. (.)

Moreover, the value C = B is the best constant for (.).

Remark . In (.)-(.) it is assumed that  · ∞ = .

Lemma . Let b be a function in LC{x}
q,λ (Rn),  ≤ q < ∞,  ≤ λ < 

n , and r, r > . Then

(


|B(x, r)|+λq

∫

B(x,r)

∣
∣b(y) – bB(x,r)

∣
∣
q dy

) 
q

≤ C
(

 +
∣
∣
∣
∣
ln

r

r

∣
∣
∣
∣

)

‖b‖LC{x}
q,λ

,

where C >  is independent of b, r, and r.

In [] the following statement was proved for the commutators of singular integral op-
erators with rough kernels, containing the result in [, ].

Theorem . Suppose that � ∈ Ls(Sn–), s > , is homogeneous of degree zero and b ∈
BMO(Rn). Let  ≤ s′ < p < ∞, ϕ(x, r) satisfy the conditions (.) and (.). Then the op-
erator [b, T�] is bounded on Mp,ϕ .

Lemma . Let x ∈ R
n,  < p < ∞, b ∈ LC{x}

p,λ(Rn), 
p = 

p
+ 

p
, and  ≤ λ < 

n . Let also T�

be a linear operator satisfying condition (.) with � ∈ Ls(Sn–), s > , be a homogeneous of
degree zero and bounded on Lp(Rn) for  < p < ∞.

Then, for s′ ≤ p, the inequality

∥
∥[b, T�]f

∥
∥

Lp(B(x,r)) � ‖b‖LC{x}
p,λ

r
n
p

∫ ∞

r

(

 + ln
t
r

)

tnλ– n
p

–‖f ‖Lp (B(x,t)) dt

holds, for any ball B(x, r) and for all f ∈ Lloc
p (Rn).
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Also, for p < s, the inequality

∥
∥[b, T�]f

∥
∥

Lp(B(x,r)) � ‖b‖LC{x}
p,λ

r
n
p – n

s

∫ ∞

r

(

 + ln
t
r

)

tnλ– n
p

+ n
s –‖f ‖Lp (B(x,t)) dt

holds, for any ball B(x, r) and for all f ∈ Lloc
p (Rn).

Proof Let  < p < ∞, b ∈ LC{x}
p,λ(Rn), and 

p = 
p

+ 
p

. As in the proof of Lemma ., we
represent the function f in the form (.) and have

[b, T�]f (x) ≡ J + J + J + J =
(

b(x) – bB
)

T�f(x)

– T�

((

b(·) – bB
)

f
)

(x) +
(

b(x) – bB
)

T�f(x) – T�

((

b(·) – bB
)

f
)

(x).

Hence we get

∥
∥[b, T�]f

∥
∥

Lp(B) ≤ ‖J‖Lp(B) + ‖J‖Lp(B) + ‖J‖Lp(B) + ‖J‖Lp(B).

From the boundedness of T� on Lp(Rn) and Lemma . it follows that

‖J‖Lp(B) ≤ ∥
∥
(

b(·) – bB
)

T�f(·)∥∥Lp(Rn)

≤ ∥
∥
(

b(·) – bB
)∥
∥

Lp (Rn)

∥
∥T�f(·)∥∥Lp (Rn)

≤ C‖b‖LC{x}
p,λ

r
n

p
+nλ‖f‖Lp (Rn)

= C‖b‖LC{x}
p,λ

r
n

p
+ n

p
+nλ‖f ‖Lp (B)

∫ ∞

r
t–– n

p dt

� ‖b‖LC{x}
p,λ

r
n
p

∫ ∞

r

(

 + ln
t
r

)

tnλ– n
p

–‖f ‖Lp (B(x,t)) dt.

From Lemma . for J we have

‖J‖Lp(B) ≤ ∥
∥T�

(

b(·) – bB
)

f
∥
∥

Lp(Rn)

�
∥
∥
(

b(·) – bB
)

f
∥
∥

Lp(Rn)

�
∥
∥b(·) – bB

∥
∥

Lp (Rn)‖f‖Lp (Rn)

� ‖b‖LC{x}
p,λ

r
n

p
+ n

p
+nλ‖f ‖Lp (B)

∫ ∞

r
t–– n

p dt

� ‖b‖LC{x}
p,λ

r
n
p

∫ ∞

r

(

 + ln
t
r

)

tnλ– n
p

–‖f ‖Lp (B(x,t)) dt.

For J, it is known that x ∈ B, y ∈ �(B), which implies 
 |x – y| ≤ |x – y| ≤ 

 |x – y|.
When s′ ≤ p, by the Fubini theorem and (.), and applying the Hölder inequality, we

have

∣
∣T�f(x)

∣
∣ ≤ c

∫

�(B)

∣
∣�(x – y)

∣
∣

|f (y)|
|x – y|n dy

≈
∫ ∞

r

∫

r<|x–y|<t

∣
∣�(x – y)

∣
∣
∣
∣f (y)

∣
∣dyt––n dt
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�
∫ ∞

r

∫

B(x,t)

∣
∣�(x – y)

∣
∣
∣
∣f (y)

∣
∣dyt––n dt

�
∫ ∞

r
‖f ‖Lp (B(x,t))

∥
∥�(x – ·)∥∥Ls(B(x,t))

∣
∣B(x, t)

∣
∣
– 

p
– 

s t––n dt

�
∫ ∞

r
‖f ‖Lp (B(x,t))

∣
∣B

(

x, t + |x – x|
)∣
∣


s
∣
∣B(x, t)

∣
∣
– 

p
– 

s dt
tn+

�
∫ ∞

r
t– n

p
–‖f ‖Lp (B(x,t)) dt.

Hence, from Lemma . we get

‖J‖Lp(B) =
∥
∥
(

b(·) – bB
)

T�f(·)∥∥Lp(Rn)

≤ ∥
∥
(

b(·) – bB
)∥
∥

Lp(Rn)

∫ ∞

r
t– n

p
–‖f ‖Lp (B(x,t)) dt

≤ ∥
∥
(

b(·) – bB
)∥
∥

Lp (Rn)r
n

p

∫ ∞

r
t– n

p
–‖f ‖Lp (B(x,t)) dt

� ‖b‖LC{x}
p,λ

r
n
p +nλ

∫ ∞

r

(

 + ln
t
r

)

t– n
p

–‖f ‖Lp (B(x,t)) dt

� ‖b‖LC{x}
p,λ

r
n
p

∫ ∞

r

(

 + ln
t
r

)

tnλ– n
p

–‖f ‖Lp (B(x,t)) dt.

When p < s, by the Fubini theorem, the Minkowski inequality, (.) and from
Lemma ., we get

‖J‖Lp(B) ≤
(∫

B

(∫ ∞

r

∫

B(x,t)

∣
∣f (y)

∣
∣
∣
∣b(x) – bB

∣
∣
∣
∣�(x – y)

∣
∣dy

dt
tn+

)p

dx
) 

p

≤
∫ ∞

r

∫

B(x,t)

∣
∣f (y)

∣
∣
∥
∥
(

b(·) – bB
)

�(· – y)
∥
∥

Lp(B) dy
dt

tn+

≤
∫ ∞

r

∫

B(x,t)

∣
∣f (y)

∣
∣
∥
∥b(·) – bB

∥
∥

Lp (B)

∥
∥�(· – y)

∥
∥

Lp (B) dy
dt

tn+

� ‖b‖LC{x}
p,λ

r
n

p
+nλ|B| 

p
– 

s

∫ ∞

r

∫

B(x,t)

∣
∣f (y)

∣
∣
∥
∥�(· – y)

∥
∥

Ls(B) dy
dt

tn+

� ‖b‖LC{x}
p,λ

r
n
p – n

s +nλ

∫ ∞

r
‖f ‖L(B(x,t))

∣
∣B

(

x, t + |x – y|)∣∣ 
s dt

tn+

� ‖b‖LC{x}
p,λ

r
n
p – n

s

∫ ∞

r

(

 + ln
t
r

)

tnλ+ n
s – n

p
–‖f ‖Lp (B(x,t)) dt. (.)

For x ∈ B, by the Fubini theorem, applying the Hölder inequality, and from Lemma .
we have

∣
∣T�

((

b(·) – bB
)

f
)

(x)
∣
∣

�
∫

�(B)

∣
∣b(y) – bB

∣
∣
∣
∣�(x – y)

∣
∣

|f (y)|
|x – y|n dy

�
∫

�(B)

∣
∣b(y) – bB

∣
∣
∣
∣�(x – y)

∣
∣

|f (y)|
|x – y|n dy
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≈
∫ ∞

r

∫

r<|x–y|<t

∣
∣b(y) – bB

∣
∣
∣
∣�(x – y)

∣
∣
∣
∣f (y)

∣
∣dy

dt
tn+

�
∫ ∞

r

∫

B(x,t)

∣
∣b(y) – bB(x,t)

∣
∣
∣
∣�(x – y)

∣
∣
∣
∣f (y)

∣
∣dy

dt
tn+

+
∫ ∞

r
|bB(x,r) – bB(x,t)|

∫

B(x,t)

∣
∣�(x – y)

∣
∣
∣
∣f (y)

∣
∣dy

dt
tn+

�
∫ ∞

r

∥
∥
(

b(·) – bB(x,t)
)

f
∥
∥

Lp(B(x,t))

∥
∥�(· – y)

∥
∥

Ls(B(x,t))

∣
∣B(x, t)

∣
∣
– 

p – 
s dt

tn+

+
∫ ∞

r
|bB(x,r) – bB(x,t)|‖f ‖Lp (B(x,t))

∥
∥�(· – y)

∥
∥

Ls(B(x,t))

∣
∣B(x, t)

∣
∣
– 

p
– 

s t–n– dt

�
∫ ∞

r

∥
∥b(·) – bB(x,t)

∥
∥

Lp (B(x,t))‖f ‖Lp (B(x,t))t
–– n

p dt

+ ‖b‖LC{x}
p,λ

∫ ∞

r

(

 + ln
t
r

)

tnλ– n
p

–‖f ‖Lp (B(x,t)) dt

� ‖b‖LC{x}
p,λ

∫ ∞

r

(

 + ln
t
r

)

tnλ– n
p

–‖f ‖Lp (B(x,t)) dt.

Then for J we have

‖J‖Lp(B) ≤ ∥
∥T�

(

b(·) – bB
)

f
∥
∥

Lp(Rn)

� ‖b‖LC{x}
p,λ

r
n
p

∫ ∞

r

(

 + ln
t
r

)

tnλ– n
p

–‖f ‖Lp (B(x,t)) dt.

When p < s, by the Fubini theorem, (.), and the Minkowski inequality, we get

‖T�f‖Lp(B) ≤
(∫

B

(∫ ∞

r

∫

B(x,t)

∣
∣f (y)

∣
∣
∣
∣�(x – y)

∣
∣dy

dt
tn+

)p

dx
) 

p

≤
∫ ∞

r

∫

B(x,t)

∣
∣f (y)

∣
∣
∥
∥�(· – y)

∥
∥

Lp(B) dy
dt

tn+

≤ |B| 
p – 

s

∫ ∞

r

∫

B(x,t)

∣
∣f (y)

∣
∣
∥
∥�(· – y)

∥
∥

Ls(B) dy
dt

tn+

� r
n
p – n

s

∫ ∞

r
‖f ‖L(B(x,t))

∣
∣B

(

x, t + |x – y|)∣∣ 
s dt

tn+

� r
n
p – n

s

∫ ∞

r
t

n
s – n

p
–‖f ‖Lp (B(x,t)) dt. (.)

Now combining all the above estimates, we end the proof of Lemma .. �

The following theorem is true.

Theorem . Suppose that x ∈R
n,  < p < ∞, T� is a linear operator satisfying condition

(.) with � ∈ Ls(Sn–), s > , is homogeneous of degree zero and bounded on Lp(Rn). Let
b ∈ LC{x}

p,λ(Rn), 
p = 

p
+ 

p
,  ≤ λ < 

n .
Let also, for s′ ≤ p, the pair (ϕ,ϕ) satisfy the condition

∫ ∞

r

(

 + ln
t
r

)
ess inft<τ<∞ ϕ(x, τ )τ

n
p

t
n
p +–nλ

dt ≤ Cϕ(x, r), (.)
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and, for p < s, the pair (ϕ,ϕ) satisfy the condition

∫ ∞

r

(

 + ln
t
r

)
ess inft<τ<∞ ϕ(x, τ )τ

n
p

t
n
p – n

s +
dt ≤ Cϕ(x, r)r

n
s , (.)

where C does not depend on r.
Then the operator [b, T�] is bounded from LM{x}

p,ϕ to LM{x}
p,ϕ . Moreover,

∥
∥[b, T�]f

∥
∥

LM{x}
p,ϕ

� ‖b‖LC{x}
p,λ

‖f ‖LM{x}
p,ϕ

.

Proof The statement of Theorem . follows by Lemma . and Theorem . in the same
manner as in the proof of Theorem .. �

Corollary . Suppose that x ∈ R
n, � ∈ Ls(Sn–) with s > , is homogeneous of degree

zero. Let  < p < ∞, b ∈ LC{x}
p,λ(Rn), 

p = 
p

+ 
p

, and  ≤ λ < 
n . Let also, for s′ ≤ p, the pair

(ϕ,ϕ) satisfy the condition (.), and, for p < s, the pair (ϕ,ϕ) satisfy the condition (.).
Then the operator [b, T�] is bounded from LM{x}

p,ϕ to LM{x}
p,ϕ .

Corollary . Let T� be a linear operator satisfying condition (.) with � ∈ Ls(Sn–), s > ,
being homogeneous of degree zero and bounded on Lp(Rn). Suppose  < p < ∞ and b ∈
BMO(Rn). Let also, for s′ ≤ p, the pair (ϕ,ϕ) satisfy the condition

∫ ∞

r

(

 + ln
t
r

)
ess inft<τ<∞ ϕ(x, τ )τ

n
p

t
n
p +

dt ≤ Cϕ(x, r), (.)

and, for p < s, the pair (ϕ,ϕ) satisfy the condition

∫ ∞

r

(

 + ln
t
r

)
ess inft<τ<∞ ϕ(x, τ )τ

n
p

t
n
p – n

s +
dt ≤ Cϕ(x, r)r

n
s , (.)

where C does not depend on x and r.
Then the operator [b, T�] is bounded from Mp,ϕ to Mp,ϕ . Moreover,

∥
∥[b, T�]f

∥
∥

Mp,ϕ
� ‖b‖BMO‖f ‖Mp,ϕ

.

Corollary . Suppose that � ∈ Ls(Sn–) with s > , is homogeneous of degree zero. Let
 < p < ∞ and b ∈ BMO(Rn). Let also, for s′ ≤ p, the pair (ϕ,ϕ) satisfy the condition
(.) and, for p < s, the pair (ϕ,ϕ) satisfy the condition (.). Then the operator [b, T�] is
bounded from Mp,ϕ to Mp,ϕ .

Remark . Note that the boundedness of sublinear operators with rough kernel and its
commutator on the generalized central (local) Morrey spaces LMp,ϕ were studied in [].
Also, in the case s = ∞ Corollary . was proved in [] and Corollary . in [].
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