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Abstract
In this article we establish a sharp two-sided inequality for bounding the Wallis ratio.
Some best constants for the estimation of the Wallis ratio are obtained. An asymptotic
formula for the Wallis ratio is also presented.
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1 Introduction and main results
For n ∈N (the set of all positive integers), the double factorial n!! is defined by

n!! =
�(n–)/�∏

i=

(n – i), ()

where in () the floor function �t� denotes the largest integer less than or equal to t. For
our own convenience, in what follows, we denote the ratio of two neighboring double
factorials by

Wn =
(n – )!!

(n)!!
, ()

which is called the Wallis ratio in the literature.
The Wallis ratio Wn can be represented as follows (see [, p.]):

Wn =
(n)!

n(n!) =


n

(
n
n

)
=

�(n + 
 )√

π�(n + )
, ()

where in () �(x) is the classical Euler’s gamma function defined for x >  by

�(x) =
∫ ∞


tx–e–t dt. ()

In [] the author proved, for all n ∈ N,

[
nπ

(
 +


n – 

 + 
n+ 

n

)]–/

< Wn <
[

nπ

(
 +


n – 

 + 
n

)]–/

. ()
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In [], the following result was established:
For n ∈N and ε ∈ (, 

 ),

[
nπ

(
 +


n – 



)]–/

< Wn <
[

nπ

(
 +


n – 

 + ε

)]–/

. ()

The right-hand inequality in () holds for n > n∗, where n∗ is the maximal root on

εn + εn + εn – n + ε –  = .

We also note that in [] the authors proved the result below.
For all n ∈ N

√
π


√

n + π
 – 

≤ (n)!!
(n + )!!

<
√

π


√

n + 


, ()

which is equivalent to the following:


√

n + 


(n + )
√

π
< Wn ≤


√

n + π
 – 

(n + )
√

π
. ()

In this article we shall establish a sharp two-sided inequality for bounding the Wallis
ratio in the form

CPn < Wn < CPn, ()

where in () the constants C >  and C >  are best possible. This means that the constant
C in () cannot be replaced by a number which is greater than C and the constant C in
() cannot be replaced by a number which is less than C. An asymptotic formula for the
Wallis ratio is also given.

Our main result may be stated as the following theorem.

Theorem  For all n ≥ ,

(



)/(
 –


n

)n+ 

(

n –



)– 
 ≤ Wn <

√
e
π

(
 –


n

)n+ 

(

n –



)– 


. ()

The constants ( 
 )/ and

√
e
π

in () are best possible. Furthermore, the asymptotic formula

Wn ∼
√

e
π

(
 –


n

)n+ 

(

n –



)– 


, n → ∞, ()

is valid.

2 Proof of main result
We are now in a position to prove our main result stated in Theorem .
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Proof of Theorem  Define

f (x) :=
xx+/

ex�(x + )
. ()

Taking the logarithm of f (x) and then differentiating yield

ln f (x) =
(

x –



)
ln x – x – ln�(x), ()

[
ln f (x)

]′ = ln x –


x
– ψ(x). ()

In ()

ψ(x) :=
�′(x)
�(x)

.

It is well known that (see [, p.])

ψ(x) = ln x –


x
– 

∫ ∞



t dt
(t + x)(eπ t – )

, x > . ()

From () and () we get

[
ln f (x)

]′ = 
∫ ∞



t dt
(t + x)(eπ t – )

, x > . ()

Hence,

[
ln f (x)

]′ > , x ∈ (,∞),

which means that ln f (x), and thus f (x), is strictly increasing on (,∞).
It is easy to see that

lim
x→+

f (x) = .

Since (see [, p.])

ln�(x) =
(

x –



)
ln x – x + ln

√
π + O

(

x

)
, as x → ∞, ()

from () and (), we have

ln f (x) = – ln
√

π + O
(


x

)
, as x → ∞, ()

which implies

lim
x→∞ f (x) =

√
π

. ()
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Since the function f (x) is strictly increasing from (,∞) onto (, √
π

) and

�(n + ) = n!, ()

we obtain


√


e = f () ≤ f (n) =

nn+/

enn!
<

√
π

, n ≥ , ()

and

lim
n→∞

nn+/

enn!
=

√
π

. ()

The lower and upper bounds in () are best possible.
Also we define

h(x) :=
ex√x – �(x + )

xx+ . ()

Since the function h(x) is strictly increasing from (,∞) onto (,
√

π ) (see [, Theo-
rem .]) and in view of (), we obtain

√
π

(
e


)/

= h
(




)
≤ h

(
n –




)
<

√
π , n ≥ , ()

and

lim
n→∞ h

(
n –




)
=

√
π . ()

It is well known that [, p.] for all n ∈N,

�

(
n +




)
= n!

√
πWn. ()

By using (), after some algebra, () and () can be rewritten, respectively, as

e


√


≤

enn!
√

n – 
 Wn

(n – 
 )n+/

<
√

e, n ≥ , ()

and

lim
n→∞

enn!
√

n – 
 Wn

(n – 
 )n+/

=
√

e. ()

The constants e


√

 and
√

e in () are best possible.
Combining () and () yields

(



)/

≤
nn+/

√
n – 

 Wn

(n – 
 )n+/

<
√

e
π

, n ≥ . ()
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The constants ( 
 )/ and

√
e
π

in () are best possible. From () the inequality () fol-
lows.

Combining () and () gives

lim
n→∞

nn+/
√

n – 
 Wn

(n – 
 )n+/

=
√

e
π

, ()

which is equivalent to the asymptotic formula (). The proof of Theorem  is thus com-
pleted. �

Remark  Some related functions associated with f (x), defined by (), were proved [–
] to be logarithmically completely monotonic.
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