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Abstract
In this paper, we prove that the fixed point results in the context of complex-valued
metric spaces can be obtained as a consequence of corresponding existing results in
the literature in the setting of associative metric spaces. In particular, we deduce that
any complex metric space is a special case of cone metric spaces with a normal cone.
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1 Introduction and preliminaries
The notion of complex-valued metric spaces was introduced by Azam et al. [], as a gener-
alization of metric spaces to investigate the existence and uniqueness of fixed point results
for mappings satisfying a rational inequalities. Following this paper, a number of authors
have reported several fixed point results for various mapping satisfying a rational inequal-
ities in the context of complex-valued metric spaces; see e.g. [–] and the related refer-
ences therein.

The aim of this short note is to emphasize that the complex-valued metric space is an
example of the cone metric space that was introduced in [–] under the name K-metric
and K-normed spaces and re-introduced by Huang and Zhang []. It is well known that if
the cone is normal then the corresponding cone metric associates a metric. There are some
other approaches to induce a metric from cone metric; see e.g. [–]. As a consequence of
these observations, we notice that fixed point results in the context of complete complex-
valued metric spaces can be deduced the corresponding fixed point results on (associative)
complete metric space. Based on the discussion above, for our purpose, we first prove the
existence of common fixed point theorems for multi-valued mapping in the context of
complete metric space. Then we derive the main results of the recent paper of Ahmad et
al. [] as corollaries of our results.

For the sake of completeness we recollect some basic definitions and fundamentals re-
sults on the topic in the literature. We mainly follow the notions and notations of Azam
et al. in [].

Let C be the set of complex numbers and z, z ∈ C. Define a partial order � on C as
follows:

z � z if and only if Re(z) ≤ Re(z), Im(z) ≤ Im(z).
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It follows that

z � z

if one of the following conditions is satisfied:

(h) Re(z) = Re(z); Im(z) < Im(z),
(h) Re(z) < Re(z); Im(z) = Im(z),
(h) Re(z) < Re(z); Im(z) < Im(z),
(h) Re(z) = Re(z); Im(z) = Im(z).

In particular, we shall write z � z if z �= z and one of (h), (h), and (h) is satisfied.
Further we write z ≺ z if only (h) is satisfied. Note that

 � z � z �⇒ |z| < |z|,

where | · | represents the modulus or magnitude of z, and

z � z, z ≺ z �⇒ z ≺ z.

Definition  [] Let X be a nonempty set. A function d : X × X →C is called a complex-
valued metric on X, if it satisfies the following conditions:

(b)  � d(x, y) for all x, y ∈ X and d(x, y) = , if and only if x = y,
(b) d(x, y) = d(y, x), for all x, y ∈ X ,
(b) d(x, y) � d(x, z) + d(y, z), for all x, y, z ∈ X .

Furthermore, the pair (X, d) is called a complex-valued metric space.

Let {xn} be a sequence in X and x ∈ X. If for every c ∈C, with  ≺ c there is n ∈N such
that for all n > n, d(xn, x) ≺ c, then {xn} is said to be convergent, {xn} converges to x and x
is the limit point of {xn}. We denote this by limn xn = x, or xn → x, as n → ∞. If for every
c ∈ C with  ≺ c there is n ∈ N such that for all n > n, d(xn, xn+m) ≺ c, then {xn} is called
a Cauchy sequence in (X, d). If every Cauchy sequence is convergent in (X, d), then (X, d)
is called a complete complex-valued metric space.

Lemma  [, Lemma , Azam et al.] Let (X, d) be a complex-valued metric space and let
{xn} be a sequence in X. Then {xn} converges to x if and only if |d(xn, x)| →  as n → ∞.

Lemma  [, Lemma , Azam et al.] Let (X, d) be a complex-valued metric space and let
{xn} be a sequence in X. Then {xn} is a Cauchy sequence if and only if |d(xn, xn+m)| →  as
n → ∞.

Let E be a real Banach space. A subset P of E is called a cone, if the followings hold:

(a) P is closed, nonempty, and P �= {},
(a) a, b ∈R, a, b ≥ , and x, y ∈ P imply that ax + by ∈ P,
(a) x ∈ P and –x ∈ P imply that x = .
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Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y, if y – x ∈ P.
We write x < y to indicate that x ≤ y but x �= y, while x � y stands for y – x ∈ int P, where
int P denotes the interior of P.

The cone P is called normal, if there exist a number K ≥  such that  ≤ x ≤ y implies
‖x‖ ≤ K‖y‖, for all x, y ∈ E. The least positive number satisfying this, called the normal
constant [, ].

In this paper, E denotes a real Banach space, P denotes a cone in E with int P �= ∅, and ≤
denotes a partial ordering with respect to P. For more details on the cone metric, we refer
e.g. to [, , ].

Definition  [] Let X be a nonempty set. A function d : X × X → E is called a cone
metric on X, if it satisfies the following conditions:

(b) d(x, y) ≥  for all x, y ∈ X and d(x, y) = , if and only if x = y,
(b) d(x, y) = d(y, x), for all x, y ∈ X ,
(b) d(x, y) ≤ d(x, z) + d(y, z), for all x, y, z ∈ X .

Then (X, d) is called a cone metric space.

The following definitions and lemmas have been taken from [, ].

Definition  Let (X, d) be a cone metric space and {xn}n∈N be a sequence in X and x ∈ X.
If for all c ∈ E with  � c, there is n ∈ N such that for all n > n, d(xn, x) � c, then {xn}n∈N
is said to be convergent and {xn}n∈N converges to x and x is the limit of {xn}n∈N.

Definition  Let (X, d) be a cone metric space and {xn}n∈N be a sequence in X. If for all
c ∈ E with  � c, there is n ∈ N such that for all m, n > n, d(xn, xm) � c, then {xn}n∈N is
called a Cauchy sequence in X.

Definition  Let (X, d) be a cone metric space. If every Cauchy sequence is convergent
in X, then X is called a complete cone metric space.

Definition  Let (X, d) be a cone metric space. A self-map T on X is said to be continuous,
if limn→∞ xn = x implies limn→∞ T(xn) = T(x) for all sequences {xn}n∈N in X.

Lemma  Let (X, d) be a normal cone metric space and P be a cone. Let {xn}n∈N be a
sequence in X. Then {xn}n∈N converges to x, if and only if

lim
n→∞ d(xn, x) = . (.)

Lemma  Let (X, d) be a normal cone metric space and {xn}n∈N be a sequence in X. If
{xn}n∈N is convergent, then it is a Cauchy sequence.

Lemma  Let (X, d) be a cone metric space and P be a cone in E. Let {xn}n∈N be a sequence
in X. Then {xn}n∈N is a Cauchy sequence, if and only if limm,n→∞ d(xm, xn) = .



Al-Mezel et al. Journal of Inequalities and Applications  (2015) 2015:33 Page 4 of 11

2 Main result
In this section, we represent our main results. First of all, we represent some simple ob-
servations. Let (X, dC) be a complex-valued metric space. Now, we define the following
set:

PC = {x + iy : x ≥ , y ≥ }.

It is apparent that PC ⊂C. Note that (C, | · |) is a real Banach space.

Lemma  PC is a normal cone in a real Banach space (C, | · |).

Proof Precisely, PC is nonempty, closed and PC �= (C). Also for all α,β ∈R
+ and p, q ∈PC

we have αp + βq ∈PC and PC ∩ (–PC) = (C). Also the normality of PC is apparent. �

Lemma  Any complex-valued metric space (X, dC) is a cone metric space.

Proof For all p, q ∈C define

p � q if and only if q – p ∈PC.

� defines a partial ordered on C and one can easily verify that (X, dC) is a cone metric
space with respect to �. �

Lemma  The partial ordered � defined in Lemma  is equivalent to �.

Proof Assume p = p + ip and q = q + iq. p � q, if and only if q – p ∈ PC, if and only
if q – p ≥ , q – p ≥ . In other words, Re(p) ≤ Re(q), Im(p) ≤ Im(q), if and only if
p � q. �

Lemma  A sequence {xn} in (X, dC) is convergent according to the concept of complex-
valued metric space if and only if {xn} is convergent according to the concept of a cone metric
space.

Proof Let {xn} be sequence in X. Sequence {xn} converges to x ∈ X according to the con-
cept of complex-valued metric space if and only if |d(xn, x)| →  as n → ∞ if and only if
{xn} converges to x according to the concept of a cone metric space by considering C as
the Banach space endowed with the cone PC (see Lemma ). �

Finally, we recall some fundamental definition for multi-valued mappings and related
metric spaces. Let (X, d) be a metric space. LetP(X) = {Y | Y ⊂ X} and P(X) := {Y ∈P(X) |
Y �= ∅}. Let us define the gap functional D : P(X) × P(X) →R+ ∪ {+∞}, as

D(A, B) = inf
{

d(a, b) | a ∈ A, b ∈ B
}

.

In particular, if x ∈ X, then D(x, B) := D({x}, B).
We denote by C(X) the family of all nonempty closed subsets of X and CB(X) the family

of all nonempty closed and bounded subsets of X. A functionH : CB(X)×CB(X) → [,∞)
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defined by

H(A, B) = max
{

sup
x∈B

D(x, A), sup
x∈A

D(x, B)
}

is said to be the Hausdorff metric on CB(X) induced by the metric d on X where D(x, A) =
inf{d(x, y) : y ∈ A} for each A ∈ CB(X). A point v in X is a fixed point of a map T if v = Tv
(when T : X → X is a single-valued map) or v ∈ Tv (when T : X →P(X) is a multi-valued
map). We say that T has an endpoint if there exists v ∈ X such that Tv = {v}. The set of fixed
points of T is denoted by F (T) and the set of common fixed points of two multi-valued
mappings T , S is denoted by F (T , S).

Definition  For two multi-valued mappings T , S : X → CB(X), we say that T , S satisfy
the common approximate endpoint property if there exists a sequence {xn} ⊂ X such that

lim
n→∞H

({xn}, Txn
)

= lim
n→∞H

({xn}, Sxn
)

= .

Definition  For two mappings T , S : X → X, we say that T , S have a common approxi-
mate fixed point if there exists a sequence {xn} ⊂ X such that

lim
n→∞ d(xn, Txn) = lim

n→∞ d(xn, Sxn) = .

Throughout the paper, we assume that {a, b, c, d, e} ⊂ [, ).
The following is the fundamental theorem of this paper.

Theorem  Let (X, d) be a complete metric space and let T , S : X → CB(X) be two multi-
valued functions such that for each x, y ∈ X,

H(Tx, Sy) ≤ ad(x, y) + bD(x, Sx)D(y, Ty)

+ c
√

D(y, Sx)D(x, Ty) + dD(x, Sx)D(x, Ty)

+ eD(y, Sx)D(y, Ty),

where a + b + c + d + e < . Then T , S have a unique endpoint, if and only if they satisfy
the common approximate endpoint property.

Proof If T , S have a unique endpoint then they precisely satisfy the common approxi-
mate endpoint property. Conversely, suppose that T , S satisfy the common approximate
endpoint property, then there exists a sequence {xn} such that limn→∞ H({xn}, Txn) =
limn→∞ H({xn}, Sxn) = . We claim that {xn} is a Cauchy sequence. For convenience sup-
pose that αn = H({xn}, Txn) and βn = H({xn}, Sxn); we have

d(xn, xm) ≤ αn + βm + H(Txn, Sxm)

≤ αn + βm + ad(xn, xm) + bD(xn, Sxn)D(xm, Txm)

+ c
√

D(xm, Sxn)D(xn, Txm) + dD(xn, Sxn)D(xn, Txm)

+ eD(xm, Sxn)D(xm, Txm)
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≤ αn + βm + ad(xn, xm) + bβnαm + c
√(

d(xn, xm) + βn
)(

d(xn, xm) + αm
)

+ d
(
βn

(
d(xn, xm) + αm

))
+ e

(
αm

(
d(xn, xm) + βn

))

≤ αn + βm + ad(xn, xm) + c
(d(xn, xm) + βn) + (d(xn, xm) + αm)


+ dβnd(xn, xm) + dβnαm + eαmd(xn, xm) + eαmβn.

It means that

d(xn, xm)( – a – c – dβn – eαm) ≤ αn + βm + (d + b)βnαm + eαmβn +
c


(βn + αm).

In other words,

d(xn, xm) ≤ αn + βm + (d + b)βnαm + eαmβn + c
 (βn + αm)

 – a – c – dβn – eαm
.

Since a + c <  we have d(xn, xm) →  as n, m → ∞. Thus, {xn} is a Cauchy sequence. Since
(X, d) is complete metric space, it converges to some z ∈ X. Also we have

H(z, Tz) ≤ d(z, xn) + βn + H(Tz, Sxn)

≤ d(z, xn) + βn + ad(xn, z) + bD(z, Sz)D(xn, Txn)

+ c
√

D(xn, Sz)D(z, Txn) + dD(z, Sz)D(z, Txn) + eD(xn, Sz)D(xn, Txn)

≤ d(z, xn) + βn + ad(xn, z) + bαnD(z, Sz)

+ c
√

D(xn, Sz)
(
d(xn, z) + αn

)
+ dD(z, Sz)

(
d(z, xn) + αn

)

+ eD(xn, Sz)αn. (.)

By taking the limit on both sides of (.) we have H({z}, Tz) =  and so Tz = {z}. By a similar
argument we deduce that Sz = {z}. �

Theorem  Let (X, d) be a complete metric space and let T , S : X → CB(X) be two multi-
valued functions such that for each x, y ∈ X,

H(Tx, Sy) ≤ ad(x, y) + b
D(x, Sx)D(y, Ty)

 + d(x, y)

+ c
√

D(y, Sx)D(x, Ty)
 + d(x, y)

+ d
D(x, Sx)D(x, Ty)

 + d(x, y)
+ e

D(y, Sx)D(y, Ty)
 + d(x, y)

,

where a + b + c + d + e < . Then T , S have a unique endpoint, if and only if they satisfy
the common approximate endpoint property.

Proof By Theorem  since

H(Tx, Sy) ≤ ad(x, y) + b
D(x, Sx)D(y, Ty)

 + d(x, y)

+ c
√

D(y, Sx)D(x, Ty)
 + d(x, y)

+ d
D(x, Sx)D(x, Ty)

 + d(x, y)
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+ e
D(y, Sx)D(y, Ty)

 + d(x, y)
≤ ad(x, y) + bD(x, Sx)D(y, Ty)

+ c
√

D(y, Sx)D(x, Ty) + dD(x, Sx)D(x, Ty)

+ eD(y, Sx)D(y, Ty),

we conclude the desired result. �

Theorem  Let (X, d) be a complete metric space and let f , g : X → X be two multi-valued
functions such that for each x, y ∈ X,

d(fy, gx) ≤ ad(x, y) + bd(x, gx)d(y, fy)

+ cd(y, gx)d(x, fy) + dd(x, gx)d(x, fy)

+ ed(y, gx)d(y, fy),

where a + b + c + d + e < . Then f , g have a common fixed point.

Proof Let x ∈ X be arbitrary and let xn– = fxn– and xn = gxn–. We have

d(xn+, xn) = d(fxn, gxn–)

≤ ad(xn, xn–) + bd(xn–, gxn–)d(xn, fxn)

+ cd(xn, gxn–)d(xn–, fxn) + dd(xn–, gxn–)d(xn–, fxn)

+ ed(xn, gxn–)d(xn, fxn)

= ad(xn, xn–) + bd(xn–, xn)d(xn, xn+)

+ cd(xn, xn)d(xn–, xn+) + dd(xn–, xn)d(xn–, xn+)

+ ed(xn, xn)d(xn, xn+)

= ad(xn, xn–) + bd(xn–, xn)d(xn, xn+)

+ dd(xn–, xn)d(xn–, xn+)

≤ ad(xn, xn–) + bd(xn, xn+)

+ dd(xn–, xn)
(
d(xn–, xn) + d(xn, xn+)

)

≤ ad(xn, xn–) + bd(xn, xn+) + d
(
d(xn–, xn) + d(xn, xn+)

)
.

It means that

d(xn+, xn) ≤ a + d
 – b – d

d(xn–, xn).

Also

d(xn–, xn) = d(fxn–, gxn–)

≤ ad(xn–, xn–) + bd(xn–, gxn–)d(xn–, fxn–)
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+ cd(xn–, gxn–)d(xn–, fxn–) + dd(xn–, gxn–)d(xn–, fxn–)

+ ed(xn–, gxn–)d(xn–, fxn–)

= ad(xn–, xn–) + bd(xn–, xn)d(xn–, xn–)

+ cd(xn–, xn)d(xn–, xn–) + dd(xn–, xn)d(xn–, xn–)

+ ed(xn–, xn)d(xn–, xn–)

= ad(xn–, xn–) + bd(xn–, xn)d(xn–, xn–)

+ ed(xn–, xn)d(xn–, xn–)

≤ ad(xn–, xn–) + bd(xn–, xn)

+ e
(
d(xn–, xn–) + d(xn–, xn)

)
d(xn–, xn–)

≤ ad(xn–, xn–) + bd(xn–, xn) + e
(
d(xn–, xn–) + d(xn–, xn)

)
.

It means that

d(xn–, xn) ≤ a + e
 – b – e

d(xn–, xn–).

Now taking λ = max{ a+d
–b–d , a+e

–a–e } <  we conclude that for each n ∈N

d(xn+, xn) ≤ λd(xn, xn–).

By a standard technique, one can show that {xn} is Cauchy. Since (X, d) is a complete metric
space, there exists u ∈ X such that xn → u.

We claim that fu = u. By the triangle inequality, we have

d(u, fu) ≤ d(u, gxn–) + d(gxn–, fu)

≤ d(u, gxn–) + ad(xn–, u) + bd(xn–, gxn–)d(u, fu)

+ cd(u, gxn–)d(xn–, fu) + dd(xn–, gxn–)d(xn–, fu)

+ ed(u, gxn–)d(u, fu).

Letting n → ∞ in the inequality above, we get

d(u, fu) ≤  and hence we find fu = u.

Analogously, we derive that gu = u. Hence, we conclude that u is the common fixed point
of f and g . �

Corollary  Let (X, d) be a complete metric space and let f , g : X → X be two multi-
valued functions such that for each x, y ∈ X,

d(fy, gx) ≤ ad(x, y) + bd(x, gx)d(y, fy)

+ dd(x, gx)d(x, fy) + ed(y, gx)d(y, fy),

where a + b + d + e < . Then f , g have a unique common fixed point.
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Proof By following the lines in the proof of Theorem  we get that f and g have a common
fixed point, say u ∈ X. We shall show that u is the unique common fixed point of f and g .
Suppose, on the contrary, that u and v are distinct common fixed points of f and g . Hence,
we have

d(u, v) = d(fu, gv) ≤ ad(v, u) + bd(v, gv)d(u, fu)

+ dd(v, gv)d(v, fu) + ed(u, gv)d(u, fu)

≤ ad(v, u) + bd(v, v)d(u, u)

+ dd(v, v)d(v, u) + ed(u, v)d(u, u),

which implies that

d(u, v) ≤ ad(v, u).

Since a < , d(u, v) = , which is a contradiction. Hence, u is the unique common fixed
point of f and g . �

Theorem  Let (X, d) be a complex-valued metric space and let f , g : X → X be two func-
tions and a, b, c, d, e be such that a + b + c + d + e < . Let

d(fy, gx) � ad(x, y) + bd(x, gx)d(y, fy)

+ cd(y, gx)d(x, fy) + dd(x, gx)d(x, fy)

+ ed(y, gx)d(y, fy)

for all x, y ∈ X. Then f , g have a unique common fixed point.

Proof Taking ρ(x, y) = |d(x, y)|, (X,ρ) is a complete metric space and applying Theorem 
we conclude that f and g have a common fixed point. As in the proof of Corollary ,
uniqueness of the common fixed point of f and g can be derived easily by reductio ad
absurdum. �

The following results, the main results of Ahmad et al. [], can be considered as a con-
sequence of Theorem .

Theorem  Let (X, d) be a complex-valued metric space and let f , g : X → X be two func-
tions and a, b, c, d, e be such that a + b + c + d + e < . Let

d(fy, gx) � ad(x, y) + b
d(x, gx)d(y, fy)

 + d(x, y)

+ c
d(y, gx)d(x, fy)

 + d(x, y)
+ d

d(x, gx)d(x, fy)
 + d(x, y)

+ e
d(y, gx)d(y, fy)

 + d(x, y)

for all x, y ∈ X. Then f , g have a unique common fixed point.
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Proof We have a + b + c + d + e < a + b + c + d + e <  and

d(fy, gx) � ad(x, y) + b
d(x, gx)d(y, fy)

 + d(x, y)

+ c
d(y, gx)d(x, fy)

 + d(x, y)
+ d

d(x, gx)d(x, fy)
 + d(x, y)

+ e
d(y, gx)d(y, fy)

 + d(x, y)

� ad(x, y) + bd(x, gx)d(y, fy)

+ cd(y, gx)d(x, fy) + dd(x, gx)d(x, fy)

+ ed(y, gx)d(y, fy).

By Theorem  we conclude that f and g have a common fixed point. Uniqueness can be
derived easily verbatim as in the proof of Corollary . �

Remark  By Theorem , one can derive the other results in [] but we prefer not to
list these here.

In what follows we state a theorem that is just a variation of Theorem .

Corollary  Let (X, d) be a complete metric space and let f , g : X → X be two multi-
valued functions such that for each x, y ∈ X,

d(fy, gx) ≤ ad(x, y) + bd(x, gx)d(y, fy)

+ c
√

d(y, gx)d(x, fy) + dd(x, gx)d(x, fy)

+ ed(y, gx)d(y, fy),

where a + b + c + d + e < . Then f , g have a unique common fixed point.

Proof By following the lines in the proof of Theorem , one can easily observe that

lim
n→∞ d(xn, fxn) = lim

n→∞ d(xn, gxn) = .

Therefore, f , g have a common approximate fixed point. Thus taking Tx = {fx} and Sx =
{gx} in Theorem  we conclude that T , S satisfy the common approximate endpoint prop-
erty and so f , g have a unique common fixed point. �
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