
Upadhyay and Kumar Journal of Inequalities and Applications  (2015) 2015:31 
DOI 10.1186/s13660-014-0544-9

R E S E A R C H Open Access

Characterization of W p-type of spaces
involving fractional Fourier transform
Santosh Kumar Upadhyay1,2* and Anuj Kumar1

*Correspondence:
sk_upadhyay2001@yahoo.com
1DST-Centre for Interdisciplinary
Mathematical Sciences, Banaras
Hindu University, Varanasi, 221005,
India
2Department of Mathematical
Sciences, Indian Institute of
Technology (BHU), Varanasi, 221005,
India

Abstract
The characterizations ofWp-type of spaces and mapping relations betweenW- and
Wp-type of spaces are discussed by using the fractional Fourier transform. The
uniqueness of the Cauchy problems is also investigated by using the same transform.
MSC: 46F12; 46E15

Keywords: fractional Fourier transform; convex functions; Gel’fand and Shilov
spaces of typeW ; Lp-space

1 Introduction
The spaces of W -type were studied by Gurevich [], Gel’fand and Shilov [] and Friedman
[]. They investigated the behavior of the Fourier transformation on W -type spaces. The
spaces of W -types are applied to the theory of partial differential equations. Pathak and
Upadhyay [] investigated the spaces W p

M , W p
M,a, W �,b,p, W �,p, W �,p

M , W �,b,p
M,a in terms of Lp

norms. Here M, � are certain continuous increasing convex functions and a, b are positive
constants and p ≥ . It was shown that the Fourier transformation F is to be a continuous
linear mapping as follows: F : W p

M,a → W �, 
a ,r , F : W �,b,p → W r

M, 
b

, F : W �,b,p
M,a → W �, 

a ,r
M, 

a
.

Using the theory of the Hankel transform, Betancor and Rodriguez-Mesa [] gave a new
characterization of the space of Wep

μ-type and established the results Wep
M,a = WeM,a,

Wep,�,b = We�,b, Wep,�,b
M,a = We�,b

M,a. Upadhyay [] established the results of the following
types: W p

M,a = WM,a, W p,�,b = W �,b, W p,�,b
M,a = W �,b

M,a by exploiting the theory of Fourier
transformations. Motivated by the work of Pathak and Upadhyay [] and Upadhyay []
we shall extend a similar type of results in n dimensions by using the theory of the frac-
tional Fourier transformations. Let Rn be the usual Euclidean space given by

R
n =

{
(x, . . . , xn): xj’s are real numbers

}
.

Assume x = (x, . . . , xn) and y = (y, . . . , yn). Then the inner product of x and y is defined by

〈x, y〉 = x · y =
n∑

j=

xj · yj (.)

and the norm of x is defined by

|x| =

( n∑

j=

x
j

) 


=
(
x

 + · · · + x
n
) 

 . (.)
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The Lp norm of a function f in Lp(Rn),  ≤ p ≤ ∞, is denoted by ‖f ‖p and defined as

‖f ‖p =
(∫

Rn

∣∣f (x)
∣∣p dx

) 
p

. (.)

The n-dimensional fractional Fourier transform (FrFT) with parameter α of f (x) on x ∈R
n

is denoted by (Fαf )(ξ ) [, ] and defined as

f̂α(ξ ) = (Fαf )(ξ ) =
∫

Rn
Kα(x, ξ )f (x) dx, ξ ∈R

n, (.)

where

Kα(x, ξ ) =

⎧
⎨

⎩

Cαe
i(|x|+|ξ |) cotα

 –i〈x,ξ 〉 cscα if α 
= nπ ,


(π )
n


e–i〈x,ξ 〉 if α = π
 ,

∀n ∈ Z

and

Cα = (π i sinα)
–n
 e

inα
 =


[π ( – e–iα)] n


. (.)

The corresponding inversion formula is given by

f (x) =


(π ) n


∫

Rn
Kα(x, ξ )f̂α(ξ ) dξ , x ∈ R

n, (.)

where the kernel

Kα(x, ξ ) = Cαe– i(|x|+|ξ |) cotα
 +i〈x,ξ 〉 cscα ,

and Cα is defined by (.).
Now from the technique of [, p.], (.) can be written as

Fα

[
f (x)

]
(ξ ) = Cαe

i|ξ | cotα


∫

Rn
e–i〈x,ξ 〉 cscα

[
f (x)e

i|x|cotα


]
dx

= (π )
n
 Cαe

i|ξ | cotα


[
f (x)e

i|x| cotα


]̂
(ξ cscα). (.)

Replacing f (x) = e– i|x| cotα
 φ(x) in (.), we obtain

Fα

[
e– i|x|cotα

 φ(x)
]
(ξ ) = (π )

n
 Cαe

i|ξ | cotα


[
φ(x)

]̂
(ξ cscα). (.)

Now substituting ξ = w sinα, where w ∈ R
n in (.), we obtain

Fα

[
e– i|x| cotα

 φ(x)
]
(w sinα) = (π )

n
 Cαe

i|w sinα| cotα


[
φ(x)

]̂
(w). (.)

Let ψ = Fα[e– i|x| cotα
 φ(x)], then (.) can be written as

ψ(w sinα) = (π )
n
 Cαe

i|w sinα| cotα


[
φ(x)

]̂
(w). (.)
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Now we recall the definitions of W - and W p-type of spaces from [–], which are given
below. Let μj and wj, j = , . . . , n, be continuous and increasing functions on [,∞) with
μj() = wj() =  and μj(∞) = wj(∞) = ∞.

We define

Mj(xj) =
∫ xj


μj(ξj) dξj (xj ≥ ), (.)

�j(yj) =
∫ yj


wj(ηj) dηj (yj ≥ ), (.)

where j = , . . . , n. The functions Mj(xj) and �j(yj) are continuous, increasing, and convex
with Mj() = �j() =  and Mj(∞) = �j(∞) = ∞, we have

Mj(–xj) = Mj(xj), Mj(xj) + Mj
(
x′

j
) ≤ Mj

(
xj + x′

j
)
, (.)

�j(–yj) = �j(yj), �j(yj) + �j
(
y′

j
) ≤ �j

(
yj + y′

j
)
. (.)

We define

μ(ξ ) =
(
μ(ξ)

)
, . . . ,

(
μn(ξn)

)
,

w(η) =
(
w(η)

)
, . . . ,

(
wn(ηn)

)
.

The space WM,a(Rn) consists of all C∞-complex valued functions φ(x) on x ∈ R
n, which

for any δ ∈R
n
+ satisfy the inequality

∣∣Dk
xφ(x)

∣∣ ≤ Ck,δ exp
[
–M

[
(a – δ)x

]]
, (.)

and the space W p
M,a(Rn) consists of all infinitely differentiable functions φ(x) on x ∈ R

n,
which for any δ ∈R

n
+ satisfy the inequality

(∫

Rn

∣∣exp
[
–M

[
(a – δ)x

]]
Dk

xφ(x)
∣∣p dx

) 
p

≤ Ck,δ,p, p ≥  (.)

for each k ∈ Z
n
+ where Dk

x = Dk
x · · ·Dkn

xn ,

exp
[
–M

[
(a – δ)x

]]
= exp

[
–M

[
(a – δ)x

]
– · · · – Mn

[
(an – δn)xn

]]

and a, . . . , an, Ck,δ,p, Ck,δ are positive constants depending on the function φ(x).
The space W �,b(Cn) consists of all entire analytic functions φ(z), where z = x + iy and

x, y ∈R
n, which for any ρ ∈R

n
+ satisfy the inequality

∣∣zkφ(z)
∣∣ ≤ Ck,ρ exp

[
�

[
(b + ρ)y

]]
, k ∈ Z

n
+, (.)

where

zk = zk
 · · · zkn

n ,
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and b, . . . , bn, Ck,ρ are positive constants depending on the function φ(x) and the space
W �,b,p consists of all entire analytic functions φ(z) such that for k ∈ Z

n
+, ρ ∈ R

n
+, there

exists a constant Ck,ρ,p >  such that

(∫

Rn

∣∣exp
[
�

[
(b + ρ)y

]]
zkφ(z)

∣∣p dx
) 

p
≤ Ck,ρ,p, (.)

where

exp
[
�

[
(b + ρ)

]
y
]

= exp
[
�

[
(b + ρ)y

]
+ · · · + �n

[
(bn + ρn)yn

]]
.

The space W �,b
M,a(Cn) consists of all entire analytic functions φ(z) such that there exist con-

stants ρ, δ ∈R
n
+ and Cδ,ρ >  such that

∣∣φ(z)
∣∣ ≤ Cδ,ρ exp

[
–M

[
(a – δ)x

]
+ �

[
(b + ρ)y

]]
, (.)

and the space W �,b,p
M,a (Cn) consists of all entire analytic functions φ(z) such that for ρ, δ ∈

R
n
+ and Cρ,δ,p > ,

(∫

Rn

∣∣exp
[
M

[
(a – δ)x

]
– �

[
(b + ρ)y

]]
φ(z)

∣∣p dx
) 

p
≤ Cρ,δ,p, (.)

where exp[M[(a –δ)x]] and exp[–�[(b +ρ)y]] have the usual meaning like (.) and (.),
and the constants Cρ,δ,p, a, b, and ρ , δ depend only on the function φ(z).

Let Mj(xj) and �j(yj) be the functions defined by (.) and (.), respectively, the
functions μj(ξj) and wj(ηj) which occur in these equations are mutually inverse, that is,
μj(wj(ηj)) = ηj and wj(μj(ξj)) = ξj, then the corresponding functions Mj(xj) and �j(yj) are
said to be the dual in the sense of Young. In this case, the Young inequality,

xjyj ≤ Mj(xj) + �j(yj), (.)

holds for any xj ≥, yj ≥ .

2 Characterization of Wp-type of spaces
In this section we study the characterization of W p-type of spaces by using the fractional
Fourier transformation.

Theorem . Let M(x) and �(y) be the pair of functions which are dual in the sense of
Young. Then

Fα

[
W p

M,a
] ⊂ W �, 

a ,r for any  ≤ p, r < ∞. (.)

Proof Let e– i|x| cotα
 φ(x) ∈ W p

M,a(Rn) and σ = w + iτ . Then for any p and r, using the tech-
nique of [, pp.-] and (.), we have

∥∥(σ sinα)kψ(σ sinα)
∥∥

r =
[∫

Rn

∣∣(σ sinα)kψ(σ sinα)
∣∣r dw

] 
r
.
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Now using the inequality |σ ||k| ≤ |σ ||k+|+|σ ||k|
|w|+ , we have

∥∥(σ sinα)kψ(σ sinα)
∥∥

r

≤
[
| sinα|r|k|

∫

Rn

( |σ ||k+| + |σ ||k|

|w| + 

)r∣∣ψ(σ sinα)
∣∣r dw

] 
r

≤
[
| sinα|r|k|

∫

Rn

( |σ ||k+|

|w| + 

)r∣∣ψ(σ sinα)
∣∣r dw

] 
r

+
[
| sinα|r|k|

∫

Rn

( |σ ||k|

|w| + 

)r∣∣ψ(σ sinα)
∣∣r dw

] 
r
.

Using (.), we get

∥∥(σ sinα)|k|ψ(σ sinα)
∥∥

r

≤ Cα,k+

[∫

Rn

dσ

(|w| + )r

(∫

Rn

∣∣exp
[〈x, τ 〉]∣∣∣∣Dk+φ(x)

∣∣dx
)r] 

r

+ Cα,k

[∫

Rn

dw
(|w| + )r

(∫

Rn

∣∣exp
[〈x, τ 〉]∣∣∣∣Dkφ(x)

∣∣dx
)r] 

r

≤
[

Cα,k+

{∫

Rn

dw
(|w| + )r

(∫

Rn

∣∣exp
[〈x, τ 〉]∣∣∣∣Dk+φ(x)

∣∣dx
)r} 

r

+ Cα,k

{∫

Rn

dw
(|w| + )r

(∫

Rn

∣∣exp
[〈x, τ 〉]∣∣∣∣Dkφ(x)

∣∣dx
)r} 

r
]

≤ Cα,k+

[∫

Rn

dw
(|w| + )r

((∫

Rn

∣∣exp
[
M

[
(a – δ)x

]]
Dk+φ(x)

∣∣p dx
) 

p

×
(∫

Rn

∣∣exp
[|x||τ | – M

[
(a – δ)x

]]∣∣p′
dx

) 
p′ )r] 

r

+ Cα,k

[∫

Rn

dw
(|w| + )r

((∫

Rn

∣∣exp
[
M

[
(a – δ)x

]]
Dkφ(x)

∣∣p dx
) 

p

×
(∫

Rn

∣∣exp
[|x||τ | – M

[
(a – δ)x

]]∣∣p′
dx

) 
p′ )r] 

r
.

Now using the Young inequality (.) and the arguments of [, p.], we get

∥∥(σ sinα)kψ(σ sinα)
∥∥

r ≤ D′
k+,ρ,α,re�[ τ

γ ] + D′
k,ρ,α,re

�[ τ
γ ].

In the above expression, we set 
γ

= ( 
a +ρ), since γ = a–δ and ρ is arbitrarily small together

with δ. Therefore, we have

∥∥(σ sinα)kψ(σ sinα)
∥∥

r ≤ Cr
k,ρ,| sinα|e

�[ τ
γ ]. �

Theorem . Let M(x) and �(y) be the pair of functions which are dual in the sense of
Young. Then

Fα

[
W �,b,p] ⊂ W r

M, 
b

for any  ≤ p, r < ∞.
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Proof Let e– i|z|cotα
 φ(z) ∈ W �,b,p(Cn) and σ = w + iτ . Then from the arguments of [, The-

orem .], we have

∣∣Dk
wψ(w sinα)

∣∣ ≤ Ck,r,η,s,ρ exp
[
–〈y, w〉 + �(b + ρ)y

]

≤ Ck,r,η,s,ρ exp
[
–yw + �

[
(b + ρ)y

]

– · · · – ynwn + �n
[
(bn + ρn)yn

]]
.

From the arguments of [, p.] we have

∣∣Dk
wψ(w sinα)

∣∣ ≤ Ck,ρ,r,η,s exp

[
–M

[(

b

– δ

)
w

]
– M

[
ρw
b

]]
.

Hence,
∥∥∥∥exp

[
M

[(

b

– δ

)
w

]]
Dk

wφ(w sinα)
∥∥∥∥

r
≤ Cr

k,ρ,r,η,s.

This implies that

ψ(w sinα) ∈ W r
M, 

b
. �

Theorem . Let M(x) and �(y) be the functions which are dual in the sense of Young
to the functions M(x) and �(y), respectively. Then

Fα

[
W �,b,p

M,a,
] ⊂ W �, 

a ,r
M, 

b
for any  ≤ p, r < ∞.

Proof Let e– i|x|cotα
 φ(x) ∈ W �,b,p

M,a (Rn) and σ = w + iτ . Then by the technique of [, pp.-
] and (.), we have

∣∣ψ(σ sinα)
∣∣ ≤ ∣∣(π i sinα)

–n
 e

inα


∣∣
∫

Rn

∣∣ei〈σ ,z〉∣∣∣∣φ(z)
∣∣dx

≤ ∣∣(π i sinα)
–n
 e

inα


∣∣
∫

Rn

∣∣e–〈w,y〉–〈τ ,x〉∣∣∣∣φ(z)
∣∣dx

≤ DCρ,δ
∣∣e–〈w,y〉∣∣

∫

Rn

∣∣e–〈τ ,x〉∣∣ exp
[
–M

[
(a – δ)x

]
+ �

[
(b + ρ)y

]]
dx

≤ Cρ,δ,αe–〈w,y〉
∫

Rn
exp

[
–M

[
(a – δ)x

]
+ �

[
(b + ρ)y

]]
exp

[|τ ||x|]dx

= Cρ,δ,α exp
[
–〈w, y〉 + �

[
(b + ρ)y

]] ∫

Rn
exp

[
–M

[
(a – δ)x

]
+ |τ ||x|]dx.

Now using the arguments of [, p.], we have

∣∣ψ(σ sinα)
∣∣ ≤ Cρ,δ,α exp

[
–M

[(

b

– δ

)
w

]
+ �

[(

a

+ ρ

)
τ

]
– M

[
ρ

w
b

]]
.

Hence,
∥∥∥∥exp

[
M

[(

b

– δ

)
w

]
– �

[(

a

+ ρ

)
τ

]]
ψ(σ sinα)

∥∥∥
∥

r
≤ C′r

α,δ,ρ . �
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3 Relation between W- and Wp-types of spaces
In this section the mapping relations between W - and W p-types of spaces are discussed.

Theorem . Let M(x), �(y) be the pair of functions which are dual in the sense of Young.
Then

W p
M,a = WM,a,  ≤ p < ∞.

Proof Now, for showing the above theorem we shall prove the following lemma. �

Lemma . Let  ≤ p < ∞. Then W p
M,a ⊂ WM,a.

Proof Let e– |x| cotα
 φ(x) ∈ W p

M,a(Rn) and σ = w + iτ . Then from the arguments of Theo-
rem ., we get

Fα

(
W p

M,a
) ⊂ W �, 

a . (.)

From the inverse property of the fractional Fourier transform, we have

W p
M,a ⊂ F–

α

(
W �, 

a
)
. (.)

Now, let φ̂α(σ ) ∈ W �, 
a . Then by the technique of [, pp.-] and (.), we have

φ(x) = Cα

∫

Rn
e– i(|x|+|σ |) cotα

 +i〈x,σ 〉 cscαφ̂α(σ ) dw.

Therefore,

φ(k)(x) = Cα

∫

Rn
Dk

x
(
e– i|x| cotα

 +i〈x,σ 〉 cscα
)
e– i|σ | cotα

 φ̂α(σ ) dw

= Cα

∫

Rn

∑

r≤k

(
k
r

)(
Dr

xe– i|x| cotα


)(
Dk–r

x ei〈x,σ 〉 cscα
)
e– i|σ | cotα

 φ̂α(σ ) dw

= Cα

∑

r≤k

(
k
r

)∫

Rn

∑

η≤r
Cη(cotα)xηe– i|x| cotα

 (iσ cscα)k–r

× ei〈x,σ 〉 cscαe– i|σ | cotα
 φ̂α(σ ) dw

= Cα

∑

r≤k

(
k
r

)∑

η≤r
Cη(cotα)

∫

Rn
e– i|x| cotα

 (iσ cscα)k–r

× (
Dη

σ ei〈x,σ 〉 cscα
)
e– i|σ | cotα

 φ̂α(σ ) dw

= Cα

∑

r≤k

(
k
r

)∑

η≤r
Cη(cotα)(i cscα)–|η|+|k–r|(–)|η|

∫

Rn
e– i|x| cotα

 ei〈x,σ 〉 cscα

× Dη
σ

(
σ k–re– i|σ | cotα

 φ̂α(σ )
)

dw

= Cα

∑

r≤k

(
k
r

)∑

η≤r
Cη(cotα)(i cscα)–|η|+|k–r|(–)|η|

∫

Rn
e– i|x| cotα

 ei〈x,σ 〉 cscα
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×
∑

β≤η

(
η

β

)(
Dη

σ e– i|σ | cotα


)(
Dη–β

σ σ k–rφ̂α(σ )
)

dw

= Cα

∑

r≤k

(
k
r

)∑

η≤r
Cη(cotα)(i cscα)–|η|+|k–r|(–)|η|

∫

Rn
e– i|x| cotα

 ei〈x,σ 〉 cscα

×
∑

β≤η

(
η

β

)(∑

λ≤η

Cλ(cotα)σλ

)
e– i|σ | cotα



×
∑

m≤η–β

(
η – β

m

)(
Dm

σ σ k–r)(Dη–β–m
σ φ̂α(σ )

)
dw.

Hence,

∣∣φ(k)(x)
∣∣ ≤ |Cα|

∑

r≤k

(
k
r

)∑

η≤r

∣∣Cη(cotα)
∣∣| cscα|–|η|+|k–r|

×
∑

β≤η

(
η

β

)
(k – r)!

(k – r – m)!
∑

λ≤β

∣∣Cλ(cotα)
∣∣

×
∑

m≤η–β

(
η – β

m

)∫

Rn

∣∣ei〈x,σ 〉 cscα
∣∣∣∣σ k–r–m+λDη–β–m

σ φ̂α(σ )
∣∣dw.

Therefore,

∣∣φ(k)(x)
∣∣ ≤ |Cα|

∑

r≤k

(
k
r

)∑

η≤r

∣∣Cη(cotα)
∣∣| cscα|–|η|+|k–r|

×
∑

β≤η

(
η

β

)
(k – r)!

(k – r – m)!
∑

λ≤β

∣∣Cλ(cotα)
∣∣

×
∑

m≤η–β

(
η – β

m

)∫

Rn
e–〈x,τ 〉 cscα

( |σ ||k–r–m+λ|+ + |σ ||k–r–m+λ|

(|w| + )

)

× ∣∣Dη–β–m
σ φ̂α(σ )

∣∣dw

≤ C′
α,k exp

[
–〈x, τ 〉 cscα + �

[(

a

+ ρ

)
τ

]]
. (.)

Now using the arguments of [, p.], we get

∣∣φ(k)(x)
∣∣ ≤ C′

α,k exp
[
–M

[
(a – δ)x cscα

]]
(.)

for arbitrarily small δ together with ρ . Hence the above expression gives

F–
α

(
W �, 

a
) ⊂ WM,a. (.)

Thus (.) and (.) imply that

W p
M,a ⊂ WM,a. (.)

�

Lemma . Let  ≤ p < ∞. Then WM,a ⊂ W p
M,a.
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Proof Let e– i|x| cotα
 φ(x) ∈ WM,a(Rn) and σ = w + iτ ∈ C

n. Then from [, Theorem .], it
follows that

Fα(WM,a) ⊂ W �, 
a . (.)

Now by the inverse property of the fractional Fourier transform we have

WM,a ⊂ F–
α

(
W �, 

a
)
. (.)

Again let φ̂α(σ ) ∈ W �, 
a . Then from (.) we have

∣∣φk(x)
∣∣ ≤ C′

α,k exp

[
–〈x, τ 〉 cscα + �

[(

a

+ ρ

)
τ

]]
. (.)

Using (.) and [, p.] we get

∣∣φk(x)
∣∣ ≤ C′

α,k exp
[
–M

[
(a – δ)x cscα

]
– M

[
aρx cscα

]]
. (.)

Therefore,

∥∥exp
[
M

[
(a – δ)x cscα

]]
φk(x)

∥∥
p ≤ C′

α,k
∥∥e–M[aρx cscα]∥∥

p. (.)

This implies that

F–
α

(
W �, 

a
) ⊂ W p

M,a. (.)

From (.) and (.) we find

WM,a ⊂ W p
M,a. (.)

Now from (.) and (.) we get the result

W p
M,a = WM,a. (.)

�

Theorem . Let M(x) and �(y) be the same functions as in Theorem .. Then

W �,b,p = W �,b,  ≤ p < ∞. (.)

Proof Let e– i|z| cotα
 φ(z) ∈ W �,b,p. Then from Theorem . it follows that

Fα

(
W �,b,p) ⊂ WM, 

a
. (.)

By the inverse property of the fractional Fourier transform, we have

W �,b,p ⊂ F–
α (WM, 

a
). (.)
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Now let φ̂α(x) ∈ WM, 
b

. Then from the technique of [, pp.-], we have

(iσ cscα)kφ(σ )

= Cα

∫

Rn
e– i(|x|+|σ |) cotα


(
Dk

xei〈x,σ 〉 cscα
)
φ̂α(x) dx

= Cα(–)|k|
∫

Rn
ei〈x,σ 〉 cscα

(
Dk

xe– i|x| cotα
 φ̂α(x)

)
e– i|σ | cotα

 dx

= Cα(–)|k|
∫

Rn
ei〈x,σ 〉 cscα

∑

r≤k

(
k
r

)(
Dr

xe– i|x| cotα


)(
Dk–r

x φ̂α(x)
)
e– i|σ | cotα

 dx

= Cα(–)|k|
∫

Rn
ei〈x,σ 〉 cscα

∑

r≤k

(
k
r

)∑

β≤r

Cβ (cotα)e– i|x| cotα
 e– i|σ | cotα


(
xβDk–r

x φ̂α(x)
)

dx.

Therefore,

∣∣(σ cscα)kφ(s)
∣∣ ≤ |Cα|

∑

r≤k

(
k
r

)∑

β≤r

∣∣Cβ (cotα)
∣∣
∫

Rn

∣∣e–〈x,τ 〉 cscα
∣∣∣∣xβDk–r

x φ̂α(x)
∣∣dx

≤ |Cα|
∑

r≤k

(
k
r

)∑

β≤r

∣∣Cβ (cotα)
∣∣
∫

Rn
e[|x||τ cscα|–M[( 

b –δ)x]] dx.

Now using the arguments of [, p.], we get

∣∣(σ cscα)kφ(σ )
∣∣ ≤ Cα,k exp

[
�

[
(b + ρ)τ cscα

]]
,

where ρ is arbitrarily small together with δ. Thus we have

F–
α (WM, 

b
) ⊂ W �,b. (.)

Therefore (.) and (.) yield

W �,b,p ⊂ W �,b. (.)

Again we take e– i|z| cotα
 φ(z) ∈ W �,b(Cn). Then from [, Theorem .], we have

Fα

(
W �,b) ⊂ WM, 

b
. (.)

By the inverse property of the fractional Fourier transform, we have

W �,b ⊂ F–
α (WM, 

b
). (.)

Furthermore, we take φ̂(x) ∈ WM, 
b

(Rn). Then from the arguments of [, pp.-], we
have

∥∥(iσ cscα)kφ(σ )
∥∥

p

=
(∫

Rn

∣∣(iσ cscα)kφ(σ )
∣∣p dw

) 
p
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=
(∫

Rn

( |iσ cscα||k|+ + |iσ cscα||k|

(|w| + )

)p∣∣φ(σ )
∣∣p dw

) 
p

≤
(∫

Rn

( |iσ cscα||k|+

(|w| + )

)p∣∣φ(σ )
∣∣p dw

) 
p

+
(∫

Rn

( |iσ cscα||k|

(|w| + )

)p∣∣φ(σ )
∣∣p dw

) 
p

≤
(∫

Rn

dw
(|w| + )p

(
Cα,k

∫

Rn

∣∣e–〈x,τ 〉 cscαφ̂α(x)
∣∣dx

)p) 
p

+
(∫

Rn

dw
(|w| + )p

(
C′

α,k

∫

Rn

∣∣e–〈x,τ 〉 cscαφ̂α(x)
∣∣dx

)p) 
p

≤ (
Cα,kCk+,δ + C′

α,kCk,δ
)(∫

Rn

dw
(|w| + )p

×
(∫

Rn

∣∣∣∣exp

[
–〈x, τ 〉 cscα – M

[(

b

– δ

)
x
]]∣∣∣∣dx

)p) 
p

≤ Cα,k,δ

(∫

Rn

∣∣∣∣exp

[
–〈x, τ 〉 cscα – M

[(

b

– δ

)
x
]]∣∣∣∣dx

)(∫

Rn

dw
(|w| + )p

) 
p

≤ Cα,k,δCp

∫

Rn

∣∣∣∣exp

[
–〈x, τ 〉 cscα – M

[(

b

– δ

)
x
]]∣∣∣∣dx. (.)

Now using the Young inequality (.) and from the arguments of [, p.], we get

∥∥(iσ cscα)kφ(σ )
∥∥

p ≤ Cα,k,δ,p exp
[
�

[
(b + ρ)τ

]]
.

This implies that

F–
α (WM, 

b
) ⊂ W �,b,p. (.)

Now (.) and (.) give

W �,b ⊂ W �,b,p. (.)

Finally, (.) and (.) give

W �,b = W �,b,p. (.)
�

Theorem . Let �(y) and M(x) be the functions which are dual in the sense of Young
to the functions M(x) and �(y), respectively. Then

W �,b,p
M,a = W �,b

M,a,  ≤ p < ∞. (.)

Proof Let e– i|x| cotα
 φ(x) ∈ W �,b,p

M,a . Then from Theorem ., it follows that

Fα

(
W �,b,p

M,a
) ⊂ W �, 

a
M, 

b
. (.)
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By the inverse property of the fractional Fourier transform we get

W �,b,p
M,a ⊂ F–

α

(
W �, 

a
M, 

b

)
. (.)

Now let φ̂α(z) ∈ W �, 
a

M, 
b

. Then from the arguments of [, p.], we get

φ(σ + iτ ) = Cα

∫

Rn
e– i(|z|+|σ |) cotα

 +i〈σ ,z〉 cscαφ̂α(z) dx.

Therefore,

∣∣φ(σ + iτ )
∣∣

≤ |Cα|
∫

Rn

∣∣exp
[
–〈w, y〉 cscα – 〈τ , x〉 cscα

]∣∣∣∣φ̂α(z)
∣∣dx

≤ CαCδ,ρ

∫

Rn

∣∣exp
[
–〈w, y〉 cscα – 〈τ , x〉 cscα

]∣∣

×
∣∣∣∣exp

[
–M

[(

b

– δ

)
x
]

+ �

[(

a

+ ρ

)
y
]]∣∣∣∣dx

≤ Cδ,ρ,α exp

[
�

[(

a

+ ρ

)
y
]

– 〈w, y〉 cscα

]

×
∫

Rn
exp

[
–M

[(

b

– δ

)
x
]

+ 〈τ , x〉 cscα

]
dx.

Now using (.), we have

∣∣φ(σ + iτ )
∣∣ ≤ C′

δ,ρ,α exp

[
–M

[
w cscα


a + ρ

]
+ �

[
τ cscα

( 
b + δ)

]]

≤ C′
δ,ρ,α exp

[
–M

[(

a

– δ

)
w cscα

]
+ �

[(

b

+ ρ

)
τ cscα

]]
,

where ρ and δ are arbitrarily small together with ρ and δ, respectively. This shows that

F–
α

(
W �,b,

M,a
) ⊂ W �,b

M,a. (.)

Thus from (.) and (.), we get

W �,b,p
M,a ⊂ W �,b

M,a. (.)

Similarly it is easy to show that

W �,b
M,a ⊂ W �,b,p

M,a . (.)

Finally, (.) and (.) imply that

W �,b,p
M,a = W �,b

M,a. (.)
�
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4 Uniqueness class of a Cauchy problem
In this section we apply the theory of the fractional Fourier transform which is discussed
in (.) and (.) to establish a uniqueness theorem for the Cauchy problem:

∂u(x, t)
∂t

= P(i�x)u(x, t), ∀(x, t) ∈R
n × [, T], (.)

u(x, ) = u(x), (.)

where

�k
x = �k

x · · ·�kn
xn (.)

=
(

∂

∂x
– ix cotα

)k

· · ·
(

∂

∂xn
– ixn cotα

)kn

(.)

is a differential operator and u(x, t) is an N ×  column vector. Here P is an N × N poly-
nomial matrix with constant coefficients of order k. A similar problem has been inves-
tigated by Gel’fand and Shilov [], and Friedman [] by exploiting the theory of Fourier
transforms. Also, Pathak [] studied the uniqueness of the Cauchy problem by using the
theory of the Hankel transform.

Theorem . The Cauchy problem (.) and (.) possesses a unique solution u(x, t) in the
space (W �, 

a–θ

M, 
b–θ

)′ for the interval  ≤ t ≤ T , T < (cp)–(d/)p , θ < a, and for any initial
function u(x) belonging to the same space, where p is the reduced order of the system (.)
and (.) with i�x replaced by i ∂

∂x and c being a constant depending on P.

Proof From the fundamental result [, p.], the Cauchy problem (.) and (.) will have
a solution in the space �′

 for  ≤ t ≤ T if there exists a solution of the adjoint problem,

∂

∂t
φ(x, t) = P̃

(
i�∗

x
)
φ(x, t), (.)

φ(x, t) = φ(x) ∈ �, (.)

in the space � for  ≤ t ≤ t, where t is any point in the interval  ≤ t ≤ T , P̃ is the
adjoint of P and �∗

x is the conjugate of �x.
Applying the fractional Fourier transform to (.) and (.), we get

d
dt

Ψα(σ , t) = P̃(σ cscα)Ψ (σ , t), (.)

Ψα(σ , t) = Ψα,(σ ), (.)

where Ψα(σ , t) = (Fαφ)(x, t). A formal solution of (.) and (.) is given by

Ψα(σ , t) = exp
[
(t – t)P̃(σ cscα)

]
Ψα,(σ ). (.)

Let us write

Q(σ cscα, t, t) = exp
[
(t – t)P̃(σ cscα)

]
, (.)
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consisting of entire analytic functions of σ where σ = w + iτ . Since p is the reduced order
of the system (.) and (.), using the inequality

|σ cscα|p ≤ p
(|w cscα|p + |τ cscα|p

)

and the arguments of [, p.] in (.) we obtain

∣∣Q(σ cscα, t, t)
∣∣ ≤ C exp

[
(p)–θp

(|w cscα|p + |τ cscα|p
)]

under the assumptions t ≤ t ≤ t + T and p+cT < (p)–θp .
If we set

M(w cscα) = |w cscα|p /p, �(τ cscα) = |τ cscα|p /p,

then

∣∣Q(σ cscα, t, t)
∣∣ ≤ C exp

[
M(θ · w cscα) + �(θ · τ cscα)

]
.

Now, let us assume that

φ(x) ∈ � = W �, 
a

M, 
b

.

Then

ψα,(σ ) = (Fαφ)(x) ∈ W �,b
M,a.

We now apply the theorem [, p.] for given a. One can always choose the time inter-
val  ≤ t ≤ T so small that the inequality θ < a holds; for such values of T the matrix
Q(σ cscα, t, t) will be a multiplier in the space W �,b

M,a which maps this space into the space
W �,b+θ

M,a–θ taking T sufficiently small. Thus the Cauchy problem (.) and (.) has a unique
solution in W �,b+θ

M,a–θ . Also we can show that

F–
α

[
W �,b+θ

M,a–θ

]
= � = W �, 

a–θ

M, 
b+θ

,

and the Cauchy problem (.) and (.) has a unique solution in W �, 
a–θ

M, 
b+θ

.
Now using the arguments of [, Theorem , p.], we get the complete proof. �
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