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1 Introduction

The spaces of W-type were studied by Gurevich [1], Gel'fand and Shilov [2] and Friedman
[3]. They investigated the behavior of the Fourier transformation on W-type spaces. The
spaces of W-types are applied to the theory of partial differential equations. Pathak and
Upadhyay [4] investigated the spaces W4, Wy, ,, Wbr, Wer, Wﬁ’p , Wﬁjz’p in terms of L?
norms. Here M, 2 are certain continuous increasing convex functions and a, b are positive
constants and p > 1. It was shown that the Fourier transformation F is to be a continuous
linear mapping as follows: F: Wy | — War, F o Wbr Wy 1 Fr Wit — WZ?
Using the theory of the Hankel transform, Betancor and Rodriguez-Mesa [5] gave a new
characterization of the space of Wel,-type and established the results Weﬁ,[ .= Weura
Wer b = Westb, Weﬁ,f:b = Wef\z,[’fl. Upadhyay [6] established the results of the following
types: WII\J/I,a = Wiga, WP = Wb, Wﬁi’b = Wﬁjz by exploiting the theory of Fourier
transformations. Motivated by the work of Pathak and Upadhyay [4] and Upadhyay [6]
we shall extend a similar type of results in # dimensions by using the theory of the frac-
tional Fourier transformations. Let R” be the usual Euclidean space given by

R" = {(xl,...,x,,): x;’s are real numbers}.

Assume x = (x1,...,%,) and ¥ = (y1,...,¥,). Then the inner product of x and y is defined by
(k) =x-y=) x- (11)
j=1
and the norm of x is defined by

1
n 2
x| = (lez) = (xF + -~~+xi)%. (1.2)
j=1
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The L? norm of a function f in L*(R"), 1 < p < oo, is denoted by ||f||, and defined as

Il = ( /R n lf(x)l”dx);. 13)

The n-dimensional fractional Fourier transform (FrFT) with parameter « of f(x) on x € R”
is denoted by (F,f)(&) [7, 8] and defined as

O =N - [ Kneyedn ecr, 19)

where

(2 2y
C e T ity eseaf #nr,
Ko, ) = Vnez

e HwE) ifa=1Z,

<2n)%

and

1
- et -

in

o

Cy = (2nisina)%ne

The corresponding inversion formula is given by

s / K wiu&)ds, xR, L6)

n
2

where the kernel

a2 2
i(lx| +\£2\ ) cotar +i(xE)

K, (x,&) = Cpe™ esea
and C, is defined by (1.5).
Now from the technique of [9, p.2], (1.1) can be written as

llx\ cota
]

F [f(x)](é) _ C el\é\zcota An —i(x,E) csca[f(x)e dx

L\E\ ilx)2 cotar 2

= (271)7C [f(x)e 2 ](S cscar). (1.7)

(1.3), we obtain

ilx|?
Replacing f(x) = e~ o

zlx\ cota z\E\ cota

Fole $W](E) = @m)2Coe 7 [¢(x)](ECSCOé) (1.8)

Now substituting & = wsina, where w € R” in (1.4), we obtain

i|x\2 cota ilwsinalzcotox
= — a2 [

$()](w). (1.9)

F, [e‘ (x)](w sina) = (27r)% Cye

t\x\ cola

Let = F,[e” ¢(x)], then (1.6) can be written as

L\wcmal cota [

Y(wsina) = 21)IChe” 2 |p(x )]( ). (1.10)
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Now we recall the definitions of W- and W?-type of spaces from [2—4], which are given
below. Let u; and wj, j = 1,...,#, be continuous and increasing functions on [0, c0) with

1;(0) = w;(0) = 0 and p;(00) = wj(00) = oco.

We define
M;(x)) =/0 jﬂj(éj)déj (x> 0), (1.11)
Vi
SMM=A wm)dn (5= 0), (112)

where j = 1,...,n. The functions M;(x;) and Q;(y;) are continuous, increasing, and convex
with M;(0) = ©;(0) = 0 and M;(c0) = €2;(00) = 00, we have

M,(—x/) = M]'(xj), M/(xj) + M/ (x]/) < M]’ (.?Cl' + x]’»), (1.13)
Q;(—y)) = (), Q) + Qj(y;) < Qj(yj +y;). (1.14)
We define

/'L(‘i:) = (Ml(gl))’ LR (:Uvn(gn)),
w(n) = (wi(m)), ..., (Wa(1n)).-

The space W ,(R") consists of all C*°-complex valued functions ¢(x) on x € R”, which

for any § € R” satisfy the inequality
|DEp(x)| < Cis exp[-M[(a - 8)x]], (115)

and the space W]ﬁ,a (R™) consists of all infinitely differentiable functions ¢(x) on x € R”,

which for any 6 € R” satisfy the inequality

1

exp[-M[(a - 8)x]|Dp(x)|” dx " < Cisp p=>1 (1.16)
R# i

for each k € Z where DX = D! ... Dk

exp[—M[(a — 8)x]] = exp[—Ml[(al - 81)x1] — M,,[(an - 8,,)x,,]]
and ay,...,a,, Cisp, Cks are positive constants depending on the function ¢(x).
The space W?(C”") consists of all entire analytic functions ¢(z), where z = x + iy and
x,y € R”, which for any p € R” satisfy the inequality
|Z0(2)| < Cupexp[Q[(b+p)y]], keZ], (1.17)

where

zkzzllq---zk”

n



Upadhyay and Kumar Journal of Inequalities and Applications (2015) 2015:31 Page 4 of 15

and by,...,b,, Cy, are positive constants depending on the function ¢(x) and the space
WP consists of all entire analytic functions ¢(z) such that for k € Z", p € R”, there
exists a constant Cy ,,, > 0 such that

(/n ’exp[Q[(b + p)y]]qub(z) |p dx)p < Crpps (1.18)
where

exp[R[(b+ p)]y] = exp[Qu[(br + p)y1] + -+ + Qu[(Bu + Pu)yu]]-

The space Wﬁﬁ(@”) consists of all entire analytic functions ¢(z) such that there exist con-
stants p,é € R” and C;,, > 0 such that

|¢>(z){ <G, exp[—M[(a - 8)x] + Q[(b + p)y]], (1.19)

and the space WA%Z”? (C™) consists of all entire analytic functions ¢(z) such that for p,§ €
R% and C,5, >0,

1

( /R [exp[m(a-8)x] - [+ 1o dx)p <Cpspr (1.20)

where exp[M[(a - 8)x]] and exp[-2[(b + p)y]] have the usual meaning like (1.16) and (1.18),
and the constants C,,, 4, b, and p, § depend only on the function ¢(z).

Let M;(x;) and €;(y;) be the functions defined by (1.11) and (1.12), respectively, the
functions u;(¢;) and w;(n;) which occur in these equations are mutually inverse, that is,
wi(wi(n;)) = n; and w;(u;(§)) = &, then the corresponding functions M;(x;) and ;(y;) are
said to be the dual in the sense of Young. In this case, the Young inequality,

%1y = M) + $3(37), (1.21)
holds for any x; >, y; > 0.

2 Characterization of W/P-type of spaces
In this section we study the characterization of W”-type of spaces by using the fractional

Fourier transformation.

Theorem 2.1 Let M(x) and Qy) be the pair of functions which are dual in the sense of
Young. Then

F,[Wh,] C W2a  foranyl <p,r<oo. (2.1)

i\xlz cota

Proof Lete™ 2 ¢(x) e Wf\’,[‘ ,(R") and o = w + it. Then for any p and r, using the tech-
nique of [3, pp.20-21] and (1.10), we have

(o sina)*y (o sina) || = [/ (o sina) ¢ (o sinoe)|rdw:|;.
RVI
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. . . k2l 4 | 1K1
Now using the inequality |o'|¥ < %, we have

|| (o sina)*y (o sina) ||r

k2| kI 7 ;
< |sina|"k‘/ u |1//(osina)|rdw
R” |W|2+1
|o|k+2I N\ T , '
< |sina|"k‘/ |1p(osinoz)| dw
R” |W|2+1

|U|\k\ r i
+ |sina|’|k|f _— |¢(Usina)’rdw .
re \W|2 +1

Using (1.7), we get

||(a sina)Xy (o sina) ||r

ol [t ([ ot “ewlar)
sl [ gy ([ oot |
S (A G [
ol L[ otsoisotar |

d 7
< Cun2 [/R W‘tl)r((/RnleXp[M[(a—S)x]]Dk*Zqﬁ(x)lp dx>

([ lerolste ~a- 1)) d)_”

d ;
id v ((‘/RJexp[M[(a—6)x]]Dk¢(x)|pdx)

e (IW]? +1

x (/}R lexp[lal|z| - M[(a - 8)x]]|” dx)”l’)T.

Now using the Young inequality (1.21) and the arguments of [3, p.23], we get

+ Ca,k|:

(o sina)*yr (o sine) |, <D Ql7]

QL] /
k+2,p,0,r€ 4 +Dk,p,oz,re

In the above expression, we set % = (i +p),sincey = a—3§ and p is arbitrarily small together

with 8. Therefore, we have

||(0 sina)fy (o sina) ||r < Cz,p,lsina\eﬂ[%]‘ 0

Theorem 2.2 Let M(x) and Q(y) be the pair of functions which are dual in the sense of
Young. Then

Fa[WQ’b’p] - WX/I% foranyl <p,r<oo.
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i\z\zcota

Proof Lete™ 2 ¢(z) € WPP?(C") and o = w + it. Then from the arguments of [8, The-
orem 2.2], we have

’D’;w(wsina)’ =< Ck,r,n,s,p exp[—(y, W> + Q(b + p)y]
< Ck,r,n,s,p exp[—ylwl + Ql [(bl + ,01))/1]
— =YWy, Qn[(hn + pn)yn]]‘

From the arguments of [4, p.737] we have

2
|D’;¢(wsina)| < Crprs exp|:—M|:(% - 3>W} _M[,ob_gw]]

Hence,

exp|:M|:(% - 8) w]]Dﬁq&(w sina)

This implies that

-
= Ck,p,r,n,s‘
,

Y(wsina) € W;/I% O

Theorem 2.3 Let M (x) and Q2(y) be the functions which are dual in the sense of Young
to the functions M(x) and Q(y), respectively. Then
Q,b,p

Q0.
F[Wy7] C WME “" foranyl<p,r<oo.
5

ilx\zcom

Proof Lete™ 2 ¢(x) € Wﬁ:z’p(R”) and o = w + it. Then by the technique of [2, pp.23-
24] and (1.10), we have

n ina

|y(o sina)| < |@risina) ¥ f 1577 | (2)| dx
RYI

< |@risina)? ¥ | /R et | )

< DCyyle )| /R et [exp[-M[ (@ 8)x] + Q[+ py]]dn

< Cppae™ / expl-M(a - 8)x] + (b + p)y]] explle ]

= Cpsaexp[-(w,) + Q[(b+ p)y]] /1; ) exp[-M((a - 8)x] + |||x|] dx.
Now using the arguments of [4, p.738], we have

2
|1p(o sinoc)| <Crpa exp|:—M0|:<% - 80)wi| + QOI:<$ + po>ri| —Mo['OZ—SWH.

Hence,

()] on) s

S C/r D

a,8,0°

r
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3 Relation between W-and WP-types of spaces

In this section the mapping relations between W- and W?-types of spaces are discussed.

Theorem 3.1 Let M(x), Q2(y) be the pair of functions which are dual in the sense of Young.
Then

Wi =Wana 1<p<oo.

Proof Now, for showing the above theorem we shall prove the following lemma. O

Lemma 3.2 Let1 < p < oco. Then Wf,m C W

X | 2 cota
Proof Let e’| 5 Px) € W}&ﬂ(R”) and o = w + it. Then from the arguments of Theo-
rem 2.1, we get

Fy(WSy,) € W, 3.1)
From the inverse property of the fractional Fourier transform, we have
W2, C F;N(Wa). (3.2)
Now, let ¢A>a (o) e W%, Then by the technique of [2, pp.21-22] and (1.6), we have
$)=C, [ M G ) .
R

Therefore,

i\x\zc ta | . l|U| cotar A
¢(k)(x) _ Ca/ Dl;(e_ 20 +z(x,¢7)cscoc)e —°¢ (O')dW
n

/ Z ( ) z\x\ cota)(Di_rei(x,a)csca)e_ ila\zzcotot (ﬁa(g’)dw

r<k
\xl cota
= C“Z( )/ ZC (cota)x"e " 2 (io csca)k
r<k n<r
; z\a\ ta A
x ez(x,o)cscae ¢¢a(o)dw
_t\x\ LOID{ ker
Z Z C,(cota) € (io csca)
n=r
; l\n\ cmu A~
X (Dgez<x,o)csca) ¢a(0')dW
C Z k ZC( t )( )‘lmﬂk—"‘( 1)\'7| _ sl cota i(x,0)csca
= cota)(icsca - e 2 elmo)es
o r n .
r<k n<r

ilo|? cotar A
x D (ok”e" 5 $a(0)) dw

k i coter
- Caz(r)ZC,,(cotoz)(icscoc)"“k"(—1)”' / T gt esea

r<k n=r §
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<3 () e 0t o) an

B=n
k 1 ~[nl+lk=r| [n] _ilal? cote i(x,0)csca
ZC"‘Z ZC,,(cota)(lcsca) K (=" e 2 W
r<k r n<r R”
x Z <77)< C (cotoz)ak>e‘wzzmm
A
B=n p A<n

X Z <77 -8 (Dg”ok") (DZ"g‘qu)a(a)) dw
B

| (x)| < |Cq |Z< >Z|C (cota) ||csc¢x| [0l +lk=r|

r<k n<r
n
XZ( ) Z|Cx(cota)|
B=n p)lke—r- m)‘ r<B
< X (1) ettt oo
m<n-p
Therefore,
| (x)| < |Cq |Z< >Z|C (cota) ||csc¢x| —Inl+lk=r|
r<k n<r
n
XZ( ) Z|CA(C0toc)|
B=n ﬁ (k m)‘ r<B
= 'B> / *(x,r)csca ( |U|\k—r—m+k\+2 + |O'||k—r—m+)‘)
Xm;ﬁ< (|W|2+1)
X |Dz_ﬁ_m$a(0)| dw
= C(;’kexp[—(x,r)cscoz + Q[(i + p)r]]. (33)

Now using the arguments of [4, p.23], we get

’¢(k)(x)’ <Cyx exp[—M[(u —8)xcsc a]] (3.4)
for arbitrarily small § together with p. Hence the above expression gives

F{ (W) C Wiy (3.5)

Thus (3.2) and (3.5) imply that

Wi. C Wit (3.6)

Lemma 3.3 Let 1 < p <o0. Then Wy, C Wy, .
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ilx 2 cota
Proof Let e 5 ¢(x) € Wi ,(R”) and 0 = w + it € C". Then from [8, Theorem 2.1], it
follows that
Q1
Fo(Wia) C Wa, (3.7)

Now by the inverse property of the fractional Fourier transform we have

Wire C BN (Wa). (3.8)
Again let ¢30, (o) € Wi Then from (3.3) we have

’¢k(x)| <Cox exp|:—(x, T)Ccsca + Q[(é + p)r:|:|. (3.9)

Using (1.21) and [6, p.385] we get

|¢k(x)| < C(;,k exp[—M[(a —8)xcsc a] - M[a3p2x csc a]]. (3.10)
Therefore,

” exp[M[(a —8)xcsc a]]qbk(x) ||p <Cyx H e~ Mla*p’xescal Hp. (3.11)
This implies that

N (w®a) c W2, (312)
From (3.8) and (3.12) we find

Wita C Wiy, (3.13)
Now from (3.6) and (3.13) we get the result

Wit = Wata- (3.14)

O

Theorem 3.4 Let M(x) and Q2(y) be the same functions as in Theorem 3.1. Then

Webr = Wb 1 < p<oo. (3.15)
Proof Let e‘i‘z‘zzmw ¢(z) € W2 Then from Theorem 2.2 it follows that

E, (W) C W1 (3.16)

By the inverse property of the fractional Fourier transform, we have

WQ,h,p C Fl;l(WA/L%)' (317)
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Now let ¢A>a (x) e Wy, 1. Then from the technique of [2, pp.20-21], we have

(io csc ) p(o)

_ il 4o P cota Jesca
=C, [ e p (Die” ) o (x) da
RHn

lel cota N tlzr\z cota

_ Ca(—l)lklf ei(x,a)csca(Dalz - ¢a(x)) dx
Rn

. k tlx\ Lotoz l\ri\ Lotoz
_ _1)\lkl i(x,0)csca v k—r
Cy(-1) /1.{»7 e E (I") (D )(D (t)a( )) dx

r<k

. 1|x|” cota 10'2000 ~
— Ca(—l)lkl /l;{n el(x,U)CSCDl Z < ) ZCﬁ(cota)e ilx|? cotar " cota t HTI (xﬂDl;"%)a(x)) dx

r<k B<r
Therefore,
(O'CSCOl < |Cql C COtOl e~ wT)esca|| Dk r¢a dx
/3
r<k B<r
<ICly <k> > | Caleota)| / el esel-MIE0) g
rek N/ pr R

Now using the arguments of [2, p.21], we get

(0 csca) (o) < Coxexp[Q[(B+ p)Tescal]],
where p is arbitrarily small together with é. Thus we have

F (Wy1) € WO (3.18)
Therefore (3.17) and (3.18) yield

Wb - wb, (3.19)

ilzl2 cotar
Again we take e~ e ). Then from [8, Theorem 2.2], we have
Eu(W™) € W1 (3.20)
By the inverse property of the fractional Fourier transform, we have

W CF Wy ). (3.21)

Furthermore, we take qAS(x) e Wy 1 (R™). Then from the arguments of [2, pp.20-21], we
have

|(io csc ) (o) ||p

- (/ |(io csca)k¢(a)|pdw>ﬁ
RW
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lio cscar|¥1*2 + |io csca| KT\ 1
- (/R,,< (w2 +1) ) |¢(0)|pdw>
lio csca|KI+2\ 7 » s lio- csca|K\? , 3
(LOGrs) berar) ([ (G ) wora)
aw —(x,T)csca ’ ll;
([ otz (Gon [ e ==wutola ) )

1
dw X .
/ —(x,T) csca
’ (/}Rn W( “’k/]RJe ¢a(x)|dx> )

) dw
< (CakCrs2s + Cp i Crs) e (W2 +1)P

X (/R” exp[—(x,r)csca—M[(% —8)96]] dx>p>ﬁ
1 dw Fl’
< Cyks (./]R” exp[—(x,r)csca _M[<Z —S)x]] dx)( . W)

< Ca,k,ng/ exp|:—(x, T)Ccsca —M[(% - 8>xi|i| dx. (3.22)
RYI

Now using the Young inequality (1.21) and from the arguments of [2, p.21], we get

IA

IA

” (io csca) (o) ”p < Cuksp exp[Q[(b + p)r]].
This implies that

F;I(WM’%) c Wbr, (3.23)
Now (3.21) and (3.23) give

Wby, (3.24)
Finally, (3.19) and (3.24) give

Wb = ybe, (3.25)
O

Theorem 3.5 Let Q(y) and My(x) be the functions which are dual in the sense of Young
to the functions M(x) and Q(y), respectively. Then

b, 3
Wyl =Wy, 1<p<oo. (3.26)

i\x\Z cota

Proof Lete™ 2 ¢(x) € Wﬁ:i’p . Then from Theorem 2.3, it follows that

Qo,

F, (Wy?) c W, (3.27)

S A=
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By the inverse property of the fractional Fourier transform we get

Qbp -1 Q0,1
Wy, CF, (WMO%).

n 1
Now let ¢, (z) € W;gi‘ . Then from the arguments of [2, p.24], we get
b

(1212 2
i(lz]+|o|%)cota | .
_ el yeota

i(0,2) cscad;a(z) dx.

¢(a+it):Ca/ e

n

Therefore,

’d)(a + ir)’

< |Co,|/ |exp[—(w,y} csca — (T,x) csca]HqAﬁa(z)‘ dx
R"
< CaC5_p/ !exp[—(w,y) csca — (T,x) csca]’
R"

M 1 1) Q 1

ool 0 (55 e[ (G0

=< GCs CXP[QO[(; + p)y] - (w,) csca}

X / expl:—Mo|:<l - 5>x] + (T, %) csca] dx.

R” b

Now using (1.21), we have

|p(o +iT)| < C; exp[—M[—Wcsca:| + Q|: rees :|:|
= e Lip (3 +26)

X dx

1 1
< C(’;YM expl:—M[(; —5o)wcscoz:| + Q[(E + po>r CSCOl:|:|,

Page 12 of 15

(3.28)

where pp and §y are arbitrarily small together with p and §, respectively. This shows that

N (Wive) € Witk

Thus from (3.28) and (3.29), we get
Wi’ C Wit

Similarly it is easy to show that
Wite € Wara”-

Finally, (3.30) and (3.31) imply that

Qbp _ Q,b
Wird” = Wit

(3.29)

(3.30)

(3.31)
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4 Uniqueness class of a Cauchy problem
In this section we apply the theory of the fractional Fourier transform which is discussed
in (1.4) and (1.6) to establish a uniqueness theorem for the Cauchy problem:

dulx, t
”;’; ) PG (), Yoo e R x [0,T], (4.1)
u(x,0) = uo(x), (4.2)
where
Af= AR AR (4.3)
3 ki . fon
= —-ixjcote | ---| — —ix,cotx (4.4)
8 X1 896,1

is a differential operator and u(x, £) is an N x 1 column vector. Here P is an N x N poly-
nomial matrix with constant coefficients of order k. A similar problem has been inves-
tigated by Gel'fand and Shilov [2], and Friedman [3] by exploiting the theory of Fourier
transforms. Also, Pathak [10] studied the uniqueness of the Cauchy problem by using the
theory of the Hankel transform.

Theorem 4. 1 The Cauchy problem (4.1) and (4.2) possesses a unique solution u(x, t) in the
space (W 20,7 H) for the interval 0 <t < T, T < (2¢po)~(d/2)?°, 6 < a, and for any initial
059

Sfunction ug(x) belonglng to the same space, where py is the reduced order of the system (4.1)
and (4.2) with i\, replaced by iL ~ and c being a constant depending on P.

Proof From the fundamental result [3, p.177], the Cauchy problem (4.1) and (4.2) will have
a solution in the space @ for 0 < ¢ < T if there exists a solution of the adjoint problem,

%¢(x, £) = P(ink)p(x, 1), (4.5)

¢(x» tO) = ¢0(9€) €, (46)

in the space ®; for 0 <t < ¢y, where t; is any point in the interval 0 <t < T, P is the
adjoint of P and A is the conjugate of A,.
Applying the fractional Fourier transform to (4.5) and (4.6), we get

illfa (0,¢) = P(o csca)¥ (o, £), (4.7)
dt
llla(o‘, tO) = l1/01,0(0‘)’ (48)

where ¥, (0,t) = (Fy¢)(x, t). A formal solution of (4.7) and (4.8) is given by
v, (o,t) = exp[(t to)P(o csca)] Y, 0(0). (4.9)
Let us write

Q(o csca, ty,t) = exp[(t —t0)P(o csc a)], (4.10)
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consisting of entire analytic functions of ¢ where o = w + it. Since py is the reduced order
of the system (4.1) and (4.2), using the inequality

locscal?® <270 (jwescal” + |t cscal?)
and the arguments of [2, p.53] in (4.10) we obtain
|Q(o esca, b, £)| < Cexp[(po) 070 (|wesca” + |t escar)]

under the assumptions ty < t <ty + T and 270*1cT < (po) 1670,

If we set
M(wcsca) = lwescal?/py, Q(tesca) = |t escal’?/po,
then
|Q(0 csca,to,t)| < Cexp[M(9 -wesca) + Q0 -t csca)].
Now, let us assume that

_ w0
Do) € =W, 1.

Then

1/fa,o(0) = (Fa¢0)(9C) S WISV]I:Z

We now apply the theorem [2, p.54] for given a. One can always choose the time inter-
val 0 <t < T so small that the inequality 6 < a holds; for such values of T’ the matrix
Q(o csca, Ly, £) will be a multiplier in the space Wﬁz which maps this space into the space

Wﬁﬁig taking T sufficiently small. Thus the Cauchy problem (4.7) and (4.8) has a unique

solution in Wi2*%  Also we can show that

1
-1 Qb+07 _ w07
Fot [WM,a—G] - q>1 - WMo,ﬁ’

1
and the Cauchy problem (4.5) and (4.6) has a unique solution in WEO .

540
Now using the arguments of [3, Theorem 6, p.177], we get the complete proof. d
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