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1 Introduction
The theory of time scales was introduced and developed by Hilger [] and Bohner and
Peterson [, ] in order to unify continuous and discrete analysis. It has been applied to
various fields of mathematics. In particular, many authors have extended some integral
inequalities used in the theory of differential, difference, and integral equations to an ar-
bitrary time scale; see, for instance, the papers [–] and the references cited therein.

In what follows, let us briefly comment on a number of closely related results which mo-
tivated our study. Li and Sheng [] established several integral inequalities and studied the
boundedness properties of some nonlinear dynamic equations, one of which we present
below for convenience of the reader. In what follows, we use the following notation (some
other concepts related to the notion of time scales; see Bohner and Peterson []):
R denotes the set of real numbers, R+ = [,∞), T is an arbitrary time scale, and the set

T
k is derived from T as follows: if T has a left-scattered maximum m, then T

k = T– {m},
otherwise T

k = T.

Theorem . [, Theorem .] Assume that u, a, b, f , g : Tk → R+ are rd-continuous func-
tions and let p and q be real constants satisfying p ≥ q > . Then the inequality

up(t) ≤ a(t) + b(t)
∫ t

t

[
f (s)up(s) + g(s)uq(s)

]
�s, t ∈ T

k

implies that, for any K > ,

u(t) ≤
{

a(t) + b(t)
∫ t

t

eA
(
t,σ (s)

)[
a(s)f (s) + g(s)

(
q
p

K (q–p)/pa(s) +
p – q

p
Kq/p

)]
�s

}/p

,

where t ∈ T
k and A(t) = b(t)(f (t) + qK (q–p)/pg(t)/p).
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Sun and Hassan [] studied the following dynamic integral inequality with mixed non-
linearities.

Theorem . [, Theorem ] Assume that u, a, b, g, h, h : Tk → R+ are rd-continuous
functions and let λ and λ be real constants satisfying  < λ <  < λ. Then, for any rd-
continuous functions k(t) >  and k(t) ≥  on T

k satisfying k(t) = k(t) – k(t) ≥  and
μ(t)k(t)b(σ (t)) <  for t ∈ T

k , the inequality

u(t) ≤ a(t) + b(t)
∫ t

t

[
g(s)u(s) + h(s)uλ

(
σ (s)

)
– h(s)uλ

(
σ (s)

)]
�s, t ∈ T

k

implies that

u(t) ≤ a(t) + b(t)
∫ t

t

eA⊕B
(
t,σ (s)

)
D(s)�s, t ∈ T

k ,

where

A(t) = b(t)g(t), B(t) =
k(t)b(σ (t))

 – μ(t)k(t)b(σ (t))
, D(t) =

(
 + μ(t)B(t)

)
C(t),

and

C(t) = a(t)g(t) + a
(
σ (t)

)
k(t) + θ(λ, h, k) + θ(λ, h, k).

The aim of this paper is to further generalize some integral inequalities on time scales
that have been reported in [, , ]. We consider the following dynamic integral inequal-
ities with mixed nonlinearities

up(t) ≤ a(t) + b(t)
∫ t

t

[
f (s)up(s) + g(s)uq(s) + h(s)uλ

(
σ (s)

)

– h(s)uλ
(
σ (s)

)
+ l(s) +

∫ s

t

m(τ )ur(τ )�τ

]
�s, t ∈ T

k (I)

and

up(t) ≤ a(t) + b(t)
∫ t

t

w(t, s)
[

f (s)up(s) + g(s)uq(s) + h(s)uλ
(
σ (s)

)

– h(s)uλ
(
σ (s)

)
+ l(s) +

∫ s

t

m(τ )ur(τ )�τ

]
�s, t ∈ T

k , (II)

where p ≥ q > , p ≥ r > ,  < λ < p < λ, p, q, r, λ, and λ are real constants,
u, a, b, f , g, h, h, l, m : Tk →R+ are rd-continuous functions, and w : T×T

k →R is a con-
tinuous function.

2 Main results
In what follows, Z denotes the set of integers, N denotes the set of nonnegative integers,
Crd denotes the set of rd-continuous functions. We say that a function p : T → R is re-
gressive provided  +μ(t)p(t) �= , for all t ∈ T

k . The set of all regressive and rd-continuous
functions will be denoted in this paper by R, and R+ = {p ∈ R :  + μ(t)p(t) > , for all t ∈
T}.
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The following lemmas are very useful in the proof of our main results.

Lemma . [, Theorem .] Let u, b ∈ Crd and a ∈R+. Then

u�(t) ≤ a(t)u(t) + b(t), for all t ∈ T

yields

u(t) ≤ u(t)ea(t, t) +
∫ t

t

b(τ )ea
(
t,σ (τ )

)
�τ , for all t ∈ T.

Lemma . [, Theorem .] Let t ∈ T
k and w : T × T

k → R be continuous at (t, t),
t ∈ T

k with t > t. Assume that w�(t, ·) is rd-continuous on [t,σ (t)]. Suppose that, for each
ε > , there exists a neighborhood U of t, independent of τ ∈ [t,σ (t)], such that

∣∣w(
σ (t), τ

)
– w(s, τ ) – w�(t, τ )

(
σ (t) – s

)∣∣ ≤ ε
∣∣σ (t) – s

∣∣, for all s ∈ U ,

where w� denotes the derivative of w with respect to the first variable. Then

v(t) =
∫ t

t

w(t, τ )�τ

implies that

v�(t) =
∫ t

t

w�(t, τ )�τ + w
(
σ (t), t

)
.

Lemma . [, Lemma .] Assume that a ≥  and p ≥ q > . Then

aq/p ≤ q
p

K (q–p)/pa +
p – q

p
Kq/p

for any K > .

Lemma . Let u be a nonnegative function,  < λ < p < λ, c ≥ , c > , k > , and
k ≥ . Then, for i = , ,

(–)i+ciuλi + (–)ikiup ≤ θi(λi, ci, ki, p),

where

θi(λi, ci, ki, p) = (–)i
(

λi

p
– 

)(
λi

p

) λi
p–λi

c
p

p–λi
i k

λi
λi–p

i .

Proof Set Fi(u) = (–)i+ciuλi + (–)ikiup. It is not difficult to verify that Fi obtains its max-
imum at u = (λici/(kip))/(p–λi) and

(Fi)max = (–)i
(

λi

p
– 

)(
λi

p

) λi
p–λi

c
p

p–λi
i k

λi
λi–p

i for i = , .

The proof is complete. �
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Theorem . Assume that u, a, b, f , g, h, h, l, m : Tk → R+ are rd-continuous functions.
Then, for any rd-continuous functions k(t) >  and k(t) ≥  on T

k satisfying k(t) = k(t) –
k(t) ≥  and μ(t)k(t)b(σ (t)) <  for t ∈ T

k , the inequality (I) implies that

u(t) ≤
{

a(t) + b(t)
∫ t

t

eA⊕B
(
t,σ (s)

)
D(s)�s

}/p

for any K > , t ∈ T
k , (.)

where

A(t) = b(t)f (t) +
q
p

K (q–p)/pb(t)g(t) +
r
p

K (r–p)/p
∫ t

t

b(τ )m(τ )�τ ,

B(t) =
k(t)b(σ (t))

 – μ(t)k(t)b(σ (t))
, D(t) =

(
 + μ(t)B(t)

)
C(t),

and

C(t) = g(t)
(

q
p

K (q–p)/pa(t) +
p – q

p
Kq/p

)
+

∫ t

t

m(τ )
(

r
p

K (r–p)/pa(τ ) +
p – r

p
Kr/p

)
�τ

+ θ(λ, h, k, p) + θ(λ, h, k, p) + a(t)f (t) + a
(
σ (t)

)
k(t) + l(t).

Proof Define a function y by

y(t) =
∫ t

t

[
f (s)up(s) + g(s)uq(s) + h(s)uλ

(
σ (s)

)
– h(s)uλ

(
σ (s)

)

+ l(s) +
∫ s

t

m(τ )ur(τ )�τ

]
�s, t ∈ T

k .

Then y(t) =  and

u(t) ≤ (
a(t) + b(t)y(t)

)/p. (.)

On the basis of a straightforward computation and Lemma ., we have

y�(t) = f (t)up(t) + g(t)uq(t) +
∫ t

t

m(τ )ur(τ )�τ + h(t)uλ
(
σ (t)

)

– h(t)uλ
(
σ (t)

)
+ l(t)

≤ f (t)up(t) + g(t)uq(t) +
∫ t

t

m(τ )ur(τ )�τ + k(t)up(σ (t)
)

+ θ(λ, h, k, p) + θ(λ, h, k, p) + l(t). (.)

By virtue of Lemma ., for any K > , we obtain

uq(t) ≤ (
a(t) + b(t)y(t)

)q/p ≤ q
p

K (q–p)/p(a(t) + b(t)y(t)
)

+
p – q

p
Kq/p,

ur(t) ≤ (
a(t) + b(t)y(t)

)r/p ≤ r
p

K (r–p)/p(a(t) + b(t)y(t)
)

+
p – r

p
Kr/p.

(.)
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Using inequalities (.)-(.), we conclude that

y�(t) ≤ f (t)up(t) + g(t)uq(t) +
∫ t

t

m(τ )ur(τ )�τ + k(t)up(σ (t)
)

+ θ(λ, h, k, p) + θ(λ, h, k, p) + l(t)

≤ f (t)
(
a(t) + b(t)y(t)

)
+ g(t)

(
q
p

K (q–p)/p(a(t) + b(t)y(t)
)

+
p – q

p
Kq/p

)

+
∫ t

t

m(τ )
(

r
p

K (r–p)/p(a(τ ) + b(τ )y(τ )
)

+
p – r

p
Kr/p

)
�τ

+ k(t)
[
a
(
σ (t)

)
+ b

(
σ (t)

)
y
(
σ (t)

)]
+ θ(λ, h, k, p) + θ(λ, h, k, p) + l(t)

≤ f (t)
(
a(t) + b(t)y(t)

)
+ g(t)

(
q
p

K (q–p)/p(a(t) + b(t)y(t)
)

+
p – q

p
Kq/p

)

+
(

r
p

K (r–p)/p
∫ t

t

b(τ )m(τ )�τ

)
y(t)

+
∫ t

t

m(τ )
(

r
p

K (r–p)/pa(τ ) +
p – r

p
Kr/p

)
�τ

+ k(t)
[
a
(
σ (t)

)
+ b

(
σ (t)

)
y
(
σ (t)

)]
+ θ(λ, h, k, p) + θ(λ, h, k, p) + l(t)

= A(t)y(t) +
B(t)

 + μ(t)B(t)
y
(
σ (t)

)
+ C(t)

= A(t)y(t) +
B(t)

 + μ(t)B(t)
(
y(t) + μ(t)y�(t)

)
+ C(t),

which implies that


 + μ(t)B(t)

y�(t) ≤
(

A(t) +
B(t)

 + μ(t)B(t)

)
y(t) + C(t),

that is,

y�(t) ≤ (A ⊕ B)(t)y(t) + D(t), t ∈ T
k ,

where D(t) = [ + μ(t)B(t)]C(t). Note that y, D ∈ Crd and A ⊕ B ∈ 	+. By Lemma ., we
get the desired inequality (.). This completes the proof. �

Remark . If p =  and g(t) = m(t) = l(t) = , then (.) reduces to the inequality estab-
lished in Theorem ..

Remark . If m(t) = , l(t) = , and hi(t) =  (i = , ), then Theorem . reduces to The-
orem ..

Remark . Theorem . can be applied on an arbitrary time scale. Thus, we immediately
obtain the following corollaries for some peculiar time scales.

Corollary . Let T = R and assume that u, a, b, f , g, h, h, l, m : [t,∞) →R+ are contin-
uous. Then, for any continuous functions k(t) >  and k(t) ≥  satisfying k(t) = k(t) –
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k(t) ≥  on [t,∞), the inequality (I) yields

u(t) ≤
{

a(t) + b(t)
∫ t

t

exp

(∫ t

s

(
A(τ ) + B(τ )

)
dτ

)
C(s) ds

}/p

for any K > , t ≥ t,

where

A(t) = b(t)f (t) +
q
p

K (q–p)/pb(t)g(t) +
r
p

K (r–p)/p
∫ t

t

b(τ )m(τ ) dτ , B(t) = k(t)b(t),

and

C(t) = g(t)
(

q
p

K (q–p)/pa(t) +
p – q

p
Kq/p

)
+

∫ t

t

m(τ )
(

r
p

K (r–p)/pa(τ ) +
p – r

p
Kr/p

)
dτ

+ θ(λ, h, k, p) + θ(λ, h, k, p) + a(t)
(
f (t) + k(t)

)
+ l(t).

Corollary . Let T = Z and u, a, b, f , g, h, h, l, m : N → R+. Then, for any functions
k(t) >  and k(t) ≥  satisfying k(t) = k(t) – k(t) ≥  and k(t)b(t + ) <  on N, the
inequality (I) implies that

u(t) ≤
{

a(t) + b(t)
t–∑
s=t

( t–∏
τ=s+

(
 + (A ⊕ B)(τ )

))
D(s)

}/p

for any K > , t ∈ N,

where

A(t) = b(t)f (t) +
q
p

K (q–p)/pb(t)g(t) +
r
p

K (r–p)/p
t–∑
s=t

b(s)m(s),

B(t) =
k(t)b(t + )

 – k(t)b(t + )
, D(t) =

(
 + B(t)

)
C(t),

and

C(t) = g(t)
(

q
p

K (q–p)/pa(t) +
p – q

p
Kq/p

)
+

t–∑
s=t

m(s)
(

r
p

K (r–p)/pa(s) +
p – r

p
Kr/p

)

+ θ(λ, h, k, p) + θ(λ, h, k, p) + a(t)f (t) + a(t + )k(t) + l(t).

Theorem . Assume that u, a, b, f , g, h, h, l, m : Tk → R+ are rd-continuous functions,
w(t, s) is defined as in Lemma . such that w(σ (t), t) ≥  and w�(t, s) ≥  for t, s ∈ T with
s ≤ t. Then, for any rd-continuous functions k(t) >  and k(t) ≥  on T

k satisfying k(t) =
k(t) – k(t) ≥  and μ(t)B̂(t) <  for t ∈ T

k with

B̂(t) = w
(
σ (t), t

)
k(t)b

(
σ (t)

)
+

∫ t

t

w�(t, s)k(s)b
(
σ (s)

)
�s,

the inequality (II) implies that

u(t) ≤
{

a(t) + b(t)
∫ t

t

eÃ⊕B̃
(
t,σ (s)

)
D̃(s)�s

}/p

for any K > , t ∈ T
k , (.)
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where

Ã(t) = w
(
σ (t), t

)
A(t) +

∫ t

t

w�(t, s)A(s)�s, B̃(t) =
B̂(t)

 – μ(t)B̂(t)
,

C̃(t) = w
(
σ (t), t

)
C(t) +

∫ t

t

w�(t, s)C(s)�s, D̃(t) =
(
 + μ(t)B̃(t)

)
C̃(t),

A and C are defined as in Theorem ..

Proof Define a new function z by

z(t) =
∫ t

t

w(t, s)
[

f (s)up(s) + g(s)uq(s) + h(s)uλ
(
σ (s)

)
– h(s)uλ

(
σ (s)

)

+ l(s) +
∫ s

t

m(τ )ur(τ )�τ

]
�s, t ∈ T

k . (.)

Then z(t) =  and

u(t) ≤ (
a(t) + b(t)z(t)

)/p. (.)

Using Lemmas .-. and combining (.) and (.), we deduce that

z�(t) = w
(
σ (t), t

)[
f (t)up(t) + g(t)uq(t) + h(t)uλ

(
σ (t)

)
– h(t)uλ

(
σ (t)

)

+ l(t) +
∫ t

t

m(τ )ur(τ )�τ

]

+
∫ t

t

w�(t, s)
[

f (s)up(s) + g(s)uq(s) + h(s)uλ
(
σ (s)

)
– h(s)uλ

(
σ (s)

)

+ l(s) +
∫ s

t

m(τ )ur(τ )�τ

]
�s

≤
(

w
(
σ (t), t

)
k(t)b

(
σ (t)

)
+

∫ t

t

w�(t, s)k(s)b
(
σ (s)

)
�s

)
z
(
σ (t)

)

+
(

w
(
σ (t), t

)
A(t) +

∫ t

t

w�(t, s)A(s)�s
)

z(t)

+ w
(
σ (t), t

)
C(t) +

∫ t

t

w�(t, s)C(s)�s

= Ã(t)z(t) +
B̃(t)

 + μ(t)B̃(t)
z
(
σ (t)

)
+ C̃(t), t ∈ T

k .

Similar to the proof of Theorem ., we obtain (.). The proof is complete. �

Remark . The inequality established in Theorem . generalizes that reported in [,
Theorem .].

On the basis of Theorem ., the following two corollaries are easily obtained.
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Corollary . Let T = R and assume that u, a, b, f , g, h, h, l, m : [t,∞) → R+ are con-
tinuous. Suppose further that w(t, s) and its partial derivative ∂w(t, s)/∂t are real-valued
nonnegative continuous functions for t, s ∈ [t,∞) with s ≤ t. Then, for any continuous func-
tions k(t) >  and k(t) ≥  on [t,∞) satisfying k(t) = k(t) – k(t) ≥ , the inequality (II)
implies that

u(t) ≤
{

a(t) + b(t)
∫ t

t

exp

(∫ t

s

(
Ã(τ ) + B̃(τ )

)
dτ

)
C̃(s) ds

}/p

for any K > , t ≥ t,

where

Ã(t) = w(t, t)A(t) +
∫ t

t

∂w(t, s)
∂t

A(s) ds,

B̃(t) = w(t, t)k(t)b(t) +
∫ t

t

∂w(t, s)
∂t

k(s)b(s) ds,

C̃(t) = w(t, t)C(t) +
∫ t

t

∂w(t, s)
∂t

C(s) ds,

A and C are the same as in Corollary ..

Corollary . Let T = Z and u, a, b, f , g, h, h, l, m : N → R+. Assume that w(t, s) and
�w(t, s) are real-valued nonnegative functions for t, s ∈N with s ≤ t. Then, for any func-
tions k(t) >  and k(t) ≥  satisfying k(t) = k(t) – k(t) ≥  and B̂(t) <  on N with

B̂(t) = w(t + , t)k(t)b(t + ) +
t–∑
s=t

�w(t, s)k(s)b(s + ),

the inequality (II) yields

u(t) ≤
{

a(t) + b(t)
t–∑
s=t

( t–∏
τ=s+

(
 + (Ã ⊕ B̃)(τ )

))
D̃(s)

}/p

for any K > , t ∈ N,

where �w(t, s) = w(t + , s) – w(t, s) for t, s ∈N with s ≤ t,

Ã(t) = w(t + , t)A(t) +
t–∑
s=t

�w(t, s)A(s), B̃(t) =
B̂(t)

 – B̂(t)
,

C̃(t) = w(t + , t)C(t) +
t–∑
s=t

�w(t, s)C(s), D̃(t) =
(
 + B̃(t)

)
C̃(t),

A and C are defined as in Corollary ..

Remark . By choosing possible values of k and k, one can derive many explicit
estimates for dynamic integral inequalities of types (I) and (II). For instance, if we let
k = k > , then B(t) = B̃(t) = . In this case, Theorems . and . take simpler forms.

3 Example
The following example illustrates possible applications of our main results.
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Example . Consider the following dynamic equation

[
up(t)

]� = F
(

t, U
(
t, u(t), u

(
σ (t)

))
,
∫ t

t

H
(
τ , u(τ )

)
�τ

)
,

up(t) = C, t ∈ T
k ,

(.)

where C is a real constant, F , U : Tk ×R×R →R, H : Tk ×R→ R are continuous func-
tions. Assume that, for t ∈ T

k ,

∣∣F(t, U , V )
∣∣ ≤ |U| + |V |,

∣∣U(t, x, y)
∣∣ ≤ f (t)|x|p + g(t)|x|q + h(t)|y|λ – h(t)|y|λ ,

∣∣H(t, z)
∣∣ ≤ m(t)|z|r ,

(.)

where p ≥ q > , p ≥ r > ,  < λ < p < λ, p, q, r, λ, and λ are real constants, f , g , h,
h, and m are nonnegative rd-continuous functions on T

k . Then every solution u of (.)
satisfies, for any K > ,

∣∣u(t)
∣∣ ≤

{
|C| +

∫ t

t

eA
(
t,σ (s)

)
C(s)�s

}/p

, t ∈ T
k , (.)

where

A(t) = f (t) +
q
p

K (q–p)/pg(t) +
r
p

K (r–p)/p
∫ t

t

m(τ )�τ

and

C(t) =
(

q
p

K (q–p)/p|C| +
p – q

p
Kq/p

)
g(t) +

(
r
p

K (r–p)/p|C| +
p – r

p
Kr/p

)∫ t

t

m(τ )�τ

+ θ(λ, h, k, p) + θ(λ, h, k, p) + |C|f (t),

where k(t) >  and k(t) ≥  are any rd-continuous functions satisfying k(t) = k(t)–k(t) =
 for t ∈ T

k .
As a matter of fact, the solution u of (.) satisfies the following equivalent equation

up(t) = C +
∫ t

t

F
(

s, U
(
s, u(s), u

(
σ (s)

))
,
∫ s

t

H
(
τ , u(τ )

)
�τ

)
�s, t ∈ T

k . (.)

It follows now from (.) and (.) that

∣∣up(t)
∣∣ ≤ |C| +

∫ t

t

∣∣∣∣F
(

s, U
(
s, u(s), u

(
σ (s)

))
,
∫ s

t

H
(
τ , u(τ )

)
�τ

)∣∣∣∣�s

≤ |C| +
∫ t

t

[
f (s)

∣∣u(s)
∣∣p + g(s)

∣∣u(s)
∣∣q +

∫ s

t

m(τ )
∣∣u(τ )

∣∣r
�τ

+ h(s)
∣∣u(

σ (s)
)∣∣λ – h(s)

∣∣u(
σ (s)

)∣∣λ
]
�s, t ∈ T

k . (.)

Using Theorem . in (.), we conclude that (.) is satisfied.
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