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Abstract
In this paper, we study the inverse problem for a class of abstract ultraparabolic
equations which is well known to be ill-posed. We employ some elementary results of
semi-group theory to present the formula of solution, then show the instability cause.
Since the solution exhibits unstable dependence on the given data functions, we
propose a regularization method to stabilize the solution, then obtain the error
estimate. A numerical example shows that the method is efficient and feasible. This
work slightly extends the earlier results in Zouyed and Rebbani (J. Inverse Ill-Posed
Probl. 22(4):449-466, 2014).
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1 Introduction
Let us denote by ‖ · ‖ the norm and by 〈·, ·〉 the inner product in L(,π ), i.e.,

〈u, v〉 =
∫ π


uv dx, ‖u‖ =

√∫ π


|u| dx.

In this paper, we consider the following problem: determine a function u : [, T] ×
[, T] → L(,π ) solution to the Cauchy problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut + us – �u = f (x, t, s), (x, t, s) ∈ [,π ] × [, T] × [, T],

u(, t, s) = u(π , t, s) = , (t, s) ∈ [, T] × [, T],

u(x, T , s) = ψ(x, s), (x, s) ∈ [,π ] × [, T],

u(x, t, T) = ϕ(x, t), (x, t) ∈ [,π ] × [, T],

()

with corresponding perturbed data functions (ψε ,ϕε) satisfying

∥∥ψε – ψ
∥∥ ≤ ε,

∥∥ϕε – ϕ
∥∥ ≤ ε,
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where ψε and ϕε play roles as perturbed functions and ε >  represents a bound between
the exact function (ϕ,ψ) and the perturbed one (ϕε ,ψε) over L(,π ) and the given func-
tion f is called the source function.

Ultraparabolic equations arise in several areas of science, such as mathematical biology
in population dynamics [] and probability in connection with multi-parameter Brow-
nian motion [], and in the theory of boundary layers []. From those applications, ul-
traparabolic equations have gained considerable attention in many mathematical aspects
(see, e.g., [, –] and the references therein).

In the mathematical literature, various types of ultraparabolic problems have been
solved. There have been some papers dealing with the existence and uniqueness of solu-
tion for many kinds of ultraparabolic equations, e.g., [, , ]. As the pioneer in numerical
methods for such equations, Akrivis et al. [] numerically approximated the solution of a
prototype ultraparabolic equation by applying a fixed-step backward Euler scheme and a
second-order box-type finite difference method. Some extension works for the numerical
angle that should be mentioned are [, ] by Ashyralyev and Yilmaz, and Marcozzi, re-
spectively. We also remark that, in general, ultraparabolic equations do not possess prop-
erties that are closely fundamental to many kinds of parabolic equations including strong
maximum principles, a priori estimates, and so on.

In the phase of ill-posed ultraparabolic problems, the authors Zouyed and Rebbani very
recently proposed in [] the modified quasi-boundary value method to regularize the so-
lution of problem () in the homogeneous backward case f ≡ . In particular, via the in-
stability terms in the form of the solution of () (cf. [, Theorem .]), they established an
approximate problem by replacing Aα = A(I + αA–) for the operator A and taking the
perturbation α into final conditions of the ill-posed problem, and obtained the conver-
gence order αθ , θ ∈ (, ). Motivated by that work, this paper is devoted to investigating a
new regularization method.

In the past, many approaches have been studied for solving ill-posed problems, espe-
cially the backward heat problems. For example, Lattès and Lions [], Showalter [] and
Boussetila and Rebbani [] used the quasi-reversibility method; in [] Ames and Epper-
son applied the least squares method with Tikhonov-type regularization; Clark and Op-
penheimer [], Denche and Bessila [] and Trong et al. [] used the quasi-boundary
value method. Moreover, some other methods that should be listed are the mollification
method by Hao [] and the operator-splitting method studied by Kirkup and Wadsworth
[]. To the best of the authors? knowledge, although there are many works on several
types of parabolic backward problems, the theoretical literature on regularizing the in-
verse problems for ultraparabolic equations is very scarce. Therefore, proposing a regu-
larization method for problem () is the scope of this paper.

Our work presented in this paper has the following features. At first, for ease of the read-
ing, we summarize in Section  some well-known facts in a semi-group of operators and
present the formula of the solution of (). Secondly, in Section  we construct the regu-
larized solution based on our method, then obtain the error estimate. Finally, a numerical
example is given in Section  to illustrate the efficiency of the result.

2 Preliminaries
The operator –� is a positive self-adjoint unbounded linear operator on L(,π ). There-
fore, it can be applied to some elementary results in [, , , –]. Particularly, the



Tuan et al. Journal of Inequalities and Applications  (2015) 2015:13 Page 3 of 16

formula of the solution of problem () can be obtained by Lorenzi [], and the authors in
[, ] gave a detailed description on fundamental properties of the generalized operator.
In this section, we thus recall those results which we want to apply to our main results in
this paper. We list them and skip their proofs for conciseness.

In fact, we shall study in this section the generalized formula of the solution by the fol-
lowing operator equation in terms of semi-group theory.

⎧⎪⎪⎨
⎪⎪⎩

ut + us + Au = f (t, s), (t, s) ∈ [, T] × [, T],

u(T , s) = ψ(s), s ∈ [, T],

u(t, T) = ϕ(t), t ∈ [, T],

()

where A is a positive self-adjoint unbounded linear operator on the Hilbert space H.
We denote by {Eλ,λ > } the spectral resolution of the identify associated to A. Let us

denote

S(t) = e–tA =
∫ ∞


e–tλ dEλ ∈L(H), t ≥ ,

the C-semi-group of contractions generated by –A (L(H) stands for the Banach algebra
of bounded linear operators on H). Then

Au =
∫ ∞


λdEλu, ()

for all u ∈D(A). In this connection, u ∈D(A) iff the integral () exists, i.e.,

∫ ∞


λ d‖Eλu‖ < ∞.

For this family of operators {S(t)}t≥, we have:
. ‖S(t)‖ ≤  for all t ≥ ;
. the function t �→ S(t), t >  is analytic;
. for every real r ≥  and t > , the operator S(t) ∈L(H,D(Ar));
. for every integer k ≥  and t > , ‖Sk(t)‖ = ‖AkS(t)‖ ≤ c(k)t–k ;
. for every x ∈D(Ar), r ≥ , we have S(t)Arx = ArS(t)x.

Remark  In the sequel, let us denote

D =
{

(t, s) ∈ [, T] × [, T] :  ≤ s ≤ t ≤ T
}

;

D =
{

(t, s) ∈ [, T] × [, T] :  ≤ t ≤ s ≤ T
}

,

and make some conditions on the given functions as follows:
(A) ϕ ∈ C([, T];D(A)) ∩ C([, T];H);
(A) ψ ∈ C([, T];D(A)) ∩ C([, T];H);
(A) ϕ() = ψ();
(A) f ∈ C([, T] × [, T];H) ∩ C(D × D;H).
In the following theorems, we show the formula of the solution of problem () by em-

ploying Theorem . in [] with a(t) = a(s) =  and following the steps in [].
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Theorem  Under conditions (A)-(A), the problem

⎧⎪⎪⎨
⎪⎪⎩

ut + us + Au = f (t, s), (t, s) ∈ [, T] × [, T],

u(, s) = ψ(s), s ∈ [, T],

u(t, ) = ϕ(t), t ∈ [, T],

()

admits a unique solution u presented by the following formula. For any (t, s) ∈ D,

u(t, s) = S(s)ϕ(t – s) +
∫ s


S(s – η)f (t – s + η,η) dη,

and for any (t, s) ∈ D,

u(t, s) = S(t)ψ(s – t) +
∫ t


S(t – η)f (η, s – t + η) dη.

Moreover, the solution u belongs to the space C([, T] × [, T];D(A)) ∩ C([, T] ×
[, T];H).

Theorem  Under conditions (A)-(A), if the problem

⎧⎪⎪⎨
⎪⎪⎩

ut + us – Au = f (t, s), (t, s) ∈ [, T] × [, T],

u(, s) = ψ(s), s ∈ [, T],

u(t, ) = ϕ(t), t ∈ [, T],

()

admits a solution u, then this solution can be presented by

u(t, s) =

⎧⎨
⎩

S–(t)ψ(s – t) +
∫ s

s–t S(η – s)f (t – s + η,η) dη, (t, s) ∈ D,

S–(s)ϕ(t – s) +
∫ t

t–s S(η – t)f (η,η + s – t) dη, (t, s) ∈ D.

Proof We put τ = T – t, ξ = T – s and write

u(t, s) = u(T – τ , T – ξ ) := v(τ , ξ ),

the function v(τ , ξ ) : [, T] × [, T] →H satisfies problem (), namely

⎧⎪⎪⎨
⎪⎪⎩

vτ + vξ + Av = F(τ , ξ ) ≡ –f (T – τ , T – ξ ), (τ , ξ ) ∈ [, T] × [, T],

v(, ξ ) = ψ(ξ ) ≡ u(T , T – ξ ), ξ ∈ [, T],

v(τ , ) = ϕ(τ ) ≡ u(T – τ , T), τ ∈ [, T].

Thanks to Theorem , v(τ , ξ ) is given by

v(τ , ξ ) =

⎧⎨
⎩

S(ξ )ϕ(τ – ξ ) +
∫ ξ

 S(ξ – η)F(τ – ξ + η,η) dη, (τ , ξ ) ∈ D,

S(τ )ψ(ξ – τ ) +
∫ τ

 S(τ – η)F(η, ξ – τ + η) dη, (τ , ξ ) ∈ D.
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It follows that

u(t, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S(T – s)u(T + t – s, T) –
∫ T–s

 S(T – s – η)f (T + t – s – η, T – η) dη,

(t, s) ∈ D,

S(T – t)u(T , T + s – t) –
∫ T–t

 S(T – t – η)f (T – η, T + s – t – η) dη,

(t, s) ∈ D.

Thus, we obtain

u(t, s) =

⎧⎨
⎩

S(T – s)u(T + t – s, T) –
∫ T

s S(ζ – s)f (t – s + ζ , ζ ) dζ , (t, s) ∈ D,

S(T – t)u(T , T + s – t) –
∫ T

t S(ζ – t)f (ζ , ζ + s – t) dζ , (t, s) ∈ D,
()

by the maps ζ = T – η in the integrals. We can see by the initial conditions of () that

u(t, ) = ϕ(t) = S(T – t)u(T , T – t) –
∫ T

t
S(ζ – t)f (ζ , ζ – t) dζ ,

u(, s) = ψ(s) = S(T – s)u(T – s, T) –
∫ T

s
S(ζ – s)f (ζ – s, ζ ) dζ ,

which leads to
⎧⎨
⎩

ϕ(t – s) = S(T – t + s)u(T , T – t + s) –
∫ T

t–s S(ζ – t + s)f (ζ , ζ – t + s) dζ , (t, s) ∈ D,

ψ(s – t) = S(T – s + t)u(T – s + t, T) –
∫ T

s–t S(ζ – s + t)f (ζ – s + t, ζ ) dζ , (t, s) ∈ D.

By virtue of semi-group properties, we get

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S–(s)ϕ(t – s) = S(T – t)u(T , T – t + s) –
∫ T

t–s S(ζ – t)f (ζ , ζ – t + s) dζ ,

(t, s) ∈ D,

S–(t)ψ(s – t) = S(T – s)u(T – s + t, T) –
∫ T

s–t S(ζ – s)f (ζ – s + t, ζ ) dζ ,

(t, s) ∈ D.

()

Substituting () into (), we thus have

u(t, s) =

⎧⎨
⎩

S–(t)ψ(s – t) +
∫ s

s–t S(ζ – s)f (t – s + ζ , ζ ) dζ , (t, s) ∈ D,

S–(s)ϕ(t – s) +
∫ t

t–s S(ζ – t)f (ζ , ζ + s – t) dζ , (t, s) ∈ D. �

Theorem  Under conditions (A), (A) and (A), if problem () with ϕ(T) = ψ(T) admits
a solution u, then this solution can be given by

u(t, s) =

⎧⎨
⎩

S–(T – t)ψ(T + s – t) +
∫ T

t S(η – T)f (η – t,η – s) dη, (t, s) ∈ D,

S–(T – s)ϕ(T + t – s) +
∫ T

s S(η – T)f (η – t,η – s) dη, (t, s) ∈ D.

Proof Now we put τ = T – t and ξ = T – s, then write

u(t, s) = u(T – τ , T – ξ ) := v(τ , ξ ),
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the function v(τ , ξ ) : [, T] × [, T] →H satisfies problem (), namely

⎧⎪⎪⎨
⎪⎪⎩

vτ + vξ – Av = F(τ , ξ ) ≡ –f (T – τ , T – ξ ), (τ , ξ ) ∈ [, T] × [, T],

v(, ξ ) = ψ(ξ ) ≡ u(T , T – ξ ), ξ ∈ [, T],

v(τ , ) = ϕ(τ ) ≡ u(T – τ , T), τ ∈ [, T].

Using Theorem , the solution v(τ , ξ ) can be presented by

v(τ , ξ ) =

⎧⎨
⎩

S–(τ )ψ(ξ – τ ) +
∫ ξ

ξ–τ
S(η – ξ )F(τ – ξ + η,η) dη, (τ , ξ ) ∈ D,

S–(ξ )ϕ(τ – ξ ) +
∫ τ

τ–ξ
S(η – τ )F(η,η + ξ – τ ) dη, (τ , ξ ) ∈ D.

It follows that

u(T – τ , T – ξ ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S–(τ )u(T , T – ξ + τ ) –
∫ ξ

ξ–τ
S(η – ξ )f (T – τ + ξ – η, T – η) dη,

(τ , ξ ) ∈ D,

S–(ξ )u(T – τ + ξ , T) –
∫ τ

τ–ξ
S(η – τ )f (T – η, T – η – ξ + τ ) dη,

(τ , ξ ) ∈ D.

Hence, we obtain

u(t, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S–(T – t)ψ(T + s – t) –
∫ T–s

t–s S(η – T + s)f (T + t – s – η, T – η) dη,

(t, s) ∈ D,

S–(T – s)ϕ(T + t – s) –
∫ T–t

s–t S(η – T + t)f (T – η, T + s – t – η) dη,

(t, s) ∈ D,

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S–(T – t)ψ(T + s – t) –
∫ T

t S(ζ – T)f (T + t – ζ , T + s – ζ ) dζ ,

(t, s) ∈ D,

S–(T – s)ϕ(T + t – s) –
∫ T

s S(ζ – T)f (T + t – ζ , T + s – ζ ) dζ ,

(t, s) ∈ D,

which completes the proof. �

Now we return to the consideration of problem (). All of our results in this paper apply
to more general problems, for which the boundary conditions are generalized in Robin-
type, for example,

αu(, t, s) + αux(, t, s) = ,

αu(π , t, s) + αux(π , t, s) = ,

or we can consider, in general, the operator equations with the self-adjoint operator A
having a discrete spectrum on an abstract Hilbert space H and satisfying the condition
that –A generates a compact contraction semi-group on H, like problem () considered
above. However, for the sake of simplicity, we confine our attention to problem () in which
the homogeneous Dirichlet boundary conditions at the endpoints of [,π ] are given. In
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this problem, we have H = L(,π ) and D(A) = H
(,π ) ∩ H(,π ), so there exists an

orthonormal basis of L(,π ), {φn}n∈N satisfying (see, e.g., [, p.])

φn ∈ H
(,π ) ∩ C∞(

[,π ]
)
, �φn = –λnφn,  < λ ≤ λ ≤ · · · ≤ lim

n→∞λn = ∞.

The operator thus has a discrete spectrum σ (A) = {λn}n≥ with λn = n and gives the
orthonormal eigenbasis φn =

√

π

sin(nx) for n ∈N, n ≥ . Then, thanks to those theorems
above, the solution has the form

u(x, t, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
n≥(e(T–t)n

ψn(T + s – t)

–
∫ T

t e(T–η)n fn(T + t – η, T + s – η) dη) sin(nx), (t, s) ∈ D,∑
n≥(e(T–s)n

ϕn(T + t – s)

–
∫ T

s e(T–η)n fn(T + t – η, T + s – η) dη) sin(nx), (t, s) ∈ D,

()

where

ϕn(t) =

π

∫ π


ϕ(x, t) sin(nx) dx, ψn(s) =


π

∫ π


ψ(x, s) sin(nx) dx,

fn(t, s) =

π

∫ π


f (x, t, s) sin(nx) dx.

We can see that the instability is caused by all of the exponential functions. In fact, let
us see the case (t, s) ∈ D in (). Since the discrete spectrum increases monotonically as n
tends to infinity, the rapid escalation of e(T–t)n and e(T–η)n is mainly the instability cause.
Even though these exact given functions (ψn, fn) may tend to zero very fast, performing
classical calculation is impossible. It is because the given data may be diffused by a vari-
ety of reasons such as round-off errors, measurement errors. A small perturbation in the
data can arbitrarily generate a large error in the solution. A regularization method is thus
required.

3 Theoretical results
In this section, assuming that the problem has an exact solution u satisfying various cor-
responding assumptions, we construct the regularized solution depending continuously
on the data such that it converges to the exact solution u in some sense. Moreover, the
accuracy of regularized solution is estimated.

The solution of () can be given by

u(x, t, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
n≥ e(T–t)n (ψn(T + s – t)

–
∫ T

t e(t–η)n fn(T + t – η, T + s – η) dη) sin(nx), (t, s) ∈ D,∑
n≥ e(T–s)n (ϕn(T + t – s)

–
∫ T

s e(s–η)n fn(T + t – η, T + s – η) dη) sin(nx), (t, s) ∈ D.

()

We shall replace all instability terms by the better ones, particularly (ε + e–pn )
t–T

p and
(ε + e–pn )

s–T
p , where p ≥  is a real number. Then the regularized solution corresponding
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to the exact data is

uε(x, t, s) =
∑
n≥

(
ε + e–pn) t–T

p

×
(

ψn(T + s – t) –
∫ T

t
e(t–η)n

fn(T + t – η, T + s – η) dη

)
sin(nx) ()

for any (t, s) ∈ D, and

uε(x, t, s) =
∑
n≥

(
ε + e–pn) s–T

p

×
(

ϕn(T + t – s) –
∫ T

s
e(s–η)n

fn(T + t – η, T + s – η) dη

)
sin(nx) ()

for any (t, s) ∈ D.
We also denote the regularized solution corresponding to the perturbed data by

vε(x, t, s) =
∑
n≥

(
ε + e–pn) t–T

p

×
(

ψε
n(T + s – t) –

∫ T

t
e(t–η)n

fn(T + t – η, T + s – η) dη

)
sin(nx) ()

for any (t, s) ∈ D, and

vε(x, t, s) =
∑
n≥

(
ε + e–pn) s–T

p

×
(

ϕε
n(T + t – s) –

∫ T

s
e(s–η)n

fn(T + t – η, T + s – η) dη

)
sin(nx) ()

for any (t, s) ∈ D.
Now we shall show two elementary inequalities in the following lemmas.

Lemma  For  ≤ t ≤ T ≤ p, we have

(
ε + e–np) t–T

p ≤ ε
t–T

p .

Proof It is obvious that (ε + e–np)
t–T

p ≤ ε
t–T

p since ε + e–np ≥ ε. �

Lemma  For all x > ,  < α < , we have

 – (x + )–α ≤ x–α .

Proof The proof of this lemma is based on the fact that xα < (x + )α . Therefore, we have

 + x ≤  + x–α(x + )α

≤ [
 + x–α(x + )α

] 
α ,



Tuan et al. Journal of Inequalities and Applications  (2015) 2015:13 Page 9 of 16

which leads to

 – (x + )–α =
(x + )α – 

(x + )α

≤  + x–α(x + )α – 
(x + )α

≤ x–α . �

In the sequel, we only prove the case (t, s) ∈ D in our main result because of the simi-
larity. The results are about the regularized solution depending continuously on the cor-
responding data and the convergence of that solution to the exact solution. Now we shall
use two elementary lemmas above to support the proof of the main results.

Lemma  Under conditions (A), (A), (A) and assuming that ϕ(T) = ψ(T), then the
function uε given by ()-() depends continuously on (ϕ,ψ) in L(,π ).

Proof Let uε
 and uε

 be two solutions of ()-() corresponding to the data (ϕ,ψ ) and
(ϕ,ψ), respectively. By using Parseval?s relation, for (t, s) ∈ D, we have

∥∥uε
(·, t, s) – uε

(·, t, s)
∥∥ =

π


∑
n≥

(
ε + e–pn) (t–T)

p
(
ψ 

n(T + s – t) – ψ
n (T + s – t)

)

≤ ε
(t–T)

p
∥∥ψ (T + s – t) – ψ(T + s – t)

∥∥.

Similarly, for any (t, s) ∈ D, we get

∥∥uε
(·, t, s) – uε

(·, t, s)
∥∥ =

π


∑
n≥

(
ε + e–pn) (s–T)

p
(
ϕ

n(T + t – s) – ϕ
n(T + t – s)

)

≤ ε
(s–T)

p
∥∥ϕ(T + t – s) – ϕ(T + t – s)

∥∥. �

Theorem  Under conditions (A), (A) and (A), if problem () with ϕ(T) = ψ(T) admits
a unique solution u satisfying

π


sup

(t,s)∈D

∞∑
n=

e(p+t–T)n ∣∣un(t, s)
∣∣ < C, ()

and

π


sup

(t,s)∈D

∞∑
n=

e(p+s–T)n ∣∣un(t, s)
∣∣ < C, ()

where un(t, s) =
∫ π

 u(x, t, s) sin(nx) dx, let (ϕε ,ψε) be perturbed functions satisfying condi-
tions (A)-(A), respectively, and let vε be the regularized solution, given by ()-(), cor-
responding to the perturbed data (ϕε ,ψε), then for (t, s) ∈ D we have

∥∥vε(·, t, s) – u(·, t, s)
∥∥ ≤ ( +

√
C)ε

t–T+p
p ,



Tuan et al. Journal of Inequalities and Applications  (2015) 2015:13 Page 10 of 16

and for (t, s) ∈ D,

∥∥vε(·, t, s) – u(·, t, s)
∥∥ ≤ ( +

√
C)ε

s–T+p
p .

Proof For any (t, s) ∈ D, we have

u(x, t) =
∑
n≥

e(T–t)n
(

ψn(T + s – t) –
∫ T

t
e(t–η)n

fn(T + t – η, T + s – η) dη

)
sin(nx),

uε(x, t, s) =
∑
n≥

(
ε + e–pn) t–T

p

×
(

ψn(T + s – t) –
∫ T

t
e(t–η)n

fn(T + t – η, T + s – η) dη

)
sin(nx),

vε(x, t, s) =
∑
n≥

(
ε + e–pn) t–T

p

×
(

ψε
n(T + s – t) –

∫ T

t
e(t–η)n

fn(T + t – η, T + s – η) dη

)
sin(nx).

Using the triangle inequality, in order to get the error estimate, we have to estimate
‖vε(·, t, s) – uε(·, t, s)‖ and ‖uε(·, t, s) – u(·, t, s)‖. Indeed, we get

∥∥vε(·, t, s) – uε(·, t, s)
∥∥ =

π


∑
n≥

(
ε + e–pn) (t–T)

p
(
ψε

n(T + s – t) – ψn(T + s – t)
)

≤ ε
(t–T)

p
∥∥ψε(T + s – t) – ψ(T + s – t)

∥∥

≤ ε
(t–T+p)

p . ()

Next, ‖uε(·, t, s) – u(·, t, s)‖ can be estimated as follows. We put

un(t, s) = e(T–t)n
ψn(T + s – t) –

∫ T

t
e(T–η)n

fn(T + t – η, T + s – η) dη,

then we have

(
 + εenp) t–T

p un(t, s) =
((

 + εenp)e–pn) t–T
p ψn(T + s – t)

–
∫ T

t

(
 + εenp) t–T

p e(T–t)n
e(t–η)n

fn(T + t – η, T + s – η) dη

=
(
ε + e–pn) t–T

p ψn(T + s – t)

–
∫ T

t

(
ε + e–pn) t–T

p e(t–η)n
fn(T + t – η, T + s – η) dη.

Therefore, we conclude that

(
ε + e–pn) t–T

p

(
ψn(T + s – t) –

∫ T

t
e(t–η)n

fn(T + t – η, T + s – η) dη

)
≡ uε

n(t, s)

=
(
 + εenp) t–T

p un(t, s).
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Now using Parseval?s relation again, we thus obtain

∥∥uε(·, t, s)–u(·, t, s)
∥∥ =

π


∑
n≥

∣∣uε
n(t, s)–un(t, s)

∣∣ =
π


∑
n≥

(
–

(
+εenp) t–T

p
)∣∣un(t, s)

∣∣.

Thanks to Lemma  and assumption (), we have

∥∥uε(·, t, s) – u(·, t, s)
∥∥ ≤ π


∑
n≥

(
εenp)– (T–t)

p
∣∣un(t, s)

∣∣ ≤ ε
(+ t–T

p )C. ()

Combining ()-(), we obtain

∥∥vε(·, t, s) – u(·, t, s)
∥∥ ≤ ∥∥vε(·, t, s) – uε(·, t, s)

∥∥ +
∥∥uε(·, t, s) – u(·, t, s)

∥∥
≤ ε

t–T+p
p + ε

+ t–T
p

√
C ≤ ( +

√
C)ε

t–T+p
p .

Similarly, we obtain the error estimate

∥∥vε(·, t, s) – u(·, t, s)
∥∥ ≤ ( +

√
C)ε

s–T+p
p

for the case (t, s) ∈ D with assumption ().
Hence, we complete the proof. �

Remark  From Theorem , we can see that vε(·, t, s) strongly converges to u(·, t, s) in
L(,π ) for any (t, s) ∈ [, T] × [, T] as ε tends to zero. One advantage of this method
is that the endpoints of time [, T] × [, T], for example, (t, s) = (, ) and (t, s) = (T , T),
nearly have the same rate of convergence in some cases. Indeed, the convergence speed
at (t, s) = (, ) is ε

p–T
p and it is of order ε for (t, s) = (T , T). Then, if p is very large for any

fixed T > , the order ε
p–T

p may approach ε. This creates the globally stable behavior of
the error in numerical sense. On the other hand, the natural acceptance of ()-() can
be obtained at (t, s) = (, ). Namely, by letting p = T the conditions become

π



∞∑
n=

∣∣un(, )
∣∣ =

∥∥u(·, , )
∥∥.

Moreover, the error is of order O(ε
p–T

p ) for all (t, s) ∈ [, T] × [, T]. If p > T , this error
is faster than the order ln(ε–)–q, q >  as ε →  which is studied in many works, such as
[–, ]. Combining the strong points above, the reader can infer that our method is
feasible.

4 A numerical example
In order to see how well the method works, we consider problem () by choosing

f (x, t, s) = –e–t–s sin x, ψ(x, s) = e––s sin x, ϕ(x, t) = e–t– sin x,

and the domain [,π ] × [, ]. For those given functions, the problem has a unique solu-
tion

uex(x, t, s) = e–t–s sin x. ()
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Figure 1 The exact solution uex and the
approximation solution within perturbations um .

Now let us take perturbation on data functions as follows. For m ∈N, we define

ϕm(x, t) = e–t– sin x +
sin(mx)

m
,

ψm(x, s) = e–s– sin x +
sin(mx)

m
.

Thus, the solution corresponding to the perturbed data functions is

um(x, t, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e–s– sin x + e(–t)m

m sin(mx)

+ 
∫ 

t e–ηe–(+t–η)–(+s–η) sin x dη, (t, s) ∈ D,

e––t+s sin x + e(–s)m

m sin(mx)

+ 
∫ 

s e–ηe–(+t–η)–(+s–η) sin x dη, (t, s) ∈ D.

=

⎧⎨
⎩

e–s– sin x + e(–t)m

m sin(mx) + e–t–s–(e – et) sin x, (t, s) ∈ D,

e––t+s sin x + e(–s)m

m sin(mx) + e–t–s–(e – es) sin x, (t, s) ∈ D.

It is easy to see that (ϕm,ψm) converges to (ϕ,ψ) over the norm L(,π ) as m → ∞. To
observe the ill-posedness, we can compute, for example, uex(x, 

 , 
 ) = e– 

 sin x and

um

(
x,




,



)
= e

–
 sin x +

e m


m
sin(mx).

Therefore, we get

∥∥∥∥um

(
·, 


,




)
– u

(
·, 


,




)∥∥∥∥


=
∫ π



em

m sin(mx) dx =
πem

m → ∞

as m → ∞. This divergence is also shown in Figure  with m =  and m = .
Now we compute the regularized solution based on ()-() as follows.

vm(x, t, s) =
(√

π



m

+ e–p
) t–

p
e––s+t sin x +

(√
π



m

+ e–pm
) t–

p sin(mx)
m

+ 
(√

π



m

+ e–p
) t–

p
∫ 

t
et–ηe–(+t–η)–(+s–η) sin x dη
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=
(√

π



m

+ e–p
) t–

p (
e––s+t + e––t–s(e – et)) sin x

+
(√

π



m

+ e–pm
) t–

p sin(mx)
m

=
(√

π



m

+ e–p
) t–

p
e––t–s sin x +

(√
π



m

+ e–pm
) t–

p sin(mx)
m

, ()

for any (t, s) ∈ D, and

vm(x, t, s) =
(√

π



m

+ e–p
) s–

p
e––t+s sin x +

(√
π



m

+ e–pm
) s–

p sin(mx)
m

,

+ 
(√

π



m

+ e–p
) s–

p
∫ 

s
es–ηe–(+t–η)–(+s–η) sin x dη

=
(√

π



m

+ e–p
) s–

p (
e––t+s + e––t(e – es)) sin x

+
(√

π



m

+ e–pm
) s–

p sin(mx)
m

=
(√

π



m

+ e–p
) s–

p
e––t sin x +

(√
π



m

+ e–pm
) s–

p sin(mx)
m

, ()

for any (t, s) ∈ D.
To obtain numerical results, we use a uniform grid of mesh-points (x, t, s) = (xj, tk , sm),

where

xj = j�x, �x =
π

K
, j = , K ,

tk = k�t, sl = l�s, �t = �s =


M
, k, l = , M.

We thus seek the discrete solutions uj,k,l
ex = uex(xj, tk , sl) and vj,k,l

m = vm(xj, tk , sl) given by
() and ()-(), respectively.

By fixing K = , M =  and p = , the numerical results are shown in Table  and
illustrated in Figures  and . Figure  is the graphical representations for curved surfaces
of the exact solution (t, s) �→ uex( π

 , t, s) ≡ e–t–s and of the approximate solution (t, s) �→
vm( π

 , t, s) determined in ()-() with m = . In Figure , we have drawn the exact

Table 1 Comparison of absolute errors between the regularized solutions vm of m = 102 and
m = 1010

(x, t, s) Exact value App. value 1
(m = 102)

App. value 2
(m = 1010)

Abs. error 1 Abs. error 2

(π2 , 0.75, 0.75) 0.1053992246 0.0915741799 0.1053992172 0.0138250446 7.4E–09
(π2 , 0.5, 0.5) 0.2231301601 0.1684339068 0.2231301293 0.0546962533 3.08E–08
(π2 , 0.25, 0.25) 0.4723665527 0.3098032761 0.4723664549 0.1625632766 9.87E–08
(π2 , 0.125, 0.125) 0.6872892788 0.4201595585 0.6872891127 0.2671297203 1.661E–07
(π2 , 0, 0) 1 0.5698263001 0.9999997239 0.4301736999 2.761E–07
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Figure 2 Plot of the exact and regularized
solutions at the midpoint of [0,π ].

Figure 3 Plot of absolute errors at the endpoint
of time (t, s) = (0, 0).

solution x �→ uex(x, , ) ≡ sin x and the approximate solution x �→ vm(x, , ), where m
are  × ,  ×  and , respectively, in order to see the convergence at (t, s) = (, )
as m becomes very large, namely the bound ε in theoretical result tends to zero. As in
Figures  and , we can conclude that the regularized solution converges to the exact one
as the error becomes smaller and smaller. Moreover, convergence is, particularly, observed
from the absolute (abs.) errors in Table . Hence, our numerical results are all reasonable
for the theoretical result.
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5 Conclusion
In this work, a regularization method has been successfully applied to the inverse ultra-
parabolic problem. This method is to replace the instability terms appearing in the formula
of the solution which is employed by semi-group theory. Therefore, such a way forms the
so-called regularized solution which strongly converges to the exact solution in L-norm.
We also obtain the error estimate which is of order ε

p–T
p , p > T . By a numerical example,

application of the method is flexible and calculation of successive approximations is di-
rect and straightforward. This work is more general than [], a recent work of Zouyed and
Rebbani, in both error estimate and the considered problem.
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