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Abstract
In the present paper we define a class of products of multivalent close-to-star
functions and determine the set of pairs (|a|, r), |a| < r ≤ 1 – |a|, such that every
function from the class maps the diskD(a, r) := {z : |z – a| < r} onto a domain starlike
with respect to the origin. Some consequences of the obtained result are also
considered.
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1 Introduction
Let A denote the class of functions which are analytic in D =D(, ), where

D(a, r) =
{
z : |z – a| < r

}
and letAp denote the class of functions f ∈A of the form

f (z) = zp +
∞∑

n=p+

anzn
(
z ∈D;p ∈N = {, , , . . .}). ()

A function f ∈Ap is said to be starlike of order α in D(r) :=D(, r) if

Re

(
zf ′(z)
f (z)

)
> α

(
z ∈D(r);  ≤ α < p

)
.

A function f ∈A is said to be convex of order α in D if

Re

(
 +

zf ′′(z)
f ′(z)

)
> α (z ∈D;  ≤ α < ).

We denote by Sc(α) the class of all functions f ∈Ap, which are convex of order α inD and
by S∗

p (α) we denote the class of all functions f ∈ Ap, which are starlike of order α in D.
We also set S∗(α) = S∗

 ().
LetH be a subclass of the classAp. We define the radius of starlikeness of the classH by

R∗(H) = inf
f∈H

(
sup

{
r ∈ (, ] : f is starlike of order  inD(r)

})
.
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We denote by P(β),  < β ≤ , the class of functions h ∈A such that h() =  and

h(D) ⊂ �β :=
{
w ∈C \ {} : |Argw| < β

π



}
,

where Argw denote the principal argument of the complex number w (i.e. from the inter-
val (–π ,π ]). The class P :=P() is the well-known class of Carathéodory functions.
We say that a function f ∈ A belongs to the class CS∗

p(α,β) if there exists a function
g ∈ S∗

p (α) such that

f
g

∈P(β).

In particular, we denote

CS∗
p(α) = CS∗

p(α, ), CS∗(α) = CS∗
 (α), CS∗ = CS∗().

The class CS∗ is the well-known class of close-to-star functions with argument .
Silverman [] introduced the class of functions F given by the formula

F(z) = z
n∏
j=

(
fj(z)
z

)aj n∏
j=

(
g ′
j (z)

)bj (
fj ∈ S∗(α), gj ∈ Sc(β) (j = , , . . . ,n)

)
,

where aj, bj (j = , , . . . ,n) are positive real numbers satisfying the following conditions:

n∑
j=

aj = a,
n∑
j=

bj = b.

Dimkov [] studied the class of functions F given by the formula

F(z) = z
n∏
j=

(
fj(z)
z

)aj (
fj ∈ S∗(αj), j = , , . . . ,n

)
,

where aj (j = , , . . . ,n) are complex numbers satisfying the condition

n∑
j=

( – αj)|aj| ≤ a.

Let p, n be positive integer and let a, m, M, N be positive real numbers, b ∈ [–m,m].
Moreover, let

a = (a,a, . . . ,an), α = (α,α, . . . ,αn), β = (β,β, . . . ,βn)

be fixed vectors, with

aj ∈R,  ≤ αj < p,  < βj ≤  (j = , , . . . ,n).
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We denote byHn
p(a,α,β) the class of functions F given by the formula

F(z) = zp
n∏
j=

(
fj(z)
zp

)aj (
fj ∈ CS∗

p(αj,βj), j = , . . . ,n
)
. ()

By Gn
p (m,b, c) we denote union of all classesHn

p(a,α,β) for which

n∑
j=

(p – αj)|aj| =m,
n∑
j=

(p – αj)Reaj = b,
n∑
j=

βj|aj| = c. ()

Finally, let us denote

Gn
p (M,N) :=

⋃
c∈[,N]
m∈[,M]

⋃
b∈[–m,m]

Gn
p (m,b, c). ()

It is clear that the class Gn
p (M,N) contains functions F given by the formula () for which

n∑
j=

(p – αj)|aj| ≤M,
n∑
j=

βj|aj| ≤N .

Aleksandrov [] stated and solved the following problem.

Problem  Let H be the class of functions f ∈ A that are univalent in D and let � ⊂ D
be a domain starlike with respect to an inner point ω with smooth boundary given by the
formula

z(t) = ω + r(t)eit ( ≤ t ≤ π ).

Find conditions for the function r(t) such that for each f ∈ H the image domain f (�) is
starlike with respect to f (ω).

Świtoniak and Stankiewicz [, ], Dimkov and Dziok [] (see also []) have investigated
a similar problem of generalized starlikeness.

Problem  LetH ⊂A. Determine the set B∗(H) of all pairs (a, r) ∈D ×R, such that

|a| < r ≤  – |a|, ()

and every function f ∈Hmaps the disk D(a, r) onto a domain starlike with respect to the
origin. The set B∗(H) is called the set of generalized starlikeness of the classH.

We note that

R∗(H) = sup
{
r : (, r) ∈ B∗(H)

}
. ()

In this paper we determine the sets B∗(Hn
p(a,α,β)), B∗(Gn

p (m,b, c)) and B∗(Gn
p (M,N)).

The sets of generalized starlikeness for some subclasses of the defined classes are also
considered. Moreover, we obtain the radii of starlikeness of these classes of functions.

http://www.journalofinequalitiesandapplications.com/content/2015/1/5
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2 Main results
We start from listing some lemmas which will be useful later on.

Lemma  [] A function f ∈ A maps the disk D(a, r), |a| < r ≤  – |a|, onto a domain
starlike with respect to the origin if and only if

Re
eiθ f ′(a + reiθ )
f (a + reiθ )

≥  (≤ θ ≤ π ). ()

For a function f ∈ S∗
p (α) it is easy to verify that

∣∣∣∣zf ′(z)
f (z)

– α – (p – α)
 + |z|
 – |z|

∣∣∣∣ ≤ (p – α)|z|
 – |z| (z ∈D).

Thus, after some calculations we get the following lemma.

Lemma  Let f ∈ S∗
p (α), a, θ ∈R, z ∈D :=D \ {}. Then

Re

[
aeiθ

(
f ′(z)
f (z)

–
p
z

)]
≥ (p – α)

 – |z| Re
(
azeiθ – |a|).

Lemma  [] If h ∈P(β), then∣∣∣∣h′(z)
h(z)

∣∣∣∣ ≤ β
 – |z| (z ∈D).

Theorem  Let m, b, c be defined by () and set

B′ =

⎧⎪⎨⎪⎩(a, r) ∈ C×R :

⎧⎪⎨⎪⎩
 ≤ r ≤ r, |a| < r,
r < r < r, |a| ≤ ϕ(r),
r ≤ r < q, |a| ≤ q – r

⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭ , ()

B′′ =
{
(a, r) ∈ C×R : |a| < r ≤ q – |a|}, ()

where

r =
p

(m + c)
, ()

r =
p(m + c)

(m + c +
√
(m + c) – bp + p)

, ()

q =
p

m + c +
√
(m + c) – bp + p

, ()

ϕ(r) =

√
r –

( – 
√
r(m + c))

b – 
. ()

Moreover, set

B =

{
B′ for b > p/,
B′′ for b ≤ p/.

()

http://www.journalofinequalitiesandapplications.com/content/2015/1/5
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If (a, r) ∈ B, then a function F ∈ Hn
p(a,α,β) maps the disk D(a, r) onto a domain starlike

with respect to the origin. The result is sharp for b ≤ p/ and for b > p/ the set B cannot
be larger than B′′. It means that

B′ ⊂ B∗(Hn
p(a,α,β)

) ⊂ B′′ (b > p/), ()

B∗(Hn
p(a,α,β)

)
= B′′ (b≤ p/). ()

Proof Let F belong to the classHn
p(a,α,β) and let z = a+ reiθ ∈D satisfy (). The functions

gj,s(z) = e–isfj
(
eisz

)
(z ∈D; j = , , . . . ,n, s ∈R)

belong to the class CS∗
p(αj,βj) together with the functions fj(z). Thus, by () the functions

Gs(z) = e–isF
(
eisz

)
(z ∈D; s ∈R)

belong to the classHn
p(a,α,β) together with the function F(z). In consequence, we have

(a, r) ∈ B∗(Hn
p(a,α,β)

) ⇐⇒ (|a|, r) ∈ B∗(Hn
p(a,α,β)

)
(a ∈D, r ≥ ). ()

Therefore, without loss of generality we may assume that a is nonnegative real number.
Since fj ∈ CS∗

p(αj,βj), there exist functions gj ∈ S∗
p (αj) and hj ∈P(βj) such that

fj(z)
gj(z)

= hj(z) (z ∈D)

or equivalently

fj(z) = gj(z)hj(z) (z ∈D). ()

After logarithmic differentiation of the equality () we obtain

F ′(z)
F(z)

=
p
z
+

n∑
j=

aj
(
fj′(z)
fj(z)

–
p
z

)
(z ∈D).

Thus, using () we have

Re
eiθF ′(z)
F(z)

= Re
peiθ

z
+

n∑
j=

Re

(
ajeiθ

(
g ′

j(z)
gj(z)

–
p
z

))
+

n∑
j=

Re

(
ajeiθ

h′
j(z)

hj(z)

)

≥ Re
peiθ

z
+

n∑
j=

Re

(
ajeiθ

(
g ′

j(z)
gj(z)

–
p
z

))
–

n∑
j=

|aj|
∣∣∣∣h′

j(z)
hj(z)

∣∣∣∣.
By Lemma  and Lemma  we obtain

Re
eiθF ′(z)
F(z)

≥ Re
peiθ

z
+


 – |z|

n∑
j=

(p – αj)ajRe
(
zeiθ

)

–


 – |z|
n∑
j=

(p – αj)|aj| – 
 – |z|

n∑
j=

|aj|βj.

http://www.journalofinequalitiesandapplications.com/content/2015/1/5
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Setting z = a + reiθ and using () the above inequality yields

Re
eiθF ′(a + reiθ )
F(a + reiθ )

≥ Re
peiθ

a + reiθ
+ 

Re(r + ae–iθ )b –m – c
 – |a + reiθ | .

By Lemma  it is sufficient to show that the right-hand side of the last inequality is non-
negative, that is,

Re
p

r + ae–iθ
+ 

Re(r + ae–iθ )b –m – c
 – |r + ae–iθ | ≥ . ()

If we put

r + ae–iθ = x + yi,

then we obtain

px
x + y

+ 
bx –m – c
 – x – y

≥ .

Thus, using the equality

(x – r) + y = a, ()

we obtain

w(x) = r(b – p)x –
(
(b – p)

(
r – a

)
+ r(m + c) – p

)
x

+ (m + c)
(
r – a

) ≥ . ()

The discriminant � of w(x) is given by

� =
(
(b – p)

(
r – a

)
+ r(m + c) – p

)
– r(b – p)(m + c)

(
r – a

)
= AA, ()

where

A = (p – b)
(
r – a

)
+ p + r(m + c) + 

√
rp(m + c), ()

A = (p – b)
(
r – a

)
+ p + r(m + c) – 

√
rp(m + c). ()

Let

D =
{
(a, r) ∈R

 : ≤ a < r ≤  – a
}
. ()

First, we discuss the case b > p/. Thus, the inequality () is satisfied for every x ∈ [r –
a, r + a] if one of the following conditions is fulfilled:

◦ � ≤ ,
◦ � > , w(r – a)≥  and x ≤ r – a,
◦ � > , w(r + a) ≥  and x ≥ r + a,

http://www.journalofinequalitiesandapplications.com/content/2015/1/5
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where

x =
(b – p)(r – a) + r(m + c) – p

(b – p)r
. ()

Ad ◦. Since A > , by (), the condition � ≤  is equivalent to the inequality A ≤ .
Then

B :=
{
(a, r) ∈D : � ≤ 

}
=

{
(a, r) ∈D : A ≤ 

}
=

{
(a, r) ∈D : a ≤ ϕ(r)

}
,

where ϕ is defined by (). Let

γ =
{
(a, r) ∈ D : a = ϕ(r)

}
.

Then γ is the curve which is tangent to the straight lines a = r and a = q – r at the points

S = (r, r) and S = (q – r, r), ()

where r, r, q are defined by (), (), (), respectively.
Moreover, γ cuts the straight line a =  at the points

r = p
(√

m + c +
√
p(b – p) +

√
m + c

)–,
r = p

(√
m + c –

√
p(b – p) +

√
m + c

)–.
Since

 < r < r < r < r < q,

we have

γ =
{
(a, r) ∈ R

 : r ≤ r ≤ r,a = ϕ(r)
}
,

and consequently

B =
{
(a, r) ∈ R

 : r ≤ r ≤ r, ≤ a ≤ ϕ(r)
}
, ()

where ϕ is defined by () (see Figure ).
Ad ◦. Let

B :=
{
(a, r) ∈D :� > ∧w(r – a) ≥ ∧ x ≤ r – a

}
.

It is easy to verify that

w(r – a) = (r – a)
(
(b – )(r – a) – (m + c)(r – a) + 

)
= (b – )(r – a)

(
r – a – q′)(r – a – q),

http://www.journalofinequalitiesandapplications.com/content/2015/1/5
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Figure 1 The setB1.

where q is defined by () and

q′ = p
(
m + c –

√
(m + c) – bp + p

)–. ()

Since

 < q <  < q′ (
p/ < b ≤m, (a, r) ∈D

)
, ()

we see that

(r – a)
(
r – a – q′) < 

(
(a, r) ∈D

)
.

Thus, the inequality w(r – a) ≥  is true if a ≥ r – q. The inequality x ≤ r – a may be
written in the form

(b – p)a + (b – p)r – (m + c)r – (b – p)ar + p ≥ . ()

The hyperbola h, which is the boundary of the set of all pairs (a, r) ∈ R
 satisfying (),

cuts the boundary of the setD at the point S defined by () and at the point (r, ), where

r = p
(
(m + c) +

√
(m + c) – p(b – p)

)–. ()

It is easy to verify that

r < r < r < q.

Thus we determine the set

B =

{
(a, r) ∈R

 :

{
 ≤ r ≤ r, ≤ a < r,
r < r < r,ϕ(r) < a < r

}}
, ()

where ϕ is defined by () (see Figure ).

http://www.journalofinequalitiesandapplications.com/content/2015/1/5
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Figure 2 The setsB2 andB3.

Ad ◦. Let

B :=
{
(a, r) ∈D : � > ∧w(r + a)≥ ∧ x ≥ r + a

}
and let q and q′ be defined by () and (), respectively. Then

w(a + r) = (r + a)
[
(b – p)(r + a) – (m + c)(r + a) + p

]
= (b – p)(r + a)

(
r + a – q′)(r + a – q).

Moreover, by () we have

(r + a)
(
r + a – q′) < 

(
(a, r) ∈D

)
.

Thus, we conclude that the inequality w(r + a) ≥  is true if a ≤ q – r. The inequality
x ≥ r + amay be written in the form

(b – p)a + (b – p)r – (m + c)r + (b – p)ar + p ≤ . ()

The hyperbola h, which is the boundary of the set of all pairs (a, r) ∈ R
 satisfying (),

cuts the boundary of the setD at the point S defined by () and at the point (r, ), where
r is defined by (). Thus, we describe the set

B =

{
(a, r) ∈R

 :

{
r < r < r,ϕ(r) < a ≤ q – r,
r < r < q, ≤ a≤ q – r

}}
, ()

where ϕ is defined by () (see Figure ). The union of the sets B, B, B defined by (),
(), and () gives the set

B̃′ =

⎧⎪⎨⎪⎩(a, r) ∈ R
 :

⎧⎪⎨⎪⎩
 ≤ r ≤ r, ≤ a < r,
r < r < r, ≤ a≤ ϕ(r),
r ≤ r < q, ≤ a ≤ q – r

⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭ .

http://www.journalofinequalitiesandapplications.com/content/2015/1/5
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Thus, by () we have

B′ ⊂ B∗(Hn
p(a,α,β)

)
(b > p/), ()

where B′ is defined by ().
Now, let b < p/. Then the inequality () is satisfied for every x ∈ [r – a, r + a] if

w(r – a) ≥  and w(r + a)≥ . ()

We see that

w(a + r) = (b – p)(r + a)
(
r + a – q′)(r + a – q),

w(r – a) = (b – p)(r – a)
(
r – a – q′)(r – a – q),

where q and q′ are defined by () and (), respectively. Since

q′ <  < q <  (b < p/),

the condition () is satisfied if (a, r) ∈D and

a ≤ q – r. ()

Let b = /. Then by () we obtain

(
p – r(m + c)

)
x + (m + c)

(
r – a

) ≥ .

The above inequality holds for every x ∈ [r – a, r + a] if (a, r) ∈D and

r – a ≤ p
(m + c)

or equivalently (). Thus, by () we have

B′′ ⊂ B∗(Hn
p(a,α,β)

)
(b≤ p/), ()

where B′′ is defined by (). Because the function

F(z) = zp
n∏


(


( + sgn(aj)z)(p–α)

(
 – z
 + z

)βj sgn(aj))aj
(z ∈D) ()

belongs to the classHn
p(a,α,β), and for z = a + r, θ = , a + r > q we have

Re
eiθF ′(z)
F(z)

=
p – (m + c)(a + r) + (b – p)(a + r)

(a + r)( – (a + r))


< .

Lemma  yields

B∗(Hn
p(a,α,β)

) ⊂ B′′. ()

http://www.journalofinequalitiesandapplications.com/content/2015/1/5
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From () and () we have (), while () and () give (), which completes the
proof. �

Since the set B defined by () is dependent only of m, b, c, the following result is an
immediate consequence of Theorem .

Theorem  Let B be defined by (). If (a, r) ∈ B, then a function F ∈ Gn
p (m,b, c)maps the

disk D(a, r) onto a domain starlike with respect to the origin. The obtained result is sharp
for b ≤ p/ and for b > p/ the set B cannot be larger than B′′, where B′′ is defined by (). It
means that

B ⊂ B∗(Gn
p (m,b, c)

) ⊂ B′′ (b > p/),

B∗(Gn
p (m,b, c)

)
= B (b≤ p/).

The functions described by (), with () are the extremal functions.

Theorem 

B∗(Gn(M,N)
)
=

{
(a, r) ∈C×R : |a| < r ≤ q – |a|}, ()

where

q =
p

M +N +
√
(M +N) + Mp + p

.

The equality in () is realized by the function F of the form

F(z) = zp
( – z)M+N

( + z)N
(z ∈D). ()

Proof Let M, N be positive real numbers and let B′ = B′(m,b, c), B′′ = B′′(m,b, c), q =
q(m,b, c) and ϕ(r) = ϕ(r;m,b, c) be defined by (), (), (), and (), respectively.
It is easy to verify that

ϕ(r;m,b, c) ≥ q(m,p/, c) – r
(
/

(
q(m,p/, c)

) ≤ r ≤ q(m,p/, c),p/ < b≤m
)
.

Moreover, the function q = q(m,b, c) is decreasing with respect tom and c, and increasing
with respect to b. Thus, from Theorems  and  we have (see Figure )

B∗(Gn(m,p/, c)
)
= B′′(m,p/, c) ⊂ B′(m,b, c) ⊂ B∗(Gn(m,b, c)

)
(m ∈ [,M], c ∈ [,N],b ∈ (p/,m])

and

B∗(Gn(M, –M,N)
) ⊂ B∗(Gn(m,b, c)

) ⊂ B∗(Gn(m,p/, c)
)

(
m ∈ [,M], c ∈ [,N],b ∈ [–m,p/]

)
.

Therefore, by () we obtain

B∗(Gn(M,N)
)
= B∗(Gn(M, –M,N)

)
()

http://www.journalofinequalitiesandapplications.com/content/2015/1/5
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Figure 3 The setsB′ andB′′ .

and by Theorem  we get (). Putting m =M, b = –M in () we see that a,a, . . . ,an are
negative real numbers. Thus, the extremal function () has the form

F(z) = zp
n∏
j=

(


( – z)(–αj)

(
 + z
 – z

)βj)aj
(z ∈D)

or equivalently

F(z) =
zp

( – z)–
∑n

j=(–αj)|aj|

(
 + z
 – z

)–
∑n

j= βj|aj|
(z ∈D).

Consequently, using () we obtain

F(z) =
zp

( – z)–M

(
 + z
 – z

)–N

(z ∈D),

that is, we have the function () and the proof is completed. �

SinceHa
p((), (α), (β)) = CS∗

p(α,β), by Theorem  we obtain the following theorem.

Theorem  Let ≤ α < p,  < β ≤ , and

B′ =

⎧⎪⎨⎪⎩(a, r) ∈C×R :

⎧⎪⎨⎪⎩
 ≤ r ≤ r, |a| < r,
r < r < r, |a| ≤ ϕ(r),
r ≤ r < q, |a| ≤ q – r

⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭ ,

B′′ =
{
(a, r) ∈C×R : |a| < r ≤ q – |a|},

where

r =


(β – α + p)
,

r =
p(β + p – α)

(β + p – α +
√
(β – α) + βp)

,
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q =
p

β + p – α +
√
(β – α) + βp

,

ϕ(r) =

√
r –

( – 
√
r(β – α + p))

p – α – 
.

Moreover, let us put

B =

{
B′ for α < p/,
B′′ for α ≥ p/.

If (|a|, r) ∈ B, then the function f ∈ CS∗
p(α,β) maps the disk D(a, r) onto a domain starlike

with respect to the origin. The obtained result is sharp for α ≥ p/ and for α < p/ the set B
cannot be larger then B′′. It means that

B ⊂ B∗(CS∗
p(α)

) ⊂ B′′ (α < p/),

B∗(CS∗
p(α)

)
= B (α ≥ p/).

The function F of the form

F(z) = zp
( + z)β

( – z)p–α+β
(z ∈D)

is the extremal function.

Using () andTheorems -, we obtain the radii of starlikeness for the classesHn
p(a,α,β),

Gn
p (m,b, c), Gn

p (M,N), CS∗
p(α,β).

Corollary  The radius of starlikeness of the classes Gn
p (m,b, c) andHn

p(a,α,β) is given by

R∗(Gn
p (m,b, c)

)
= R∗(Hn

p(a,α,β)
)
=

p
m + c +

√
(m + c) – bp + p

.

Corollary  The radius of starlikeness of the class Gn
p (M,N) is given by

R∗(Gn
p (M,N)

)
=

p
M +N +

√
(M +N) + Mp + p

.

Corollary  The radius of starlikeness of the class CS∗
p(α,β) is given by

R∗(CS∗
p(α,β)

)
=

p
β + p – α +

√
(β – α) + βp

.

Remark  Putting β =  in Corollary  we get the radius of starlikeness of the class
CS∗

p(α) = CS∗
p(α, ) obtained by Dziok []. Putting p = β =  we get the radius of starlike-

ness of the class CS∗(α) = CS∗
 (α, ) obtained by Ratti []. Putting, moreover, α =  we get

the radius of starlikeness of the class CS∗ = CS∗
 (, ) obtained by MacGregor [].
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circle. Izv. Vysš. Učebn. Zaved., Mat. 4(11), 9-15 (1959)
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