On products of multivalent close-to-star functions

Muhammad Arif¹, Jacek Dziok ${ }^{2 *}$, Mohsan Raza ${ }^{3}$ and Janusz Sokół ${ }^{4}$

"Correspondence: jdziok@univ.rzeszow.pl
${ }^{2}$ Faculty of Mathematics and Natural Sciences, University of Rzeszów, Rzeszów, 35-310, Poland Full list of author information is available at the end of the article

Abstract

In the present paper we define a class of products of multivalent close-to-star functions and determine the set of pairs $(|a|, r),|a|<r \leq 1-|a|$, such that every function from the class maps the $\operatorname{disk} \mathcal{D}(a, r):=\{z:|z-a|<r\}$ onto a domain starlike with respect to the origin. Some consequences of the obtained result are also considered. MSC: 30C45; 30C50; 30C55 Keywords: analytic functions; close-to-star functions; generalized starlikeness; radius of starlikeness

1 Introduction

Let \mathcal{A} denote the class of functions which are analytic in $\mathcal{D}=\mathcal{D}(0,1)$, where

$$
\mathcal{D}(a, r)=\{z:|z-a|<r\}
$$

and let \mathcal{A}_{p} denote the class of functions $f \in \mathcal{A}$ of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \quad\left(z \in \mathcal{D} ; p \in \mathbb{N}_{0}=\{0,1,2, \ldots\}\right) \tag{1}
\end{equation*}
$$

A function $f \in \mathcal{A}_{p}$ is said to be starlike of order α in $\mathcal{D}(r):=\mathcal{D}(0, r)$ if

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathcal{D}(r) ; 0 \leq \alpha<p)
$$

A function $f \in \mathcal{A}_{1}$ is said to be convex of order α in \mathcal{D} if

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in \mathcal{D} ; 0 \leq \alpha<1)
$$

We denote by $\mathcal{S}^{c}(\alpha)$ the class of all functions $f \in \mathcal{A}_{p}$, which are convex of order α in \mathcal{D} and by $\mathcal{S}_{p}^{*}(\alpha)$ we denote the class of all functions $f \in \mathcal{A}_{p}$, which are starlike of order α in \mathcal{D}. We also set $\mathcal{S}^{*}(\alpha)=\mathcal{S}_{1}^{*}(0)$.
Let \mathcal{H} be a subclass of the class \mathcal{A}_{p}. We define the radius of starlikeness of the class \mathcal{H} by

$$
R^{*}(\mathcal{H})=\inf _{f \in \mathcal{H}}(\sup \{r \in(0,1]: f \text { is starlike of order } 0 \text { in } \mathcal{D}(r)\}) .
$$

[^0]We denote by $\mathcal{P}(\beta), 0<\beta \leq 1$, the class of functions $h \in \mathcal{A}$ such that $h(0)=1$ and

$$
h(\mathcal{D}) \subset \Pi_{\beta}:=\left\{w \in \mathbb{C} \backslash\{0\}:|\operatorname{Arg} w|<\beta \frac{\pi}{2}\right\}
$$

where $\operatorname{Arg} w$ denote the principal argument of the complex number w (i.e. from the inter-$\operatorname{val}(-\pi, \pi])$. The class $\mathcal{P}:=\mathcal{P}(1)$ is the well-known class of Carathéodory functions.

We say that a function $f \in \mathcal{A}$ belongs to the class $\mathcal{C} \mathcal{S}_{p}^{*}(\alpha, \beta)$ if there exists a function $g \in \mathcal{S}_{p}^{*}(\alpha)$ such that

$$
\frac{f}{g} \in \mathcal{P}(\beta) .
$$

In particular, we denote

$$
\mathcal{C} \mathcal{S}_{p}^{*}(\alpha)=\mathcal{C} \mathcal{S}_{p}^{*}(\alpha, 1), \quad \mathcal{C} \mathcal{S}^{*}(\alpha)=\mathcal{C} \mathcal{S}_{1}^{*}(\alpha), \quad \mathcal{C} \mathcal{S}^{*}=\mathcal{C} \mathcal{S}^{*}(0)
$$

The class $\mathcal{C S}^{*}$ is the well-known class of close-to-star functions with argument 0 .
Silverman [1] introduced the class of functions F given by the formula

$$
F(z)=z \prod_{j=1}^{n}\left(\frac{f_{j}(z)}{z}\right)^{a_{j}} \prod_{j=1}^{n}\left(g_{j}^{\prime}(z)\right)^{b_{j}} \quad\left(f_{j} \in \mathcal{S}^{*}(\alpha), g_{j} \in \mathcal{S}^{c}(\beta)(j=1,2, \ldots, n)\right),
$$

where $a_{j}, b_{j}(j=1,2, \ldots, n)$ are positive real numbers satisfying the following conditions:

$$
\sum_{j=1}^{n} a_{j}=a, \quad \sum_{j=1}^{n} b_{j}=b .
$$

Dimkov [2] studied the class of functions F given by the formula

$$
F(z)=z \prod_{j=1}^{n}\left(\frac{f_{j}(z)}{z}\right)^{a_{j}} \quad\left(f_{j} \in \mathcal{S}^{*}\left(\alpha_{j}\right), j=1,2, \ldots, n\right)
$$

where $a_{j}(j=1,2, \ldots, n)$ are complex numbers satisfying the condition

$$
\sum_{j=1}^{n}\left(1-\alpha_{j}\right)\left|a_{j}\right| \leq a .
$$

Let p, n be positive integer and let a, m, M, N be positive real numbers, $b \in[-m, m]$. Moreover, let

$$
\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right), \quad \boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right), \quad \boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)
$$

be fixed vectors, with

$$
a_{j} \in \mathbb{R}, \quad 0 \leq \alpha_{j}<p, \quad 0<\beta_{j} \leq 1 \quad(j=1,2, \ldots, n) .
$$

We denote by $\mathcal{H}_{p}^{n}(\mathbf{a}, \boldsymbol{\alpha}, \boldsymbol{\beta})$ the class of functions F given by the formula

$$
\begin{equation*}
F(z)=z^{p} \prod_{j=1}^{n}\left(\frac{f_{j}(z)}{z^{p}}\right)^{a_{j}} \quad\left(f_{j} \in \mathcal{C} \mathcal{S}_{p}^{*}\left(\alpha_{j}, \beta_{j}\right), j=1, \ldots, n\right) \tag{2}
\end{equation*}
$$

By $\mathcal{G}_{p}^{n}(m, b, c)$ we denote union of all classes $\mathcal{H}_{p}^{n}(\mathbf{a}, \boldsymbol{\alpha}, \boldsymbol{\beta})$ for which

$$
\begin{equation*}
\sum_{j=1}^{n}\left(p-\alpha_{j}\right)\left|a_{j}\right|=m, \quad \sum_{j=1}^{n}\left(p-\alpha_{j}\right) \operatorname{Re} a_{j}=b, \quad \sum_{j=1}^{n} \beta_{j}\left|a_{j}\right|=c . \tag{3}
\end{equation*}
$$

Finally, let us denote

$$
\begin{equation*}
\mathcal{G}_{p}^{n}(M, N):=\bigcup_{\substack{c \in[0, N] \\ m \in[0, M]}} \bigcup_{b \in[-m, m]} \mathcal{G}_{p}^{n}(m, b, c) . \tag{4}
\end{equation*}
$$

It is clear that the class $\mathcal{G}_{p}^{n}(M, N)$ contains functions F given by the formula (2) for which

$$
\sum_{j=1}^{n}\left(p-\alpha_{j}\right)\left|a_{j}\right| \leq M, \quad \sum_{j=1}^{n} \beta_{j}\left|a_{j}\right| \leq N .
$$

Aleksandrov [3] stated and solved the following problem.
Problem 1 Let \mathcal{H} be the class of functions $f \in \mathcal{A}$ that are univalent in \mathcal{D} and let $\Delta \subset \mathcal{D}$ be a domain starlike with respect to an inner point ω with smooth boundary given by the formula

$$
z(t)=\omega+r(t) e^{i t} \quad(0 \leq t \leq 2 \pi)
$$

Find conditions for the function $r(t)$ such that for each $f \in \mathcal{H}$ the image domain $f(\Delta)$ is starlike with respect to $f(\omega)$.

Świtoniak and Stankiewicz [4, 5], Dimkov and Dziok [6] (see also [7]) have investigated a similar problem of generalized starlikeness.

Problem 2 Let $\mathcal{H} \subset \mathcal{A}$. Determine the set $B^{*}(\mathcal{H})$ of all pairs $(a, r) \in \mathcal{D} \times \mathbb{R}$, such that

$$
\begin{equation*}
|a|<r \leq 1-|a|, \tag{5}
\end{equation*}
$$

and every function $f \in \mathcal{H}$ maps the $\operatorname{disk} \mathcal{D}(a, r)$ onto a domain starlike with respect to the origin. The set $B^{*}(\mathcal{H})$ is called the set of generalized starlikeness of the class \mathcal{H}.

We note that

$$
\begin{equation*}
R^{*}(\mathcal{H})=\sup \left\{r:(0, r) \in B^{*}(\mathcal{H})\right\} . \tag{6}
\end{equation*}
$$

In this paper we determine the sets $B^{*}\left(\mathcal{H}_{p}^{n}(\mathbf{a}, \boldsymbol{\alpha}, \boldsymbol{\beta})\right), B^{*}\left(\mathcal{G}_{p}^{n}(m, b, c)\right)$ and $B^{*}\left(\mathcal{G}_{p}^{n}(M, N)\right)$. The sets of generalized starlikeness for some subclasses of the defined classes are also considered. Moreover, we obtain the radii of starlikeness of these classes of functions.

2 Main results

We start from listing some lemmas which will be useful later on.
Lemma 1 [5] A function $f \in \mathcal{A}$ maps the disk $\mathcal{D}(a, r),|a|<r \leq 1-|a|$, onto a domain starlike with respect to the origin if and only if

$$
\begin{equation*}
\operatorname{Re} \frac{e^{i \theta} f^{\prime}\left(a+r e^{i \theta}\right)}{f\left(a+r e^{i \theta}\right)} \geq 0 \quad(0 \leq \theta \leq 2 \pi) \tag{7}
\end{equation*}
$$

For a function $f \in \mathcal{S}_{p}^{*}(\alpha)$ it is easy to verify that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-\alpha-(p-\alpha) \frac{1+|z|^{2}}{1-|z|^{2}}\right| \leq \frac{2(p-\alpha)|z|}{1-|z|^{2}} \quad(z \in \mathcal{D})
$$

Thus, after some calculations we get the following lemma.

Lemma 2 Let $f \in \mathcal{S}_{p}^{*}(\alpha), a, \theta \in \mathbb{R}, z \in \mathcal{D}_{0}:=\mathcal{D} \backslash\{0\}$. Then

$$
\operatorname{Re}\left[a e^{i \theta}\left(\frac{f^{\prime}(z)}{f(z)}-\frac{p}{z}\right)\right] \geq \frac{2(p-\alpha)}{1-|z|^{2}} \operatorname{Re}\left(a \bar{z} e^{i \theta}-|a|\right)
$$

Lemma 3 [8] If $h \in \mathcal{P}(\beta)$, then

$$
\left|\frac{h^{\prime}(z)}{h(z)}\right| \leq \frac{2 \beta}{1-|z|^{2}} \quad(z \in \mathcal{D})
$$

Theorem 1 Let m, b, c be defined by (3) and set

$$
\begin{align*}
& \mathcal{B}^{\prime}=\left\{(a, r) \in \mathbb{C} \times \mathbb{R}:\left\{\begin{array}{l}
0 \leq r \leq r_{1},|a|<r, \\
r_{1}<r<r_{2},|a| \leq \varphi(r), \\
r_{2} \leq r<q,|a| \leq q-r
\end{array}\right\}\right\}, \tag{8}\\
& \mathcal{B}^{\prime \prime}=\{(a, r) \in \mathbb{C} \times \mathbb{R}:|a|<r \leq q-|a|\}, \tag{9}
\end{align*}
$$

where

$$
\begin{align*}
& r_{1}=\frac{p}{4(m+c)}, \tag{10}\\
& r_{2}=\frac{p(m+c)}{\left(m+c+\sqrt{(m+c)^{2}-2 b p+p^{2}}\right)^{2}}, \tag{11}\\
& q=\frac{p}{m+c+\sqrt{(m+c)^{2}-2 b p+p^{2}}}, \tag{12}\\
& \varphi(r)=\sqrt{r^{2}-\frac{(1-2 \sqrt{r(m+c)})^{2}}{2 b-1}}, \tag{13}
\end{align*}
$$

Moreover, set

$$
\mathcal{B}= \begin{cases}\mathcal{B}^{\prime} & \text { for } b>p / 2 \tag{14}\\ \mathcal{B}^{\prime \prime} & \text { for } b \leq p / 2\end{cases}
$$

If $(a, r) \in \mathcal{B}$, then a function $F \in \mathcal{H}_{p}^{n}(\mathbf{a}, \boldsymbol{\alpha}, \boldsymbol{\beta})$ maps the disk $\mathcal{D}(a, r)$ onto a domain starlike with respect to the origin. The result is sharp for $b \leq p / 2$ and for $b>p / 2$ the set \mathcal{B} cannot be larger than $\mathcal{B}^{\prime \prime}$. It means that

$$
\begin{align*}
& \mathcal{B}^{\prime} \subset B^{*}\left(\mathcal{H}_{p}^{n}(\mathbf{a}, \boldsymbol{\alpha}, \boldsymbol{\beta})\right) \subset \mathcal{B}^{\prime \prime} \quad(b>p / 2), \tag{15}\\
& B^{*}\left(\mathcal{H}_{p}^{n}(\mathbf{a}, \boldsymbol{\alpha}, \boldsymbol{\beta})\right)=\mathcal{B}^{\prime \prime} \quad(b \leq p / 2) . \tag{16}
\end{align*}
$$

Proof Let F belong to the class $\mathcal{H}_{p}^{n}(\mathbf{a}, \boldsymbol{\alpha}, \boldsymbol{\beta})$ and let $z=a+r e^{i \theta} \in \mathcal{D}$ satisfy (5). The functions

$$
g_{j, s}(z)=e^{-i s} f_{j}\left(e^{i s} z\right) \quad(z \in \mathcal{D} ; j=1,2, \ldots, n, s \in \mathbb{R})
$$

belong to the class $\mathcal{C} \mathcal{S}_{p}^{*}\left(\alpha_{j}, \beta_{j}\right)$ together with the functions $f_{j}(z)$. Thus, by (2) the functions

$$
G_{s}(z)=e^{-i s} F\left(e^{i s} z\right) \quad(z \in \mathcal{D} ; s \in \mathbb{R})
$$

belong to the class $\mathcal{H}_{p}^{n}(\mathbf{a}, \boldsymbol{\alpha}, \boldsymbol{\beta})$ together with the function $F(z)$. In consequence, we have

$$
\begin{equation*}
(a, r) \in B^{*}\left(\mathcal{H}_{p}^{n}(\mathbf{a}, \boldsymbol{\alpha}, \boldsymbol{\beta})\right) \quad \Longleftrightarrow \quad(|a|, r) \in B^{*}\left(\mathcal{H}_{p}^{n}(\mathbf{a}, \boldsymbol{\alpha}, \boldsymbol{\beta})\right) \quad(a \in \mathcal{D}, r \geq 0) \tag{17}
\end{equation*}
$$

Therefore, without loss of generality we may assume that a is nonnegative real number. Since $f_{j} \in \mathcal{C} \mathcal{S}_{p}^{*}\left(\alpha_{j}, \beta_{j}\right)$, there exist functions $g_{j} \in \mathcal{S}_{p}^{*}\left(\alpha_{j}\right)$ and $h_{j} \in \mathcal{P}\left(\beta_{j}\right)$ such that

$$
\frac{f_{j}(z)}{g_{j}(z)}=h_{j}(z) \quad(z \in \mathcal{D})
$$

or equivalently

$$
\begin{equation*}
f_{j}(z)=g_{j}(z) h_{j}(z) \quad(z \in \mathcal{D}) \tag{18}
\end{equation*}
$$

After logarithmic differentiation of the equality (2) we obtain

$$
\frac{F^{\prime}(z)}{F(z)}=\frac{p}{z}+\sum_{j=1}^{n} a_{j}\left(\frac{f_{j}^{\prime}(z)}{f_{j}(z)}-\frac{p}{z}\right) \quad(z \in \mathcal{D})
$$

Thus, using (18) we have

$$
\begin{aligned}
\operatorname{Re} \frac{e^{i \theta} F^{\prime}(z)}{F(z)} & =\operatorname{Re} \frac{p e^{i \theta}}{z}+\sum_{j=1}^{n} \operatorname{Re}\left(a_{j} e^{i \theta}\left(\frac{g_{j}^{\prime}(z)}{g_{j}(z)}-\frac{p}{z}\right)\right)+\sum_{j=1}^{n} \operatorname{Re}\left(a_{j} e^{i \theta} \frac{h^{\prime}{ }_{j}(z)}{h_{j}(z)}\right) \\
& \geq \operatorname{Re} \frac{p e^{i \theta}}{z}+\sum_{j=1}^{n} \operatorname{Re}\left(a_{j} e^{i \theta}\left(\frac{g_{j}^{\prime}(z)}{g_{j}(z)}-\frac{p}{z}\right)\right)-\sum_{j=1}^{n}\left|a_{j}\right|\left|\frac{h^{\prime}{ }_{j}(z)}{h_{j}(z)}\right|
\end{aligned}
$$

By Lemma 2 and Lemma 3 we obtain

$$
\begin{aligned}
\operatorname{Re} \frac{e^{i \theta} F^{\prime}(z)}{F(z)} \geq & \operatorname{Re} \frac{p e^{i \theta}}{z}+\frac{2}{1-|z|^{2}} \sum_{j=1}^{n}\left(p-\alpha_{j}\right) a_{j} \operatorname{Re}\left(\bar{z} e^{i \theta}\right) \\
& -\frac{2}{1-|z|^{2}} \sum_{j=1}^{n}\left(p-\alpha_{j}\right)\left|a_{j}\right|-\frac{2}{1-|z|^{2}} \sum_{j=1}^{n}\left|a_{j}\right| \beta_{j} .
\end{aligned}
$$

Setting $z=a+r e^{i \theta}$ and using (3) the above inequality yields

$$
\operatorname{Re} \frac{e^{i \theta} F^{\prime}\left(a+r e^{i \theta}\right)}{F\left(a+r e^{i \theta}\right)} \geq \operatorname{Re} \frac{p e^{i \theta}}{a+r e^{i \theta}}+2 \frac{\operatorname{Re}\left(r+a e^{-i \theta}\right) b-m-c}{1-\left|a+r e^{i \theta}\right|^{2}} .
$$

By Lemma 1 it is sufficient to show that the right-hand side of the last inequality is nonnegative, that is,

$$
\begin{equation*}
\operatorname{Re} \frac{p}{r+a e^{-i \theta}}+2 \frac{\operatorname{Re}\left(r+a e^{-i \theta}\right) b-m-c}{1-\left|r+a e^{-i \theta}\right|^{2}} \geq 0 . \tag{19}
\end{equation*}
$$

If we put

$$
r+a e^{-i \theta}=x+y i,
$$

then we obtain

$$
\frac{p x}{x^{2}+y^{2}}+2 \frac{b x-m-c}{1-x^{2}-y^{2}} \geq 0
$$

Thus, using the equality

$$
\begin{equation*}
(x-r)^{2}+y^{2}=a^{2} \tag{20}
\end{equation*}
$$

we obtain

$$
\begin{align*}
w(x)= & 2 r(2 b-p) x^{2}-\left((2 b-p)\left(r^{2}-a^{2}\right)+4 r(m+c)-p\right) x \\
& +2(m+c)\left(r^{2}-a^{2}\right) \geq 0 . \tag{21}
\end{align*}
$$

The discriminant Δ of $w(x)$ is given by

$$
\begin{align*}
\Delta= & \left((2 b-p)\left(r^{2}-a^{2}\right)+4 r(m+c)-p\right)^{2} \\
& -16 r(2 b-p)(m+c)\left(r^{2}-a^{2}\right)=A_{1} A_{2} \tag{22}
\end{align*}
$$

where

$$
\begin{align*}
& A_{1}=(p-2 b)\left(r^{2}-a^{2}\right)+p+4 r(m+c)+4 \sqrt{r p(m+c)}, \tag{23}\\
& A_{2}=(p-2 b)\left(r^{2}-a^{2}\right)+p+4 r(m+c)-4 \sqrt{r p(m+c)} . \tag{24}
\end{align*}
$$

Let

$$
\begin{equation*}
D=\left\{(a, r) \in \mathbb{R}^{2}: 0 \leq a<r \leq 1-a\right\} . \tag{25}
\end{equation*}
$$

First, we discuss the case $b>p / 2$. Thus, the inequality (21) is satisfied for every $x \in[r-$ $a, r+a]$ if one of the following conditions is fulfilled:
$1^{\circ} \quad \Delta \leq 0$,
$2^{\circ} \Delta>0, w(r-a) \geq 0$ and $x_{0} \leq r-a$,
$3^{\circ} \Delta>0, w(r+a) \geq 0$ and $x_{0} \geq r+a$,
where

$$
\begin{equation*}
x_{0}=\frac{(2 b-p)\left(r^{2}-a^{2}\right)+4 r(m+c)-p}{4(2 b-p) r} . \tag{26}
\end{equation*}
$$

Ad 1°. Since $A_{1}>0$, by (22), the condition $\Delta \leq 0$ is equivalent to the inequality $A_{2} \leq 0$.
Then

$$
\mathcal{B}_{1}:=\{(a, r) \in D: \Delta \leq 0\}=\left\{(a, r) \in D: A_{2} \leq 0\right\}=\{(a, r) \in D: a \leq \varphi(r)\},
$$

where φ is defined by (13). Let

$$
\gamma=\{(a, r) \in \bar{D}: a=\varphi(r)\} .
$$

Then γ is the curve which is tangent to the straight lines $a=r$ and $a=q-r$ at the points

$$
\begin{equation*}
S_{1}=\left(r_{1}, r_{1}\right) \quad \text { and } \quad S_{2}=\left(q-r_{2}, r_{2}\right), \tag{27}
\end{equation*}
$$

where r_{1}, r_{2}, q are defined by (10), (11), (12), respectively.
Moreover, γ cuts the straight line $a=0$ at the points

$$
\begin{aligned}
& r_{3}=p(\sqrt{m+c+\sqrt{p(2 b-p)}}+\sqrt{m+c})^{-2}, \\
& r_{4}=p(\sqrt{m+c-\sqrt{p(2 b-p)}}+\sqrt{m+c})^{-2} .
\end{aligned}
$$

Since

$$
0<r_{3}<r_{1}<r_{2}<r_{4}<q,
$$

we have

$$
\gamma=\left\{(a, r) \in \mathbb{R}^{2}: r_{3} \leq r \leq r_{4}, a=\varphi(r)\right\},
$$

and consequently

$$
\begin{equation*}
\mathcal{B}_{1}=\left\{(a, r) \in \mathbb{R}^{2}: r_{3} \leq r \leq r_{4}, 0 \leq a \leq \varphi(r)\right\}, \tag{28}
\end{equation*}
$$

where φ is defined by (13) (see Figure 1).
Ad 2°. Let

$$
\mathcal{B}_{2}:=\left\{(a, r) \in D: \Delta>0 \wedge w(r-a) \geq 0 \wedge x_{0} \leq r-a\right\} .
$$

It is easy to verify that

$$
\begin{aligned}
w(r-a) & =(r-a)\left((2 b-1)(r-a)^{2}-2(m+c)(r-a)+1\right) \\
& =(2 b-1)(r-a)\left(r-a-q^{\prime}\right)(r-a-q),
\end{aligned}
$$

Figure 1 The set \mathcal{B}_{1}.
where q is defined by (12) and

$$
\begin{equation*}
q^{\prime}=p\left(m+c-\sqrt{(m+c)^{2}-2 b p+p^{2}}\right)^{-1} . \tag{29}
\end{equation*}
$$

Since

$$
\begin{equation*}
0<q<1<q^{\prime} \quad(p / 2<b \leq m,(a, r) \in D) \tag{30}
\end{equation*}
$$

we see that

$$
(r-a)\left(r-a-q^{\prime}\right)<0 \quad((a, r) \in D)
$$

Thus, the inequality $w(r-a) \geq 0$ is true if $a \geq r-q$. The inequality $x_{0} \leq r-a$ may be written in the form

$$
\begin{equation*}
(2 b-p) a^{2}+3(2 b-p) r^{2}-4(m+c) r-4(2 b-p) a r+p \geq 0 . \tag{31}
\end{equation*}
$$

The hyperbola h_{1}, which is the boundary of the set of all pairs $(a, r) \in \mathbb{R}^{2}$ satisfying (31), cuts the boundary of the set D at the point S_{1} defined by (27) and at the point $\left(r_{5}, 0\right)$, where

$$
\begin{equation*}
r_{5}=p\left(2(m+c)+\sqrt{4(m+c)^{2}-3 p(2 b-p)}\right)^{-1} . \tag{32}
\end{equation*}
$$

It is easy to verify that

$$
r_{3}<r_{5}<r_{4}<q .
$$

Thus we determine the set

$$
\mathcal{B}_{2}=\left\{(a, r) \in \mathbb{R}^{2}:\left\{\begin{array}{l}
0 \leq r \leq r_{3}, 0 \leq a<r, \tag{33}\\
r_{3}<r<r_{1}, \varphi(r)<a<r
\end{array}\right\}\right\},
$$

where φ is defined by (13) (see Figure 2).

Figure 2 The sets \mathcal{B}_{2} and \mathcal{B}_{3}.

Ad 3°. Let

$$
\mathcal{B}_{3}:=\left\{(a, r) \in D: \Delta>0 \wedge w(r+a) \geq 0 \wedge x_{0} \geq r+a\right\}
$$

and let q and q^{\prime} be defined by (12) and (29), respectively. Then

$$
\begin{aligned}
w(a+r) & =(r+a)\left[(2 b-p)(r+a)^{2}-2(m+c)(r+a)+p\right] \\
& =(2 b-p)(r+a)\left(r+a-q^{\prime}\right)(r+a-q) .
\end{aligned}
$$

Moreover, by (30) we have

$$
(r+a)\left(r+a-q^{\prime}\right)<0 \quad((a, r) \in D) .
$$

Thus, we conclude that the inequality $w(r+a) \geq 0$ is true if $a \leq q-r$. The inequality $x_{0} \geq r+a$ may be written in the form

$$
\begin{equation*}
(2 b-p) a^{2}+3(2 b-p) r^{2}-4(m+c) r+4(2 b-p) a r+p \leq 0 . \tag{34}
\end{equation*}
$$

The hyperbola h_{2}, which is the boundary of the set of all pairs $(a, r) \in \mathbb{R}^{2}$ satisfying (34), cuts the boundary of the set D at the point S_{2} defined by (27) and at the point $\left(r_{5}, 0\right)$, where r_{5} is defined by (32). Thus, we describe the set

$$
\mathcal{B}_{3}=\left\{(a, r) \in \mathbb{R}^{2}:\left\{\begin{array}{l}
r_{2}<r<r_{4}, \varphi(r)<a \leq q-r, \tag{35}\\
r_{4}<r<q, 0 \leq a \leq q-r
\end{array}\right\}\right\},
$$

where φ is defined by (13) (see Figure 2). The union of the sets $\mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}$ defined by (28), (33), and (35) gives the set

$$
\widetilde{\mathcal{B}^{\prime}}=\left\{(a, r) \in \mathbb{R}^{2}:\left\{\begin{array}{l}
0 \leq r \leq r_{1}, 0 \leq a<r, \\
r_{1}<r<r_{2}, 0 \leq a \leq \varphi(r), \\
r_{2} \leq r<q, 0 \leq a \leq q-r
\end{array}\right\}\right\} .
$$

Thus, by (17) we have

$$
\begin{equation*}
\mathcal{B}^{\prime} \subset B^{*}\left(\mathcal{H}_{p}^{n}(\mathbf{a}, \boldsymbol{\alpha}, \boldsymbol{\beta})\right) \quad(b>p / 2), \tag{36}
\end{equation*}
$$

where \mathcal{B}^{\prime} is defined by (8).
Now, let $b<p / 2$. Then the inequality (21) is satisfied for every $x \in[r-a, r+a]$ if

$$
\begin{equation*}
w(r-a) \geq 0 \quad \text { and } \quad w(r+a) \geq 0 . \tag{37}
\end{equation*}
$$

We see that

$$
\begin{aligned}
& w(a+r)=(2 b-p)(r+a)\left(r+a-q^{\prime}\right)(r+a-q), \\
& w(r-a)=(2 b-p)(r-a)\left(r-a-q^{\prime}\right)(r-a-q),
\end{aligned}
$$

where q and q^{\prime} are defined by (12) and (29), respectively. Since

$$
q^{\prime}<0<q<1 \quad(b<p / 2),
$$

the condition (37) is satisfied if $(a, r) \in D$ and

$$
\begin{equation*}
a \leq q-r . \tag{38}
\end{equation*}
$$

Let $b=1 / 2$. Then by (21) we obtain

$$
(p-4 r(m+c)) x+2(m+c)\left(r^{2}-a^{2}\right) \geq 0
$$

The above inequality holds for every $x \in[r-a, r+a]$ if $(a, r) \in D$ and

$$
r-a \leq \frac{p}{2(m+c)}
$$

or equivalently (38). Thus, by (17) we have

$$
\begin{equation*}
\mathcal{B}^{\prime \prime} \subset B^{*}\left(\mathcal{H}_{p}^{n}(\mathbf{a}, \boldsymbol{\alpha}, \boldsymbol{\beta})\right) \quad(b \leq p / 2) \tag{39}
\end{equation*}
$$

where $\mathcal{B}^{\prime \prime}$ is defined by (9). Because the function

$$
\begin{equation*}
F(z)=z^{p} \prod_{1}^{n}\left(\frac{1}{\left(1+\operatorname{sgn}\left(a_{j}\right) z\right)^{2(p-\alpha)}}\left(\frac{1-z}{1+z}\right)^{\beta_{j} \operatorname{sgn}\left(a_{j}\right)}\right)^{a_{j}} \quad(z \in \mathcal{D}) \tag{40}
\end{equation*}
$$

belongs to the class $\mathcal{H}_{p}^{n}(\mathbf{a}, \boldsymbol{\alpha}, \boldsymbol{\beta})$, and for $z=a+r, \theta=0, a+r>q$ we have

$$
\operatorname{Re} \frac{e^{i \theta} F^{\prime}(z)}{F(z)}=\frac{p-2(m+c)(a+r)+(2 b-p)(a+r)^{2}}{(a+r)\left(1-(a+r)^{2}\right)}<0 .
$$

Lemma 1 yields

$$
\begin{equation*}
B^{*}\left(\mathcal{H}_{p}^{n}(\mathbf{a}, \boldsymbol{\alpha}, \boldsymbol{\beta})\right) \subset \mathcal{B}^{\prime \prime} \tag{41}
\end{equation*}
$$

From (36) and (41) we have (15), while (39) and (41) give (16), which completes the proof.

Since the set \mathcal{B} defined by (14) is dependent only of m, b, c, the following result is an immediate consequence of Theorem 1 .

Theorem 2 Let \mathcal{B} be defined by (14). If $(a, r) \in \mathcal{B}$, then a function $F \in \mathcal{G}_{p}^{n}(m, b, c)$ maps the disk $\mathcal{D}(a, r)$ onto a domain starlike with respect to the origin. The obtained result is sharp for $b \leq p / 2$ and for $b>p / 2$ the set \mathcal{B} cannot be larger than $\mathcal{B}^{\prime \prime}$, where $\mathcal{B}^{\prime \prime}$ is defined by (8). It means that

$$
\begin{aligned}
& \mathcal{B} \subset B^{*}\left(\mathcal{G}_{p}^{n}(m, b, c)\right) \subset \mathcal{B}^{\prime \prime} \quad(b>p / 2), \\
& B^{*}\left(\mathcal{G}_{p}^{n}(m, b, c)\right)=\mathcal{B} \quad(b \leq p / 2)
\end{aligned}
$$

The functions described by (40), with (3) are the extremal functions.

Theorem 3

$$
\begin{equation*}
B^{*}\left(\mathcal{G}^{n}(M, N)\right)=\left\{(a, r) \in \mathbb{C} \times \mathbb{R}:|a|<r \leq q_{1}-|a|\right\}, \tag{42}
\end{equation*}
$$

where

$$
q_{1}=\frac{p}{M+N+\sqrt{(M+N)^{2}+2 M p+p^{2}}}
$$

The equality in (42) is realized by the function F of the form

$$
\begin{equation*}
F(z)=z^{p} \frac{(1-z)^{2 M+N}}{(1+z)^{N}} \quad(z \in \mathcal{D}) . \tag{43}
\end{equation*}
$$

Proof Let M, N be positive real numbers and let $\mathcal{B}^{\prime}=\mathcal{B}^{\prime}(m, b, c), \mathcal{B}^{\prime \prime}=\mathcal{B}^{\prime \prime}(m, b, c), q=$ $q(m, b, c)$ and $\varphi(r)=\varphi(r ; m, b, c)$ be defined by (8), (9), (12), and (13), respectively.

It is easy to verify that

$$
\varphi(r ; m, b, c) \geq q(m, p / 2, c)-r \quad(1 /(2 q(m, p / 2, c)) \leq r \leq q(m, p / 2, c), p / 2<b \leq m) .
$$

Moreover, the function $q=q(m, b, c)$ is decreasing with respect to m and c, and increasing with respect to b. Thus, from Theorems 1 and 2 we have (see Figure 3)

$$
\begin{aligned}
& B^{*}\left(\mathcal{G}^{n}(m, p / 2, c)\right)=\mathcal{B}^{\prime \prime}(m, p / 2, c) \subset \mathcal{B}^{\prime}(m, b, c) \subset B^{*}\left(\mathcal{G}^{n}(m, b, c)\right) \\
& \quad(m \in[0, M], c \in[0, N], b \in(p / 2, m])
\end{aligned}
$$

and

$$
\begin{aligned}
& B^{*}\left(\mathcal{G}^{n}(M,-M, N)\right) \subset B^{*}\left(\mathcal{G}^{n}(m, b, c)\right) \subset B^{*}\left(\mathcal{G}^{n}(m, p / 2, c)\right) \\
& \quad(m \in[0, M], c \in[0, N], b \in[-m, p / 2]) .
\end{aligned}
$$

Therefore, by (4) we obtain

$$
\begin{equation*}
B^{*}\left(\mathcal{G}^{n}(M, N)\right)=B^{*}\left(\mathcal{G}^{n}(M,-M, N)\right) \tag{44}
\end{equation*}
$$

Figure 3 The sets \mathcal{B}^{\prime} and $\mathcal{B}^{\prime \prime}$.
and by Theorem 2 we get (42). Putting $m=M, b=-M$ in (3) we see that $a_{1}, a_{2}, \ldots, a_{n}$ are negative real numbers. Thus, the extremal function (40) has the form

$$
F(z)=z^{p} \prod_{j=1}^{n}\left(\frac{1}{(1-z)^{2\left(1-\alpha_{j}\right)}}\left(\frac{1+z}{1-z}\right)^{\beta_{j}}\right)^{a_{j}} \quad(z \in \mathcal{D})
$$

or equivalently

$$
F(z)=\frac{z^{p}}{(1-z)^{-2 \sum_{j=1}^{n}\left(1-\alpha_{j}\right)\left|a_{j}\right|}}\left(\frac{1+z}{1-z}\right)^{-\sum_{j=1}^{n} \beta_{j}\left|a_{j}\right|} \quad(z \in \mathcal{D}) .
$$

Consequently, using (3) we obtain

$$
F(z)=\frac{z^{p}}{(1-z)^{-2 M}}\left(\frac{1+z}{1-z}\right)^{-N} \quad(z \in \mathcal{D})
$$

that is, we have the function (43) and the proof is completed.

Since $\mathcal{H}_{p}^{a}((1),(\alpha),(\beta))=\mathcal{C} \mathcal{S}_{p}^{*}(\alpha, \beta)$, by Theorem 1 we obtain the following theorem.

Theorem 4 Let $0 \leq \alpha<p, 0<\beta \leq 1$, and

$$
\begin{aligned}
& \mathcal{B}^{\prime}=\left\{(a, r) \in \mathbb{C} \times \mathbb{R}:\left\{\begin{array}{l}
0 \leq r \leq r_{1},|a|<r, \\
r_{1}<r<r_{2},|a| \leq \varphi(r), \\
r_{2} \leq r<q,|a| \leq q-r
\end{array}\right\}\right\}, \\
& \mathcal{B}^{\prime \prime}=\{(a, r) \in \mathbb{C} \times \mathbb{R}:|a|<r \leq q-|a|\},
\end{aligned}
$$

where

$$
\begin{aligned}
& r_{1}=\frac{1}{4(\beta-\alpha+p)}, \\
& r_{2}=\frac{p(\beta+p-\alpha)}{\left(\beta+p-\alpha+\sqrt{(\beta-\alpha)^{2}+2 \beta p}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& q=\frac{p}{\beta+p-\alpha+\sqrt{(\beta-\alpha)^{2}+2 \beta p}} \\
& \varphi(r)=\sqrt{r^{2}-\frac{(1-2 \sqrt{r(\beta-\alpha+p)})^{2}}{2 p-2 \alpha-1}}
\end{aligned}
$$

Moreover, let us put

$$
\mathcal{B}= \begin{cases}\mathcal{B}^{\prime} & \text { for } \alpha<p / 2 \\ \mathcal{B}^{\prime \prime} & \text { for } \alpha \geq p / 2\end{cases}
$$

If $(|a|, r) \in \mathcal{B}$, then the function $f \in \mathcal{C S}_{p}^{*}(\alpha, \beta)$ maps the disk $\mathcal{D}(a, r)$ onto a domain starlike with respect to the origin. The obtained result is sharp for $\alpha \geq p / 2$ and for $\alpha<p / 2$ the set \mathcal{B} cannot be larger then $\mathcal{B}^{\prime \prime}$. It means that

$$
\begin{aligned}
& \mathcal{B} \subset B^{*}\left(\mathcal{C S}_{p}^{*}(\alpha)\right) \subset \mathcal{B}^{\prime \prime} \quad(\alpha<p / 2), \\
& B^{*}\left(\mathcal{C S}_{p}^{*}(\alpha)\right)=\mathcal{B} \quad(\alpha \geq p / 2)
\end{aligned}
$$

The function F of the form

$$
F(z)=z^{p} \frac{(1+z)^{\beta}}{(1-z)^{2 p-2 \alpha+\beta}} \quad(z \in \mathcal{D})
$$

is the extremal function.
Using (6) and Theorems 1-4, we obtain the radii of starlikeness for the classes $\mathcal{H}_{p}^{n}(\mathbf{a}, \boldsymbol{\alpha}, \boldsymbol{\beta})$, $\mathcal{G}_{p}^{n}(m, b, c), \mathcal{G}_{p}^{n}(M, N), \mathcal{C} \mathcal{S}_{p}^{*}(\alpha, \beta)$.

Corollary 1 The radius of starlikeness of the classes $\mathcal{G}_{p}^{n}(m, b, c)$ and $\mathcal{H}_{p}^{n}(\mathbf{a}, \boldsymbol{\alpha}, \boldsymbol{\beta})$ is given by

$$
R^{*}\left(\mathcal{G}_{p}^{n}(m, b, c)\right)=R^{*}\left(\mathcal{H}_{p}^{n}(\mathbf{a}, \boldsymbol{\alpha}, \boldsymbol{\beta})\right)=\frac{p}{m+c+\sqrt{(m+c)^{2}-2 b p+p^{2}}} .
$$

Corollary 2 The radius of starlikeness of the class $\mathcal{G}_{p}^{n}(M, N)$ is given by

$$
R^{*}\left(\mathcal{G}_{p}^{n}(M, N)\right)=\frac{p}{M+N+\sqrt{(M+N)^{2}+2 M p+p^{2}}} .
$$

Corollary 3 The radius of starlikeness of the class $\mathcal{C} \mathcal{S}_{p}^{*}(\alpha, \beta)$ is given by

$$
R^{*}\left(\mathcal{C S}_{p}^{*}(\alpha, \beta)\right)=\frac{p}{\beta+p-\alpha+\sqrt{(\beta-\alpha)^{2}+2 \beta p}}
$$

Remark 1 Putting $\beta=1$ in Corollary 3 we get the radius of starlikeness of the class $\mathcal{C S}_{p}^{*}(\alpha)=\mathcal{C} \mathcal{S}_{p}^{*}(\alpha, 1)$ obtained by Dziok [7]. Putting $p=\beta=1$ we get the radius of starlikeness of the class $\mathcal{C} \mathcal{S}^{*}(\alpha)=\mathcal{C} \mathcal{S}_{1}^{*}(\alpha, 1)$ obtained by Ratti [9]. Putting, moreover, $\alpha=0$ we get the radius of starlikeness of the class $\mathcal{C} \mathcal{S}^{*}=\mathcal{C} \mathcal{S}_{1}^{*}(0,1)$ obtained by MacGregor [10].

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors jointly worked on the results and they read and approved the final manuscript.

Author details

'Department of Mathematics, Abdul Wali Khan University, Mardan, Pakistan. ${ }^{2}$ Faculty of Mathematics and Natural Sciences, University of Rzeszów, Rzeszów, 35-310, Poland. ${ }^{3}$ Department of Mathematics, GC University Faisalabad, Faisalabad, Pakistan. ${ }^{4}$ Department of Mathematics, Rzeszów University of Technology, Rzeszów, 35-959, Poland.

Acknowledgements

This work is partially supported by the Centre for Innovation and Transfer of Natural Sciences and Engineering Knowledge, University of Rzeszów.

Received: 11 October 2014 Accepted: 3 December 2014 Published: 06 Jan 2015

References

1. Silverman, H: Products of starlike and convex functions. Ann. Univ. Mariae Curie-Skłodowska, Sect. A 29, 109-116 (1975)
2. Dimkov, G: On products of starlike functions. I. Ann. Pol. Math. 55, 75-79 (1991)
3. Aleksandrov, IA: On the star-shaped character of the mappings of a domain by functions regular and univalent in the circle. Izv. Vysš. Učebn. Zaved., Mat. 4(11), 9-15 (1959)
4. Stankiewicz, J, Świtoniak, B: Generalized problems of convexity and starlikeness. In: Complex Analysis and Applications '85 (Varna, 1985), pp. 670-675. Publ. House Bulgar. Acad. Sci., Sofia (1986)
5. Świtoniak, B: On a starlikeness problem in the class of functions S ${ }_{\alpha}^{*}$. Folia Sci. Univ. Tech. Resov. 14, 17-27 (1984)
6. Dimkov, G, Dziok, J: Generalized problem of starlikeness for products of p-valent starlike functions. Serdica Math. J. 24 339-344 (1998)
7. Dziok, J: Generalized problem of starlikeness for products of close-to-star functions. Ann. Pol. Math. 107, 109-121 (2013)
8. Nunokawa, M, Causey, WM: On certain analytic functions bounded argument. Sci. Rep. Fac. Educ., Gunma Univ. 34, 1-3 (1985)
9. Ratti, JS: The radius of univalence of certain analytic functions. Math. Z. 107, 241-248 (1968)
10. MacGregor, TH: The radius of univalence of certain analytic functions. Proc. Am. Math. Soc. 14, 514-520 (1963)

10.1186/1029-242X-2015-5

Cite this article as: Arif et al.: On products of multivalent close-to-star functions. Journal of Inequalities and Applications 2015, 2015:5

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

```
Submit your next manuscript at \ springeropen.com
```


[^0]: ©2015 Arif et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

