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Abstract
In this paper, we consider oscillation criteria for certain third-order delay and
advanced dynamic equations on unbounded time scales. A time scale T is a
nonempty closed subset of the real numbers. Examples will be given to illustrate
some of the results.
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1 Introduction
In this paper, we are concerned with oscillation criteria for solutions of the third-order
delay and advanced dynamic equations
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+ q(t)f
(
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g(t)
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=  (.)

and

(


a(t)
(
x�(t)

)α

)��

= q(t)f
(
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g(t)

])
+ p(t)h

(
x
[
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])
(.)

on [t,∞)T such that t ∈ T and t ≥ , where α is the ratio of two positive odd integers,
a,p,q ∈ Crd( [t,∞)T , (,∞)) with

∫ ∞
a


α (s)�s =∞, (.)

and g,k ∈ Crd(T,T) are nondecreasing functions such that g(t) < t < k(t) and limt→∞ g(t) =
∞. We also assume that f ,h ∈ C(R,R) such that xf (x) > , xh(x) > , f (x) and h(x) are
nondecreasing for x �=  satisfying

–f (–xy) ≥ f (xy) ≥ f (x)f (y) if xy >  (.)

and

–h(–xy) ≥ h(xy) ≥ h(x)h(y) if xy > . (.)
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By a solution of (.) (or (.)) we mean a function x ∈ C
rd( [Tx,∞)T ,R), Tx ≥ t, which

has the property that (/α)(x�)α ∈ C
rd( [Tx,∞)T ,R) and satisfies (.) (or (.)) for all large

t ≥ Tx. A nontrivial solution is said to be nonoscillatory if it is eventually positive or even-
tually negative and it is oscillatory otherwise. A dynamic equation is said to be oscillatory
if all its solutions are oscillatory.
Since we are interested in the oscillatory behavior of solutions of (.) and (.) near

infinity, we assume throughout this paper that our time scale is unbounded above. An
excellent introduction of time scales calculus can be found in the books by Bohner and
Peterson [] and [].
The purpose of this paper is to extend the oscillation results given in [] and []. Os-

cillation criteria for third-order dynamic equations have recently been studied in [–].
Other papers related with oscillation of higher-order dynamic equations can be found in
[, ]. Well-known books concerning the oscillation theory are [, ].
For simplification, we define the following operators:

Lx(t) = x(t), Lx(t) =


a(t)
(
L�
 x(t)

)α , Lx(t) = L�
 x(t), Lx(t) = L�

 x(t).

Thus (.) and (.) can be written as

Lx(t) + q(t)f
(
x
[
g(t)

])
= 

and

Lx(t) = q(t)f
(
x
[
g(t)

])
+ p(t)h

(
x
[
k(t)

])
,

respectively. In what follows we use the following notation. For (t, s,T) ∈ [s,∞)T ×
[T ,∞)T × [t,∞)T

A(t, s) =
∫ t

s
a


α (u)(u – s)


α �u (.)

and

B(t, s) =
∫ t

s
a


α (u)(t – u)


α �u. (.)

2 Oscillation criteria for (1.1)
In this section, we investigate some oscillation criteria for solutions of the third-order
delay equation (.).

Theorem . Let (.) and (.) hold and assume that

f (u 
α )

u
≥ c >  (.)

for u �=  and a constant c. If for t ∈ [t,∞)T

lim sup
t→∞

∫ t

g(t)
q(s)f

(
A

(
g(s), t

))
�s >


c

(.)
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and

lim sup
t→∞

∫ t

g(t)
q(s)f

(
B
(
g(t), g(s)

))
�s >


c
, (.)

where A and B are defined as in (.) and (.), respectively, then (.) is oscillatory.

Proof Let x be a nonoscillatory solution of (.) and assume that without loss of generality
x(t) >  for t ∈ [t,∞)T and so Lx(t) ≤  eventually for t ∈ [t,∞)T. Therefore, there
exists a t ∈ [t,∞)T such that Lx(t) and Lx(t) are of one sign for all t ∈ [t,∞)T. We
now distinguish the following two cases:

(I) Lx(t) >  and Lx(t) >  eventually;
(II) Lx(t) <  and Lx(t) >  eventually.

We now start with the first case.
(I) Assume that Lx(t) >  and Lx(t) >  for t ∈ [t,∞)T. Then we have

∫ t

t
Lx(s)�s = Lx(t) – Lx(t) ≤ Lx(t), t ∈ [t,∞)T .

Since Lx is nonincreasing, we have

(t – t)Lx(t)≤ Lx(t), t ∈ [t,∞)T .

This implies that

x�(t) ≥ a

α (t)(t – t)


α L


α
 x(t), t ∈ [t,∞)T .

Integrating the above inequality from t to t, we have

x(t)≥ L

α
 x(t)

∫ t

t
a


α (s)(s – t)


α �s = A(t, t)L


α
 x(t), t ∈ [t,∞)T ,

where A is defined as in (.). Hence there exists t ∈ [t,∞)T such that

x
[
g(t)

] ≥ A
(
g(t), t

)
L


α
 x

[
g(t)

]
, t ∈ [t,∞)T . (.)

From (.) and (.) in (.) we obtain

–Lx(t)≥ q(t)f
(
A

(
g(t), t

))
f
(
L


α
 x

[
g(t)

])
, t ∈ [t,∞)T .

Integrating the above inequality from g(t) to t, we obtain

Lx
[
g(t)

] ≥
∫ t

g(t)
q(s)f

(
A

(
g(s), t

))
f
(
L


α
 x

[
g(s)

])
�s, t ∈ [t,∞)T

or

Lx
[
g(t)

] ≥ f
(
L


α
 x

[
g(t)

]) ∫ t

g(t)
q(s)f

(
A

(
g(s), t

))
�s, t ∈ [t,∞)T .
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Dividing both sides of the above inequality by f (L

α
 x[g(t)]), taking the lim sup of both sides

as t → ∞ and using (.), we obtain a contradiction to (.).
(II) Assume that Lx(t) < , Lx(t) >  for t ∈ [t,∞)T. Then we have

∫ t

s
Lx(u)�u = Lx(t) – Lx(s)≤ –Lx(s), (t, s) ∈ [s,∞)T × [t,∞)T .

Since Lx is nonincreasing, we have

–Lx(s)≥ (t – s)Lx(t), (t, s) ∈ [s,∞)T × [t,∞)T

or

–x�(s)≥ a

α (s)(t – s)


α L


α
 x(t), (t, s) ∈ [s,∞)T × [t,∞)T .

Integrating the above inequality from s to t we obtain

x(s)≥ B(t, s)L

α
 x(t), (t, s) ∈ [s,∞)T × [t,∞)T , (.)

where B is defined as in (.). Then there exists t ∈ [t,∞)T such that

x
[
g(s)

] ≥ B
(
g(t), g(s)

)
L


α
 x

[
g(t)

]
,

(
g(t), g(s)

) ∈ [
g(s),∞)

T
× [t,∞)T . (.)

Integrating (.) from g(t) to t and using (.) along with the above inequality we have

Lx
[
g(t)

] ≥
∫ t

g(t)
q(s)f

(
x
[
g(s)

])
�s ≥ f

(
L


α
 x

[
g(t)

]) ∫ t

g(t)
q(s)f

(
B
(
g(t), g(s)

))
�s.

Dividing the above inequality by f (L

α
 x[g(t)]), taking the lim sup of both sides of the above

inequality as t → ∞ and using (.), we obtain a contradiction to (.). �

For the bounded solutions of (.) we have the following, which is immediate from The-
orem ..

Corollary . In addition to (.) and (.), assume that (.) and (.) hold. Then all
bounded solutions of (.) are oscillatory.

Now we prove the following result.

Theorem . Let (.) and (.) hold and assume that

lim
u→

u
f (u 

α )
= .

If

lim sup
t→∞

∫ t

g(t)
q(s)f

(
B
(
g(t), g(s)

))
�s > ,

where B is defined as in (.), then all bounded solutions of (.) are oscillatory.
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Proof Let x be a nonoscillatory bounded solution of (.). Without loss of generality as-
sume that x is positive. Since x satisfies Case (II) in the proof of Theorem ., we have
(.). Integrating (.) from g(t) to t and using (.) along with (.) yields

Lx
[
g(t)

] ≥
∫ t

g(t)
q(s)f

(
x
[
g(s)

])
�s ≥ f

(
L


α
 x

[
g(t)

]) ∫ t

g(t)
q(s)f

(
B
(
g(t), g(s)

))
�s.

By dividing the above inequality by f (L

α
 x[g(t)]) and taking the lim sup of both sides of

the resulting inequality as t → ∞, we obtain a contradiction. The proof is now complete.
�

We now consider a special case of (.) of the form

(


a(t)
(
x�(t)

)α

)��

+ q(t)xβ
[
g(t)

]
= , (.)

where β is a ratio of two odd positive integers, and we obtain some oscillatory criteria.

Theorem . Let α ≥ β and assume that

∫ ∞
q(s)Aβ

(
g(s), t

)
�s =∞ (.)

and

∫ ∞
q(s)Bβ

(
g(s), t

)
�s =∞, (.)

where A and B are defined as in (.) and (.), respectively. Then (.) is oscillatory.

Proof Let x be a nonoscillatory solution of (.). Without loss of generality, assume that x
is positive. We consider two cases as we did in the proof of Theorem ..
(I) Assume that Lx(t) >  and Lx(t) >  for t ≥ t. Using (.) in (.), we have

–L�
 x(t) = q(t)xβ

[
g(t)

] ≥ q(t)Aβ
(
g(t), t

)
L

β
α
 x

[
g(t)

]
, g(t) ∈ [t,∞)T .

Integrating the above inequality from g(t) to u and letting u→ ∞, we obtain

L–
β
α

 x
[
g(t)

] ≥
∫ ∞

g(t)
q(s)Aβ

(
g(s), t

)
�s.

Since α ≥ β and the right hand side of the above inequality is infinity by (.), we obtain a
contradiction to the facts that Lx is positive and nondecreasing.
(II) Assume that Lx(t) < , Lx(t) >  for t ≥ t. Then we have (.). Using (.) in (.),

for (g(t), g(s)) ∈ [g(s),∞)
T

× [t,∞)T, we have

–L�
 x

[
g(t)

]
= q(t)xβ

[
g(t)

] ≥ q(t)Bβ
(
g(t), g(s)

)
L


α
 x

[
g(t)

]
.
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Integrating the above inequality from g(t) to u and letting u→ ∞, we obtain

L–
β
α

 x
[
g(t)

] ≥
∫ ∞

g(t)
q(s)Bβ

(
g(s), t

)
�s.

Since α ≥ β and the right hand side of the above inequality is infinity by (.), we obtain a
contradiction to the facts that Lx is positive and nondecreasing. �

3 Oscillation criteria for (1.2)
In this section, we investigate some oscillation criteria for solutions of the third-order
delay equation (.).

Theorem . Let (.)-(.) and (.) hold. Also assume that

h(u 
α )

u
≥ b >  (.)

for u �=  and a constant b. If for t ∈ [t,∞)T

lim sup
t→∞

∫ k(t)

t
q(s)h

(
A

(
k(s),k(t)

))
�s >


b
, (.)

and

lim sup
t→∞

∫ t

g(t)
q(s)f

(
B
(
g(t), t

))
�s >


c
, (.)

where A and B are defined as in (.) and (.), respectively, then (.) is oscillatory.

Proof Let x be an eventually positive solution of (.). Then Lx(t) ≥  eventually and so
Lx(t) and Lx(t) are eventually of one sign. We now distinguish the following two cases:

(I) Lx(t) >  and Lx(t) >  eventually;
(II) Lx(t) >  and Lx(t) <  eventually.
(I) Assume that Lx(t) >  and Lx(t) >  for t ∈ [t,∞)T. Then we have

∫ t

s
Lx(τ )�τ = Lx(t) – Lx(s)≤ Lx(t), (t, s) ∈ [s,∞)T × [t,∞)T .

Since Lx is nondecreasing, we have

Lx(t)≥ (t – s)Lx(s), (t, s) ∈ [s,∞)T × [t,∞)T .

This implies that

x�(t) ≥ a

α (t)(t – s)


α L


α
 x(s), (t, s) ∈ [s,∞)T × [t,∞)T .

Integrating both sides of the above inequality from s to t, we have

x(t)≥
∫ t

s
a


α (u)(u – s)


α L


α
 x(s)�u, (t, s) ∈ [s,∞)T × [t,∞)T
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or

x(t)≥ A(t, s)L

α
 x(s), (t, s) ∈ [s,∞)T × [t,∞)T ,

where A is defined as in (.). Then

x
[
k(τ )

] ≥ A
(
k(τ ),k(t)

)
L


α
 x

[
k(t)

]
,

(
k(t), τ , t

) ∈ [τ ,∞)T × [t,∞)T × [t,∞)T .

Using the above inequality and (.) in (.), we have

Lx(τ )≥ p(τ )h
(
x
[
k(τ )

]) ≥ p(τ )h
(
A

(
k(τ ),k(t)

))
h
(
L


α
 x

[
k(t)

])
.

Integrating both sides of the above inequality from t to k(t), we get

Lx[k(t)]

h(L

α
 x[k(t)])

≥
∫ k(t)

t
p(τ )h

(
A

(
k(τ ),k(t)

))
�τ .

Taking the lim sup of both sides of the above inequality as t → ∞, we obtain a contradic-
tion to (.).
(II) Assume that Lx(t) >  and Lx(t) <  for t ∈ [t,∞)T. Then we have

∫ t

s
Lx(u)�u = Lx(t) – Lx(s), (t, s) ∈ [s,∞)T × [t,∞)T .

Since Lx is nondecreasing, we have

x�(s) ≥ –a

α (s)(t – s)


α L


α
 x(t), (t, s) ∈ [s,∞)T × [t,∞)T .

Integrating both sides of the above inequality from t to t, we have

x(t)≥ –B(t, t)L

α
 x(t), t ∈ [t,∞)T ,

where B is defined as in (.). This implies that there exists a t ∈ [t,∞)T such that

x
[
g(t)

] ≥ –B
(
g(t), t

)
L


α
 x

[
g(t)

]
, g(t) ∈ [t,∞)T . (.)

Using the above inequality and (.) in (.), we have

Lx(t)≥ q(t)f
(
x
[
g(t)

]) ≥ q(t)f
(
B
(
g(t), t

))
f
(
–L


α
 x

[
g(t)

])
.

Integrating both sides of the above inequality from g(t) to t, we find

–Lx[g(t)]

f (–L

α
 x[g(t)])

≥
∫ t

g(t)
q(s)f

(
B
(
g(s), t

))
�s.

Taking the lim sup of both sides of the above inequality as t → ∞, we obtain a contradic-
tion to (.). The proof is complete. �
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Theorem . Assume that

h 
α (u)
u

≥ b > , (.)

and

f 
α (u)
u

≥ c > , (.)

for u �=  and constants b and c. If

lim sup
t→∞

∫ k(t)

t

(
a(s)

∫ s

t

∫ u

t
p(r)�r�u

) 
α

�s >

b

(.)

and

lim sup
t→∞

B
(
g(t), t

)(∫ ∞

t
q(s)�s

) 
α

>

c
, (.)

where B is defined as in (.), respectively, then (.) is oscillatory.

Proof Let x be an eventually positive solution of (.). As in the proof of Theorem . we
have two cases to consider.
(I) Assume that Lx(t) >  and Lx(t) >  for t ∈ [t,∞)T. Integrating (.) from t to s

yields

Lx(s)≥ h
(
x
[
k(t)

]) ∫ s

t
p(s)�s.

Integrating the above inequality from t to s ∈ [s,∞)T gives

x�(s) ≥ h

α
(
x
[
k(t)

])[
a(s)

] 
α

(∫ s

t

∫ s

t
p(s)�s�s

) 
α

.

Again integrating the above inequality from t to k(t) we find

x
(
k(t)

) ≥ h

α
(
x
[
k(t)

]) ∫ k(t)

t

(
a(s)

∫ s

t

∫ s

t
p(s)�s�s

) 
α

�s.

Finally, dividing the above inequality by h 
α (x(k(t))) and taking the lim sup of both sides of

the above inequality as t → ∞, we obtain a contradiction to (.).
(II) Assume that Lx(t) >  and Lx(t) <  for t ∈ [t,∞)T. Integrating

L�
 x(t)≥ q(t)f

(
x
[
g(t)

])
from t to ∞ we have

–Lx(t)≥ f
(
x
[
g(t)

]) ∫ ∞

t
q(s)�s.

http://www.journalofinequalitiesandapplications.com/content/2014/1/95


Adıvar et al. Journal of Inequalities and Applications 2014, 2014:95 Page 9 of 16
http://www.journalofinequalitiesandapplications.com/content/2014/1/95

Using (.) along with the above inequality, we have

x
[
g(t)

] ≥ B
(
g(t), t

)(
f
(
x
[
g(t)

]) ∫ ∞

t
q(s)�s

) 
α

.

Dividing the above inequality by f 
α (x[g(t)]) and taking the lim sup of both sides of the

resulting inequality as t → ∞, we obtain a contradiction to (.). The proof is complete.
�

4 Examples
In this section we give examples to illustrate two of our main results. Recall

Theorem . ([, Theorem .]) If f ∈ Crd and t ∈ T
κ , then

∫ σ (t)

t
f (τ )�τ = μ(t)f (t).

And

Theorem . ([, Theorem . (ii)]) If [a,b] consists of only isolated points and a < b,
then

∫ b

a
f (t)�t =

∑
t∈[a,b)

μ(t)f (t).

Our first example illustrates Theorem ..

Example . Consider the third-order delay dynamic equation

(


a(t)
(
x�(t)

)α

)��

+ q(t)xα

(
t


)
= , (.)

where t ∈ T = N . Here α = 
 , q(t) =  + (–)

ln t
ln , g(t) = t

 , and a(u) = f (u) = uα . Observe
that if t ∈ T, then

q(t) =  + (–)n =

⎧⎨
⎩, n odd,

, n even.

First we show that (.) holds. If s = m and t = n,m,n ∈N, we have

∫ ∞


a


α (s)�s = lim

t→∞

∫ t


a


α (s)�s = lim

n→∞

ρ(n)∑
s=

s(s – s) = lim
n→∞

n–∑
s=

s =∞.

It is clear that f belongs to C(R,R), is nondecreasing for x �= , and satisfies xf (x) >  for
x �=  and (.). Also, (.) holds since

f 
α (u)
u

=
u
u
=  = c > , u �= .
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Observe that if u = k and s = m for k,m ∈ N, then

A
(
g(s), 

)
= 

ρ(m–)∑
u=

u(u – ) = 
m–∑
k=

k
(
k – 

) = 
m–∑
k=

k
(
k – 

).
Note k –  >  for k ∈N. Hence

A
(
g(s), 

)
> 

m–∑
k=

k >  · (m–),

and since f is nondecreasing and q(t) ≥  on T, we obtain

q(s)f
((
A

(
g(s), 

))) ≥ 

 


 (m–).

It follows that if t ∈ [,∞)T

lim sup
t→∞

∫ t

g(t)
q(s)f

(
A

(
g(s), t

))
�s ≥ lim sup

n→∞

n–∑
s= t





 


 (n–)s

= 

 lim sup

n→∞

n–∑
m=n–



 (n–)m

> ,

and so (.) holds. It remains to show that (.) holds for t ∈ [,∞)T. This requires that
we determine B(g(t), g(s)). Using the above representations of u, s, t, we have

B
(
g(t), g(s)

)
= 

n–∑
k=m–

k
(
n– – k

) >  · (n–)(n– – n–
).

The monotonicity of f and the fact that q(t) ≥  on T yield

q(s)f
(
B
(
g(t), g(s)

))
> 


 · 

 (n–)
(
n– – n–

)
= 


 ·  

 (n–).

Therefore

lim sup
t→∞

∫ t

t


q(s)f
(
B
(
g(t), g(s)

))
�s > lim sup

n→∞



 ·  

 (n–)
n–∑
s=n–

μ(s)

= lim sup
n→∞



 ·  

 (n–)
n–∑

m=n–

m

> ,

which shows that (.) holds. By Theorem ., (.) is oscillatory.

Our second example illustrates Theorem ..
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Example . Consider the third-order advanced dynamic equation

(


a(t)
(
x�(t)

)α

)��

= q(t)xα

(
t
q

)
+ p(t)xα

(
qt

)
, (.)

where α is the ratio of two positive odd integers and t ∈ T = qN , q > . Here a(t) = ( q
(q–)t )

α ,

q(t) =
q

q– ++(–)
ln t
lnq

(q–)t , p(t) = 
tqα (q–) , g(t) =

t
q , k(t) = qt, and h(u) = f (u) = uα . Then

h 
α (u)
u

=
f 

α (u)
u

=
u
u
=  = b = c > , u �= ,

and so (.) and (.) hold. Next we show that (.) holds. For t ∈ [,∞)T, we have

lim sup
t→∞

∫ k(t)

t

(
a(s)

∫ s

t

∫ u

t
p(r)�r�u

) 
α

�s

= lim sup
t→∞

[∫ σ (t)

t

(
a(s)

∫ s

t

∫ u

t
p(r)�r�u

) 
α

�s

+
∫ σ(t)

σ (t)

(
a(s)

∫ s

t

∫ u

t
p(r)�r�u

) 
α

�s

+
∫ σ(t)

σ(t)

(
a(s)

∫ s

t

∫ u

t
p(r)�r�u

) 
α

�s
]

= lim sup
t→∞

[
μ(t)

(
a(t)

∫ t

t

∫ u

t
p(r)�r�u

) 
α

+μ
(
σ (t)

)(
a
(
σ (t)

)∫ σ (t)

t

∫ u

t
p(r)�r�u

) 
α

+μ
(
σ (t)

)(
a
(
σ (t)

)∫ σ(t)

t

∫ u

t
p(r)�r�u

) 
α
]

= lim sup
t→∞

[
μ

(
σ (t)

)(
a
(
σ (t)

)
μ(t)

∫ t

t
p(r)�r

) 
α

+μ
(
σ (t)

)(
a
(
σ (t)

)∫ σ(t)

t

∫ u

t
p(r)�r�u

) 
α
]

= lim sup
t→∞

[
μ

(
σ (t)

)(
a
(
σ (t)

)) 
α

(
μ(t)

∫ t

t
p(r)�r +μ

(
σ (t)

)∫ σ (t)

t
p(r)�r

) 
α
]

= lim sup
t→∞

[
μ

(
σ (t)

)(
a
(
σ (t)

)) 
α
(
μ

(
σ (t)

)
μ(t)p(t)

) 
α
]

= lim sup
t→∞

[
(q – )qt(q – )


α
(
qt

) 
α

q
(q – )qt


t 

α q(q – ) α

]

= lim sup
t→∞

[
q


α
]

= q

α > .
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Since q(t) >  for all t ∈ T, we have

∫ ∞

t
q(s)�s≥

∫ σ (t)

t
q(s)�s = μ(t)q(t) =

q
q – 

+  + (–)
ln t
lnq >

q
q – 

.

This implies

lim sup
t→∞

B
(
g(t), t

)(∫ ∞

t
q(s)�s

) 
α

≥
(

q
q – 

) 
α

lim sup
t→∞

∫ t
q


a


α (u)

(
t
q
– u

) 
α

�u

=
(

q
q – 

) 
α

lim sup
n→∞

n–∑
k=

q
(q – )qk

(
qn

q
– qk

) 
α

qk(q – )

= q
(

q
q – 

) 
α

lim sup
n→∞

n–∑
k=

(
qn

q
– qk

) 
α

> .

Thus (.) holds. By Theorem ., (.) is oscillatory.

5 Discussion
While we were able to unify most results for (.) given in [] and [], the comparison
result

Theorem Let (.)-(.) hold. If the first-order delay dynamic equations

y�(t) + q(t)f
(
A

(
g(t), t

))
f
(
y


α
[
g(t)

])
=  (.)

and

z�(t) + q(t)f
(
B
(
t + g(t)


, g(t)

))
f
(
z


α

[
t + g(t)



])
=  (.)

are oscillatory, then (.) is oscillatory.
cannot be extended since t+g(t)

 ∈ T is satisfied for few time scales. While the result holds
forT =R andT = Z, this condition is not satisfied on qN,q > . Being aware that time scales
are not generally closed under addition, we were able to prove the following.

Theorem . Let (.)-(.) hold. Furthermore, assume the delay function g : T → T is a
bijection. If the first-order delay dynamic equations

y�(t) + q(t)f
(
A

(
g(t), t

))
f
(
y


α
[
g(t)

])
=  (.)

and

z�(t) + q(t)f
(
B
(
t + g(t)


, g(t)

))
f
(
z


α

[
t + g(t)



])
=  (.)

are oscillatory, where (t + g(t))/ ∈ T, then (.) is oscillatory.
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In order to prove Theorem ., it is necessary to define the function F : [t,∞)T ×
[,∞) �→ [,∞) to be a nondecreasing function with respect to its second argument and
with the property that F(·, z(·)) ∈ Crd( [t,∞)T , [,∞)) for any function z ∈ Crd( [t,∞)T ,
[,∞)). It is also necessary to assume that τ : T→ T is a bijection with τ (t) < t for all t ∈ T

and limt→∞ τ (t) =∞, and to use the following definition and theorem.

Definition . Let t ∈ [t,∞)T. By a solution of the dynamic inequality

y�(t) + F
(
t, y

[
τ (t)

]) ≤  (.)

on an interval [t,∞)T, we mean a rd-continuous function y defined on the interval
[τ (t),∞)T, which is rd-continuously differentiable on [t,∞)T and satisfies (.) for all
t ∈ [t,∞)T. A solution y of (.) is said to be positive if y(t) >  for every t ∈ [τ (t),∞)T.

Theorem . Let y be a positive solution on an interval [t,∞)T, t ≥ t of the delay
dynamic inequality (.). Moreover, we assume that F is positive on any set of the form
[̂t, τ–(̂t)]T × (,∞), t̂ ∈ [t,∞)T. Then there exists a positive solution x on [τ–(t),∞)T
of the delay dynamic equation

x�(t) + F
(
t,x

[
τ (t)

])
=  (.)

such that

lim
t→∞x(t) = 

and

x(t)≤ y(t) for every t ∈ [t,∞)T .

Proof Let y be a positive solution (.). From (.) we obtain for all t̃, t ∈ T with t̃ ≥ t ≥ t

y(t) ≥ y(t̃) +
∫ t̃

t
F
(
s, y

[
τ (s)

])
�s >

∫ t̃

t
F
(
s, y

(
τ (s)

))
�s. (.)

Hence, letting t̃ → ∞ we get

y(t) ≥
∫ ∞

t
F
(
s, y

[
τ (s)

])
�s for every t ∈ [t,∞)T . (.)

Let X be the set of all nonnegative continuous functions x on the interval [t,∞)T with
x(t)≤ y(t) for every t ≥ t. Then by using (.) we can easily verify that for any function x
in X the formula

(Sx)(t) =

⎧⎨
⎩

∫ ∞
t F(s,x[τ (s)])�s, t ∈ [τ–(t),∞)T ,∫ ∞
τ–(t)

F(s,x[τ (s)])�s +
∫ τ–(t)
t F(s, y[τ (s)])�s, t ∈ [t, τ–(t))T

defines an operator S : X → X. If x,x ∈ X and x(t) ≤ x(t) for t ∈ [t,∞)T, then we also
have (Sx)(t) ≤ (Sx)(t) for t ∈ [t,∞)T since F is nondecreasing with respect to its second

http://www.journalofinequalitiesandapplications.com/content/2014/1/95
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argument. Thus, the operator S is monotone. Next, we put

x = y, and xν = Sxν–, ν = , , . . .

and observe that {xν}ν=,, is a decreasing sequence of functions in X. Furthermore, define

x = lim
ν→∞xν pointwise on [t,∞)T .

Then by applying the Lebesgue dominated convergence theorem, we obtain x = Sx. That
is

x(t) =

⎧⎨
⎩

∫ ∞
t F(s,x[τ (s)])�s if t ∈ [τ–(t),∞)T ,∫ ∞
τ–(t)

F(s,x[τ (s)])�s +
∫ τ–(t)
t F(s, y[τ (s)])�s if t ∈ [t, τ–(t))T .

(.)

From (.) it follows that

x�(t) + F
(
t,x

[
τ (t)

])
=  for all t ∈ [

τ–(t),∞
)
T

and hence x is a solution of (.) on the interval t ∈ [τ–(t),∞)T. Also (.) yields

lim
t→∞x(t) = .

Moreover, it is clear that x(t) ≤ y(t) for t ∈ [t,∞)T. It remains to prove that x is positive
on the interval [t,∞)T. Taking into account that y is positive on the interval [τ (t),∞)T
and the positivity of F on [t, τ–(t)]T × (,∞) we have

x(t)≥
∫ τ–(t)

t
F
(
s, y

[
τ (s)

])
�s > 

for each t ∈ [t, τ–(t))T. So, x is positive on an interval [t, τ–(t))T. Next we will show
that x is also positive on [τ–(t),∞)T. Assume that t̂ is the first zero of x in [τ–(t),∞)T.
Then x(t) >  for t ∈ [τ–(t),̂ t)T and x(̂t) = . Then (.) yields

 = x(̂t) =
∫ ∞

t̂
F
(
s,x

[
τ (s)

])
�s

and consequently

F
(
s,x

[
τ (s)

])
=  for all s ∈ [̂t,∞)T .

That is, we can choose a t∗ ∈ [̂t, τ–(̂t))T such that

F
(
t∗,x

[
τ
(
t∗

)])
= .

On the other hand, taking into account that x(t) >  for t ∈ [τ–(t),̂ t)T and the positivity
of F on [̂t, τ–(̂t)]T × (,∞) we get

F
(
t∗,x

[
τ
(
t∗

)])
> .

This leads to a contradiction and the proof is complete. �
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Note that Theorem . holds for any unbounded time scaleT. Nowwe present the proof
of Theorem ..

Proof Let x be an eventually positive solution of (.). We consider two cases as we did in
the proof of Theorem ..
(I) Assume that Lx(t) >  and Lx(t) >  for t ∈ [t,∞)T. Then (.) holds. Using this

and (.) in (.), we obtain

–L�
 x(t) = q(t)f

(
x
[
g(t)

]) ≥ q(t)f
(
A

(
g(t), t

))
f
(
L


α
 x

[
g(t)

])
, t ∈ [t,∞)T

or

y�(t) + q(t)f
(
A

(
g(t), t

))
f
(
y


α
[
g(t)

]) ≤ , t ∈ [t,∞)T ,

where y(t) := Lx(t) for t ∈ [t,∞)T. Since Lx(t) >  for all t ∈ [t,∞) and A(g(t), t) >
 for all t ∈ [t,∞), by Theorem ., there exists a positive solution z of (.) such that
limt→∞ z(t) = , which contradicts the hypothesis that (.) is oscillatory.
(II) Assume that Lx(t) <  and Lx(t) >  for t ≥ t. As in the proof of Theorem ., we

have (.). Then for t ∈ [t,∞)T, we have

x
[
g(t)

] ≥ B
(
t + g(t)


, g(t)

)
L


α
 x

(
t + g(t)



)
.

Using this inequality and (.) in (.) for t ∈ [t,∞)T yields

–L�
 x(t) = q(t)f

(
x
[
g(t)

]) ≥ q(t)f
(
B
(
t + g(t)


, g(t)

))
f
(
L


α
 x

[
t + g(t)



])

or

–z�(t)≥ q(t)f
(
B
(
t + g(t)


, g(t)

))
f
(
z


α

[
t + g(t)



])
,

where z(t) := Lx(t) for t ∈ [t,∞)T. Similar to Case (I) above, by Theorem ., there exists
a positive solution y of (.) such that limt→∞ y(t) = , which contradicts the fact that (.)
is oscillatory. �

In [] and [], the authors prove a comparison result for (.) similar to the one given at
the beginning of this section. That result involved t+k(t)

 . Again, since time scales are not
generally closed under addition, this result cannot be extended to a general time scale T.
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