Some properties of the interval-valued \bar{g}-integrals and a standard interval-valued \bar{g}-convolution

Lee-Chae Jang*

Correspondence:
leechae.jang@kku.ac.kr General Education Institute, Konkuk University, Chungju, 138-701, Korea

Abstract

Pap and Stajner (Fuzzy Sets Syst. 102:393-415, 1999) investigated a generalized pseudo-convolution of functions based on pseudo-operations. Jang (Fuzzy Sets Syst. 222:45-57, 2013) studied the interval-valued generalized fuzzy integral by using an interval-representable pseudo-multiplication.

In this paper, by using the concepts of interval-representable pseudo-multiplication and g-integral, we define the interval-valued \bar{g}-integral represented by its interval-valued generator \bar{g} and a standard interval-valued \bar{g}-convolution by means of the corresponding interval-valued \bar{g}-integral. We also investigate some characterizations of the interval-valued \bar{g}-integral and a standard interval-valued \bar{g}-convolution.

MSC: 28E10; 28E20; 03E72; 26E50; 11B68
Keywords: fuzzy measure; g-integral; interval-representable pseudo-multiplication; interval-valued function; interval-valued idempotent; g-convolution

1 Introduction

Benvenuti and Mesiar [1], Daraby [2], Deschrijver [3], Grbic et al. [4], Klement et al. [5], Mesiar et al. [6], Stajner-Papuga et al. [7], Sugeno [8], Sugeno and Murofushi [9], Wu et al. $[10,11]$ have been studying pseudo-multiplications and various pseudo-integrals of measurable functions. Markova and Stupnanova [12], Maslov and Samborskij [13], and Pap and Stajner [14] introduced a general notion of pseudo-convolution of functions based on pseudo-mathematical operations and investigated the idempotent with respect to a pseudo-convolution.
Many researchers [3, 4, 15-29] have studied the pseudo-integral of measurable multivalued function, for example, the Aumann integral, the fuzzy integral, and the Choquet integral of measurable interval-valued functions, in many different mathematical theories and their applications.

Recently, Jang [26] defined the interval-valued generalized fuzzy integral by using an interval-representable pseudo-multiplication and investigated their characterizations. The purpose of this study is to define the interval-valued \bar{g}-integral represented by its interval-valued generator \bar{g} and a standard interval-valued \bar{g}-convolution by means of the corresponding interval-valued \bar{g}-integral, and to investigate an interval-valued idempotent function with respect to a standard interval-valued \bar{g}-convolution.

This paper is organized in five sections. In Section 2, we list definitions and some properties of a pseudo-addition, a pseudo-multiplication, a g-integral, and a g-convolution of functions by means of the corresponding g-integral. In Section 3, we define an interval-representable pseudo-addition, an interval-representable pseudo-multiplication, the interval-valued \bar{g}-integral represented by its interval-valued generator \bar{g}, and investigate some characterizations of the interval-valued \bar{g}-integral. In Section 4, we define a standard interval-valued \bar{g}-convolution by means of the corresponding interval-valued \bar{g} integral and investigate some basic characterizations of them. In Section 5, we give a brief summary of results and some conclusions.

2 Definitions and preliminaries

Let X be a set, \mathcal{A} be a σ-algebra of X, and $\mathfrak{F}(X)$ be a set of all measurable functions f : $X \longrightarrow[0, \infty)$. We introduce a pseudo-addition and a pseudo-multiplication (see $[1-4,6$, $7,12,14,26,30])$.

Definition 2.1 ([12]) (1) A binary operation $\oplus:[0, \infty]^{2} \longrightarrow[0, \infty]$ is called a pseudoaddition if it satisfies the following axioms:
(i) $x \oplus y=y \oplus x$ for all $x, y \in[0, \infty]$,
(ii) $x \leq y \Longrightarrow x \oplus z \leq y \oplus z$ for all $x, y, z \in[0, \infty]$,
(iii) $(x \oplus y) \oplus z=x \oplus(y \oplus z)$ for all $x, y, z \in[0, \infty]$,
(iv) $\exists \mathbf{0} \in[0, \infty]$ such that $x \oplus \mathbf{0}=x$ for all $x \in[0, \infty]$,
(v) $x_{n} \longrightarrow x, y_{n} \longrightarrow y \Longrightarrow x_{n} \oplus y_{n} \longrightarrow x \oplus y$.
(2) A binary operation $\odot:[0, \infty]^{2} \longrightarrow[0, \infty]$ is called a pseudo-multiplication with respect to \oplus if it satisfies the following axioms:
(i) $x \odot y=y \odot x$ for all $x, y \in[0, \infty]$,
(ii) $x \odot(y \odot z)=x \odot(y \odot z)$ for all $x, y, z \in[0, \infty]$,
(iii) $\exists \mathbf{1} \in[0, \infty]$ such that $x \odot \mathbf{1}=x$ for all $x \in[0, \infty]$,
(iv) $(x \odot y) \oplus z=(x \odot y) \oplus(x \odot z)$ for all $x, y, z \in[0, \infty]$,
(v) $x \odot \mathbf{0}=\mathbf{0}$ for all $x \in[0, \infty]$,
(vi) $x \leq y \Longrightarrow x \odot z \leq y \odot z$ for all $x, y, z \in[0, \infty]$.

Remark $2.1([6,12,14])$ If $g:[0, \infty] \longrightarrow[0, \infty]$ is a generating function for a semigroup $([0, \infty], \oplus, \odot)$, then the pseudo-operations are of the following forms:

$$
\begin{equation*}
x \oplus y=g^{-1}(g(x)+g(y)) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x \odot y=g^{-1}(g(x) g(y)) \tag{2}
\end{equation*}
$$

Definition 2.2 ([6]) A set function $\mu: \mathcal{A} \longrightarrow[0, \infty]$ is called a $\sigma-\oplus$-measure if it satisfies the following axioms:
(i) $\mu(\emptyset)=0$,
(ii) $\mu\left(\bigcup_{i=1}^{\infty} A\right)_{i}=\bigoplus_{i=1}^{\infty} \mu\left(A_{i}\right)$ for any sequence $\left\{A_{i}\right\}$ of pairwise disjoint sets from \mathcal{A}, where $\bigoplus_{i=1}^{\infty} x_{i}=\lim _{n \rightarrow \infty} \bigoplus_{i=1}^{n} x_{i}$.

Let $\mathfrak{F}(X)$ be the set of all measurable functions $f: X \longrightarrow[0, \infty)$. We introduce the g integral with respect to a fuzzy measure induced by a pseudo-addition \oplus and a pseudomultiplication \odot in Remark 2.1.

Definition 2.3 ([6])(1) Let $g:[0, \infty] \longrightarrow[0, \infty]$ be a continuous strictly monotone increasing surjection function such that $g(0)=0$ and $f \in \mathfrak{F}(X)$. The g-integral of f on A is defined by

$$
\begin{equation*}
\int_{A}^{\oplus} f \odot d \mu=g^{-1} \int_{A} g(f(x)) d x \tag{3}
\end{equation*}
$$

where $d x$ is related to the Lebesgue measure and the integral on the right-hand side is the Lebesgue integral.
(2) f is said to be integrable if $\int_{A}^{\oplus} f \odot d \mu \in[0, \infty)$.

Let $\mathfrak{F}^{*}(X)$ be the set of all integrable functions. Then we obtain some basic properties of the g-integral with respect to a fuzzy measure.

Theorem 2.2 (1) If $A \in \mathcal{A}, f, h \in \mathfrak{F}^{*}(X)$ and $f \leq h$, then we have

$$
\begin{equation*}
\int_{A}^{\oplus} f \odot d \mu \leq \int_{A}^{\oplus} h \odot d \mu . \tag{4}
\end{equation*}
$$

(2) Let $g:[0, \infty] \longrightarrow[0, \infty]$ be a continuous strictly monotone increasing surjection function such that $g(0)=0, \oplus, \odot$ are the same pseudo-operations as in Remark 2.1. If $A \in \mathcal{A}$, $f, h \in \mathfrak{F}^{*}(X)$, then we have

$$
\begin{equation*}
\int_{A}^{\oplus}(f \oplus h) \odot d \mu=\int_{A}^{\oplus} f \odot d \mu \oplus \int_{A}^{\oplus} h \odot d \mu . \tag{5}
\end{equation*}
$$

(3) Let $g:[0, \infty] \longrightarrow[0, \infty]$ be a continuous strictly monotone increasing surjection function such that $g(0)=0, \oplus, \odot$ are the same pseudo-operations as in Remark 2.1, and $u \otimes v=g^{-1}(g(u) g(v))$ for $u, v \in[0, \infty)$. If $A \in \mathcal{A}, c \in[0, \infty), h \in \mathfrak{F}^{*}(X)$, then we have

$$
\begin{equation*}
\int_{A}^{\oplus}(c \otimes h) \odot d \mu=c \otimes \int_{A}^{\oplus} h \odot d \mu . \tag{6}
\end{equation*}
$$

Proof (1) Note that if $f, h \in \mathfrak{F}^{*}(X)$ and $f \leq h$, then

$$
\begin{equation*}
g(f(x)) \leq g(h(x)) \quad \text { and } \quad g^{-1}(f(x)) \leq g^{-1}(h(x)) . \tag{7}
\end{equation*}
$$

By Definition 2.3(1), (7), and the monotonicity of the Lebesgue integral,

$$
\begin{align*}
\int_{A}^{\oplus} f \odot d \mu & =g^{-1} \int_{A} g(f(x)) d x \\
& \leq g^{-1} \int_{A} g(h(x)) d x \\
& =\int_{A}^{\oplus} h \odot d \mu . \tag{8}
\end{align*}
$$

(2) By Definition 2.3(1) and the additivity of the Lebesgue integral,

$$
\begin{align*}
\int_{A}^{\oplus}(f \oplus h) \odot d \mu & =g^{-1} \int_{A} g\left(g^{-1}(g(f(x))+g(h(x)))\right) d x \\
& =g^{-1} \int_{A}(g(f(x))+g(h(x))) d x \\
& =g^{-1}\left[\int_{A} g(f(x)) d x+\int_{A} g(h(x)) d x\right] \\
& =g^{-1} g g^{-1} \int_{A} g(f(x)) d x+g g^{-1} \int_{A} g(h(x)) d x \\
& =g^{-1}\left(g \int_{A}^{\oplus} f \odot d \mu+g \int_{A}^{\oplus} h \odot d \mu\right) \\
& =\int_{A}^{\oplus} f \odot d \mu \oplus \int_{A}^{\oplus} h \odot d \mu . \tag{9}
\end{align*}
$$

(3) By Definition 2.3(1) and the linearity of the Lebesgue integral,

$$
\begin{align*}
\int_{A}^{\oplus}(c \otimes h) \odot d \mu & =g^{-1} \int_{A} g\left(g^{-1}(g(c) g(h))\right) d x \\
& =g^{-1}\left(\int_{A} g(c) g(h) d x\right) \\
& =g^{-1} g(c) \int_{A} g(h) d x \\
& =g^{-1} g(c) g g^{-1}\left(\int_{A} g(h) d x\right) \\
& =g^{-1} g(c) g\left(\int_{A}^{\oplus} h \odot d \mu\right) \\
& =c \otimes \int_{A}^{\oplus} h \odot d \mu . \tag{10}
\end{align*}
$$

By using the g-integral, we define the g-convolution of functions by means of the corresponding g-integral (see [2, 12-14]).

Definition 2.4 ([14]) Let g be the same function as in Theorem 2.2, let \oplus, \odot be the same pseudo-operations as in Remark 2.1, $u \otimes v=g^{-1}(g(u) g(v))$ for $u, v \in[0, \infty)$, and $f, h \in \mathfrak{F}^{*}(X)$. The g-convolution of f and h by means of the g-integral is defined by

$$
\begin{equation*}
(f * h)(t)=\int_{[0, t]}^{\oplus}[f(t-u) \otimes h(u)] \odot d \mu(u) \tag{11}
\end{equation*}
$$

for all $t \in[0, \infty)$.

Finally, we introduce the following basic characterizations of the g-convolution in [14].

Theorem 2.3 ([14]) Ifg is the same function as in Theorem $2.2, \oplus, \odot$ are the same pseudooperations as in Remark 2.1, $u \otimes v=g^{-1}(g(u) g(v))$ for $u, v \in[0, \infty)$, and $f, h \in \mathfrak{F}^{*}(X)$, then
we have

$$
\begin{equation*}
(f * h)(t)=g^{-1} \int_{0}^{t} g(f(t-u)) g(h(u)) d u \tag{12}
\end{equation*}
$$

for all $t \in[0, \infty)$.
Theorem 2.4 ([14]) Ifg is the same function as in Theorem $2.2, \oplus, \odot$ are the same pseudooperations as in Remark 2.1, $u \otimes v=g^{-1}(g(u) g(v))$ for $u, v \in[0, \infty)$, and $f, h, k \in \mathfrak{F}^{*}(X)$, then we have

$$
\begin{equation*}
f * h=h * f \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
(f * h) * k=f *(h * k) . \tag{14}
\end{equation*}
$$

3 The interval-valued \bar{g}-integrals

In this section, we consider the intervals, a standard interval-valued pseudo-addition, and a standard interval-valued pseudo-multiplication. Let $I(Y)$ be the set of all closed intervals (for short, intervals) in Y as follows:

$$
\begin{equation*}
I(Y)=\left\{\bar{a}=\left[a_{l}, a_{r}\right] \mid a_{l}, a_{r} \in Y \text { and } a_{l} \leq a_{r}\right\}, \tag{15}
\end{equation*}
$$

where Y is $[0, \infty)$ or $[0, \infty]$. For any $a \in Y$, we define $a=[a, a]$. Obviously, $a \in I(Y)$ (see [1, 21-29]).

Definition 3.1 ([26]) If $\bar{a}=\left[a_{l}, a_{r}\right], \bar{b}=\left[b_{l}, b_{r}\right], \bar{a}_{n}=\left[a_{n l}, a_{n r}\right], \bar{a}_{\alpha}=\left[a_{\alpha l}, a_{\alpha r}\right] \in I(Y)$ for all $n \in \mathbb{N}$ and $\alpha \in[0, \infty)$, and $k \in[0, \infty)$, then we define arithmetic, maximum, minimum, order, inclusion, superior, and inferior operations as follows:
(1) $\bar{a}+\bar{b}=\left[a_{l}+b_{l}, a_{r}+b_{r}\right]$,
(2) $k \bar{a}=\left[k a_{l}, k a_{r}\right]$,
(3) $\bar{a} \bar{b}=\left[a_{l} b_{l}, a_{r} b_{r}\right]$,
(4) $\bar{a} \vee \bar{b}=\left[a_{l} \vee b_{l}, a_{r} \vee b_{r}\right]$,
(5) $\bar{a} \wedge \bar{b}=\left[a_{l} \wedge b_{l}, a_{r} \wedge b_{r}\right]$,
(6) $\bar{a} \leq \bar{b}$ if and only if $a_{l} \leq b_{l}$ and $a_{r} \leq b_{r}$,
(7) $\bar{a}<\bar{b}$ if and only if $a_{l} \leq b_{l}$ and $a_{l} \neq b_{l}$,
(8) $\bar{a} \subset \bar{b}$ if and only if $b_{l} \leq a_{l}$ and $a_{r} \leq b_{r}$,
(9) $\sup _{n} \bar{a}_{n}=\left[\sup _{n} a_{n l}, \sup _{n} a_{n r}\right]$,
(10) $\inf _{n} \bar{a}_{n}=\left[\inf _{n} a_{n l}, \inf _{n} a_{n r}\right]$,
(11) $\sup _{\alpha} \bar{a}_{\alpha}=\left[\sup _{\alpha} a_{\alpha l}, \sup _{\alpha} a_{\alpha r}\right]$, and
(12) $\inf _{\alpha} \bar{a}_{\alpha}=\left[\inf _{\alpha} a_{\alpha l}, \inf _{\alpha} a_{\alpha r}\right]$.

Definition 3.2 ([26]) (1) A binary operation $\bigoplus: I([0, \infty])^{2} \longrightarrow I([0, \infty])$ is called a standard interval-valued pseudo-addition if there exist pseudo-additions \oplus_{l} and \oplus_{r} such that $x \oplus_{l} y \leq x \oplus_{r} y$ for all $x, y \in[0, \infty]$, and such that for all $\bar{a}=\left[a_{l}, a_{r}\right], \bar{b}=\left[b_{l}, b_{r}\right] \in I([0, \infty])$,

$$
\begin{equation*}
\bar{a} \bigoplus \bar{b}=\left[a_{l} \oplus_{l} b_{l}, a_{r} \oplus_{r} b_{r}\right] . \tag{16}
\end{equation*}
$$

Then \oplus_{l} and \oplus_{r} are called the representants of \oplus.
(2) A binary operation $\bigodot: I([0, \infty])^{2} \longrightarrow I([0, \infty])$ is called a standard interval-valued pseudo-multiplication if there exist pseudo-multiplications \odot_{l} and \odot_{r} such that $x \odot_{l} y \leq$ $x \odot_{r} y$ for all $x, y \in[0, \infty]$, and such that for all $\bar{a}=\left[a_{l}, a_{r}\right], \bar{b}=\left[b_{l}, b_{r}\right] \in I([0, \infty])$,

$$
\begin{equation*}
\bar{a} \bigodot \bar{b}=\left[a_{l} \odot_{l} b_{l}, a_{r} \odot_{r} b_{r}\right] . \tag{17}
\end{equation*}
$$

Then \odot_{l} and \odot_{r} are called the representants of \odot.

Theorem 3.1 Iftwo pseudo-additions \oplus_{l} and \oplus_{r} are representants of a standard intervalvalued pseudo-addition \bigoplus, two pseudo-multiplications \odot_{l} and \odot_{r} are representants of a standard interval-valued pseudo-multiplication \odot, then we have
(1) $\bar{x} \bigoplus \bar{y}=\bar{y} \bigoplus \bar{x}$ for all $\bar{x}, \bar{y} \in I([0, \infty])$,
(2) $(\bar{x} \bigoplus \bar{y}) \bigoplus \bar{z}=\bar{x} \bigoplus(\bar{y} \bigoplus \bar{z})$ for all $\bar{x}, \bar{y}, \bar{z} \in I([0, \infty])$,
(3) $\bar{x} \odot \bar{y}=\bar{y} \odot \bar{x}$ for all $\bar{x}, \bar{y} \in I([0, \infty])$,
(4) $(\bar{x} \bigodot \bar{y}) \bigodot \bar{z}=\bar{x} \bigodot(\bar{y} \bigodot \bar{z})$ for all $\bar{x}, \bar{y}, \bar{z} \in I([0, \infty])$,
(5) $\bar{x} \bigodot(\bar{y} \bigoplus \bar{z})=(\bar{x} \bigodot \bar{y}) \bigoplus(\bar{x} \bigodot \bar{z})$ for all $\bar{x}, \bar{y}, \bar{z} \in I([0, \infty])$.

Proof (1) By the commutativity of \oplus_{l} and \oplus_{r}, for any $\bar{x}, \bar{y} \in I([0, \infty])$, we have

$$
\begin{align*}
\bar{x} \bigoplus \bar{y} & =\left[x_{l} \oplus_{l} y_{l}, x_{r} \oplus_{r} y_{r}\right] \\
& =\left[y_{l} \oplus_{l} x_{l}, y_{r} \oplus_{r} x_{r}\right] \\
& =\bar{y} \bigoplus \bar{x} . \tag{18}
\end{align*}
$$

(2) By the associativity of \oplus_{l} and \oplus_{r}, for any $\bar{x}, \bar{y}, \bar{z} \in I([0, \infty])$, we have

$$
\begin{align*}
(\bar{x} \bigoplus \bar{y}) \bigoplus \bar{z} & =\left[x_{l} \oplus_{l} y_{l}, x_{r} \oplus_{r} y_{r}\right] \bigoplus\left[z_{l}, z_{r}\right] \\
& =\left[\left(x_{l} \oplus_{l} y_{l}\right) \oplus_{l} z_{l},\left(x_{r} \oplus_{r} y_{r}\right) \oplus_{r} z_{r}\right] \\
& =\left[x_{l} \oplus_{l}\left(y_{l} \oplus_{l} z_{l}\right), x_{r} \oplus_{r}\left(y_{r} \oplus_{r} z_{r}\right)\right] \\
& =\left[x_{l}, x_{r}\right] \bigoplus\left[y_{l} \oplus_{l} x_{l}, y_{r} \oplus_{r} x_{r}\right] \\
& =\bar{x} \bigoplus(\bar{y} \bigoplus \bar{z}) . \tag{19}
\end{align*}
$$

(3) By the commutativity of \odot_{l} and \odot_{r}, for any $\bar{x}, \bar{y} \in I([0, \infty])$, we have

$$
\begin{align*}
\bar{x} \bigodot \bar{y} & =\left[x_{l} \odot_{l} y_{l}, x_{r} \bigodot_{r} y_{r}\right] \\
& =\left[y_{l} \odot_{l} x_{l}, y_{r} \bigodot_{r} x_{r}\right] \\
& =\bar{y} \bigodot \bar{x} . \tag{20}
\end{align*}
$$

(4) By the associativity of \odot_{l} and \odot_{r} in Definition 2.1(2)(ii), for any $\bar{x}, \bar{y}, \bar{z} \in I([0, \infty])$, we have

$$
\begin{aligned}
(\bar{x} \bigodot \bar{y}) \bigodot \bar{z} & =\left[x_{l} \odot_{l} y_{l}, x_{r} \odot_{r} y_{r}\right] \bigodot\left[z_{l}, z_{r}\right] \\
& =\left[\left(x_{l} \odot_{l} y_{l}\right) \odot_{l} z_{l},\left(x_{r} \bigodot_{r} y_{r}\right) \odot_{r} z_{r}\right]
\end{aligned}
$$

$$
\begin{align*}
& =\left[x_{l} \odot_{l}\left(y_{l} \bigodot_{l} z_{l}\right), x_{r} \odot_{r}\left(y_{r} \odot_{r} z_{r}\right)\right] \\
& =\left[x_{l}, x_{r}\right] \bigodot_{I}\left[y_{l} \odot_{l} x_{l}, y_{r} \bigodot_{r} x_{r}\right] \\
& =\bar{x} \bigodot(\bar{y} \bigodot \bar{z}) . \tag{21}
\end{align*}
$$

(5) By the distributivity of \oplus_{s} and \odot_{s} for $s=l, r$ in Definition 2.1(2)(iv), for any $\bar{x}, \bar{y}, \bar{z} \in$ $I([0, \infty])$, we have

$$
\begin{align*}
\bar{x} \bigodot(\bar{y} \bigoplus \bar{z}) & =\left[x_{l}, x_{r}\right] \bigodot\left[y_{l} \oplus_{l} z_{l}, y_{r} \oplus_{r} z_{r}\right] \\
& =\left[x_{l} \odot_{l}\left(y_{l} \oplus_{l} z_{l}\right), x_{r} \odot_{r}\left(y_{r} \oplus_{r} z_{r}\right)\right] \\
& =\left[\left(x_{l} \odot_{l} y_{l}\right) \oplus_{l}\left(x_{l} \odot_{l} z_{l}\right),\left(x_{r} \odot_{r} y_{r}\right) \oplus_{r}\left(x_{r} \odot_{r} z_{r}\right)\right] \\
& =\left[x_{l} \odot_{l} y_{l}, x_{r} \odot_{r} y_{r}\right] \bigoplus\left[x_{l} \odot_{l} z_{l}, x_{r} \odot_{r} z_{r}\right] \\
& =(\bar{x} \bigodot \bar{y}) \bigoplus(\bar{x} \bigodot \bar{z}) . \tag{22}
\end{align*}
$$

By using a standard interval-valued pseudo-addition and a standard interval-valued pseudo-multiplication, we define the interval-valued \bar{g}-integral represented by its intervalvalued generator \bar{g}.

Definition 3.3 Let X be a set, two pseudo-additions \oplus_{l} and \oplus_{r} be representants of a standard interval-valued pseudo-addition \bigoplus, and two pseudo-multiplications \odot_{l} and \odot_{r} be representants of a standard interval-valued pseudo-multiplication \odot.
(1) An interval-valued function $\bar{f}: X \rightarrow I([0, \infty)) \backslash\{\emptyset\}$ is said to be measurable if for any open set $O \subset[0, \infty)$,

$$
\begin{equation*}
\bar{f}^{-1}(O)=\{x \in X \mid \bar{f}(x) \cap O \neq \emptyset\} \in \mathcal{A} . \tag{23}
\end{equation*}
$$

(2) Let g_{s} be a continuous strictly increasing surjective function for $s=l, r$ such that $g_{l} \leq g_{r}, \bar{g}=\left[g_{l}, g_{r}\right]$, and $g_{s}(0)=0$ for $s=l, r$. The interval-valued \bar{g}-integral with respect to a fuzzy measure μ of a measurable interval-valued function $\bar{f}=\left[f_{l}, f_{r}\right]$ is defined by

$$
\begin{equation*}
\int_{A}^{\oplus} \bar{f} \bigodot d \mu=\left[\int_{A}^{\oplus_{l}} f_{l} \odot_{l} d \mu, \int_{A}^{\oplus_{r}} f_{r} \odot_{r} d \mu\right] \tag{24}
\end{equation*}
$$

for all $A \in \mathcal{A}$.
(3) \bar{f} is said to be integrable on $A \in \mathcal{A}$ if

$$
\begin{equation*}
\int_{A}^{\oplus} \bar{f} \bigodot d \mu \in I([0, \infty]) \tag{25}
\end{equation*}
$$

Let $\mathfrak{I} \mathfrak{F}(X)$ be the set of all measurable interval-valued functions and $\mathfrak{I} \mathfrak{F}^{*}(X)$ be the set of all integrable interval-valued functions. Then, by Definition 3.3, we directly obtain the following theorem.

Theorem 3.2 If g_{s} is a continuous strictly increasing surjective function for $s=l$, r such that $g_{l} \leq g_{r}, \bar{g}=\left[g_{l}, g_{r}\right]$, and $g_{s}(0)=0$ for $s=l, r$, two pseudo-additions \oplus_{l} and \oplus_{r} are representants of a standard interval-valued pseudo-addition \bigoplus, and two pseudo-multiplications
\odot_{l} and \odot_{r} are representants of a standard interval-valued pseudo-multiplication $\odot_{\text {, then }}$ we have

$$
\begin{equation*}
\int_{A}^{\oplus} \bar{f} \bigodot d \mu=\left[g_{l}^{-1} \int_{A} g_{l}\left(f_{l}(x)\right) d x, g_{r}^{-1} \int_{A} g_{r}\left(f_{r}(x)\right) d x\right] \tag{26}
\end{equation*}
$$

Proof By Definition 2.3(1),

$$
\begin{equation*}
\int_{A}^{\oplus_{s}} f_{s} \odot_{s} d \mu=g_{s}^{-1} \int_{A} g_{s}\left(f_{s}(x)\right) d x \tag{27}
\end{equation*}
$$

for $s=l, r$. By (27) and Definition 3.3, we have

$$
\begin{align*}
\int_{A}^{\oplus} \bar{f} \bigodot d \mu & =\left[\int_{A}^{\oplus l} f_{l} \odot_{l} d \mu, \int_{A}^{\oplus r} f_{r} \odot_{r} d \mu\right] \\
& =\left[g_{l}^{-1} \int_{A} g_{l}\left(f_{l}(x)\right) d x, g_{r}^{-1} \int_{A} g_{r}\left(f_{r}(x)\right) d x\right] \tag{28}
\end{align*}
$$

By the definition of the interval-valued \bar{g}-integral, we directly obtain the following basic properties.

Theorem 3.3 Let g_{s} be a continuous strictly increasing surjective function for $s=l, r$ such that $g_{l} \leq g_{r}, \bar{g}=\left[g_{l}, g_{r}\right]$, and $g_{s}(0)=0$ for $s=l, r$, two pseudo-additions \oplus_{l} and \oplus_{r} be representants of a standard interval-valued pseudo-addition \bigoplus, two pseudo-multiplications \odot_{l} and \odot_{r} be representants of a standard interval-valued pseudo-multiplication \odot, and two pseudo-multiplications \otimes_{l} and \otimes_{r} be representants of a standard interval-valued pseudomultiplication \otimes.
(1) If $A \in \mathcal{A}$ and $\bar{f}, \bar{h} \in \mathfrak{I F}^{*}(X)$ and $\bar{f} \leq \bar{h}$, then we have

$$
\begin{equation*}
\int_{A}^{\oplus} \bar{f} \bigodot d \mu \leq \int_{A}^{\oplus} \bar{h} \bigodot d \mu \tag{29}
\end{equation*}
$$

(2) If $A \in \mathcal{A}$ and $\bar{f}, \bar{h} \in \mathfrak{I} \mathfrak{F}^{*}(X)$, then we have

$$
\begin{equation*}
\int_{A}^{\oplus}(\bar{f} \bigoplus \bar{h}) \bigodot d \mu=\int_{A}^{\oplus} \bar{f} \bigodot d \mu \bigoplus \int_{A}^{\oplus} \bar{h} \bigodot d \mu \tag{30}
\end{equation*}
$$

(3) If $A \in \mathcal{A}$ and $\bar{c}=\left[c_{l}, c_{r}\right] \in I([0, \infty)), \bar{h} \in \mathfrak{I F}^{*}(X)$, then we have

$$
\begin{equation*}
\int_{A}^{\oplus}(\bar{c} \bigotimes \bar{h}) \bigodot d \mu=\bar{c} \bigotimes \int_{A}^{\oplus} \bar{h} \bigodot d \mu \tag{31}
\end{equation*}
$$

Proof (1) Note that if $\bar{f}, \bar{h} \in \mathfrak{I} \mathfrak{F}^{*}(X)$ and $\bar{f} \leq \bar{h}$, then

$$
\begin{equation*}
f_{s} \leq h_{s} \tag{32}
\end{equation*}
$$

for $s=l, r$. Since g_{l} and g_{r} are strictly monotone increasing,

$$
\begin{equation*}
g_{s} \circ f_{s} \leq g_{s} \circ h_{s} \tag{33}
\end{equation*}
$$

for $s=l, r$. By (33) and Theorem 2.2(1),

$$
\begin{equation*}
\int_{A}^{\oplus_{s}} f_{s} \odot_{s} d \mu \leq \int_{A}^{\oplus_{s}} h_{s} \odot_{s} d \mu \tag{34}
\end{equation*}
$$

for $s=l, r$. By (34) and Theorem 3.2,

$$
\begin{align*}
\int_{A}^{\oplus} \bar{f} \bigodot d \mu & =\left[\int_{A}^{\oplus_{l}} f_{l} \odot_{l} d \mu, \int_{A}^{\oplus_{r}} f_{r} \odot_{r} d \mu\right] \\
& \leq\left[\int_{A}^{\oplus l} h_{l} \odot_{l} d \mu, \int_{A}^{\oplus_{r}} h_{r} \odot_{r} d \mu\right]=\int_{A}^{\oplus} \bar{h} \bigodot d \mu \tag{35}
\end{align*}
$$

(2) Note that if $\bar{f}, \bar{h} \in \mathfrak{I F}^{*}(X)$, then

$$
\begin{equation*}
\bar{f} \bigoplus \bar{h}=\left[f_{l} \oplus_{l} h_{l}, f_{r} \oplus_{r} h_{r}\right] . \tag{36}
\end{equation*}
$$

By Theorem 2.2(2),

$$
\begin{equation*}
\int_{A}^{\oplus_{s}}\left(f_{s} \oplus_{s} h_{s}\right) \odot_{s} d \mu=\int_{A}^{\oplus_{s}} f_{s} \odot_{s} d \mu \oplus_{s} \int_{A}^{\oplus_{s}} h_{s} \odot_{s} d \mu \tag{37}
\end{equation*}
$$

for $s=l, r$. By (37) and Theorem 3.2,

$$
\begin{align*}
& \int_{A}^{\oplus}(\bar{f} \bigoplus \bar{h}) \bigodot d \mu \\
&=\left[\int_{A}^{\oplus_{l}}\left(f_{l} \oplus_{l} h_{l}\right) \odot_{l} d \mu, \int_{A}^{\oplus_{r}}\left(f_{r} \oplus_{r} h_{r}\right) \odot_{r} d \mu\right] \\
&=\left[\int_{A}^{\oplus_{l}} f_{l} \odot_{l} d \mu \oplus_{l} \int_{A}^{\oplus_{l}} h_{l} \odot_{l} d \mu, \int_{A}^{\oplus_{r}} f_{r} \odot_{r} d \mu \oplus_{r} \int_{A}^{\oplus_{r}} h_{r} \odot_{r} d \mu\right] \\
&=\left[\int_{A}^{\oplus_{l}} f_{l} \odot_{l} d \mu, \int_{A}^{\oplus_{r}} f_{r} \odot_{r} d \mu\right] \bigoplus_{I}\left[\int_{A}^{\oplus_{l}} h_{l} \odot_{l} d \mu, \int_{A}^{\oplus_{r}} h_{r} \odot_{r} d \mu\right] \\
&=\int_{A}^{\oplus} \bar{f} \bigodot d \mu \bigoplus \int_{A}^{\oplus} \bar{h} \bigodot d \mu . \tag{38}
\end{align*}
$$

(3) Note that if $\bar{f} \in \mathfrak{I}^{*}(X)$ and $\bar{c} \in I([0, \infty))$, then

$$
\begin{equation*}
\bar{c} \bigotimes \bar{f}=\left[c_{l} \otimes_{l} f_{l}, c_{r} \otimes_{r} f_{r}\right] . \tag{39}
\end{equation*}
$$

By Theorem 2.2(3),

$$
\begin{equation*}
\int_{A}^{\oplus_{s}}\left(c_{s} \otimes_{s} f_{s}\right) \odot_{s} d \mu=c_{s} \otimes_{s} \int_{A}^{\oplus_{s}} f_{s} \odot_{s} d \mu \tag{40}
\end{equation*}
$$

for $s=l, r . \operatorname{By}(40)$ and Definition 3.3(2),

$$
\begin{aligned}
& \int_{A}^{\oplus}(\bar{c} \bigotimes \bar{f}) \bigodot d \mu \\
& \quad=\left[\int_{A}^{\oplus l}\left(c_{l} \otimes_{l} f_{l}\right) \odot_{l} d \mu, \int_{A}^{\oplus_{r}}\left(c_{r} \otimes_{r} f_{r}\right) \odot_{r} d \mu\right]
\end{aligned}
$$

$$
\begin{align*}
& =\left[c_{l} \otimes_{l} \int_{A}^{\oplus} f_{l} \odot_{l} d \mu, c_{r} \otimes_{r} \int_{A}^{\oplus_{r}} f_{r} \odot_{r} d \mu\right] \\
& =\bar{c} \bigotimes \int_{A}^{\oplus} \bar{f} \bigodot d \mu . \tag{41}
\end{align*}
$$

4 An interval-valued \bar{g}-convolution

In this section, by using the interval-valued \bar{g}-integral, we define the interval-valued \bar{g} convolution of interval-valued functions in $\mathfrak{I} \mathfrak{F}^{*}(X)$.

Definition 4.1 If $\bar{g}, \bigoplus, \odot$, and \otimes satisfy the hypotheses of Theorem 3.2 , then the interval-valued \bar{g}-convolution is defined by

$$
\begin{equation*}
(\bar{f} \star \bar{h})(t)=\int_{[0, t]}^{\oplus}[\bar{f}(t-u) \bigotimes \bar{h}(u)] \bigodot d \mu(u) \tag{42}
\end{equation*}
$$

for all $t \in[0, \infty)$.
From Definition 4.1, we directly obtain some characterization of an interval-valued \bar{g} convolution by means of the interval-valued \bar{g}-integrals.

Theorem 4.1 If $\bar{g}, \bigoplus, \odot$, and \otimes satisfy the hypotheses of Theorem 3.2, then we have

$$
\begin{equation*}
\bar{f} \star \bar{h}=\left[f_{l} *_{l} h_{l}, f_{r} *_{r} h_{r}\right], \tag{43}
\end{equation*}
$$

where $\left(f_{s} *_{s} h_{s}\right)(t)=\int_{[0, t]}^{\oplus_{s}} f_{s}(t-u) \odot_{s} d \mu$ for $s=l, r$.
Proof By Definition 2.4, we have

$$
\begin{equation*}
\left(f_{s} *_{s} h_{s}\right)(t)=\int_{[0, t]}^{\oplus_{s}} f_{s}(t-u) \otimes_{s} h_{s}(u) \odot_{s} d \mu(u) \tag{44}
\end{equation*}
$$

for $s=l, r$. By Theorem 3.2 and (44),

$$
\begin{align*}
(\bar{f} \star \bar{h})(t) & =\int_{[0, t]}^{\oplus}(\bar{f}(t-u) \bigotimes \bar{h}(u)) \bigodot d \mu(u) \\
& =\int_{[0, t]}^{\oplus}\left[f_{l}(t-u) \otimes_{l} h_{l}(u), f_{r}(t-u) \otimes_{r} h_{r}(u)\right] \bigodot d \mu(u) \\
& =\left[\int_{[0, t]}^{\oplus_{l}} f_{l}(t-u) \otimes_{l} h_{l}(u) \odot_{l} d \mu, \int_{[0, t]}^{\oplus_{r}} f_{r}(t-u) \otimes_{r} h_{r}(u) \odot_{r} d \mu\right] \\
& =\left[\left(f_{l} *_{l} h_{l}\right)(t),\left(f_{r} *_{r} h_{r}\right)(t)\right] . \tag{45}
\end{align*}
$$

From Theorem 4.1, we investigate the commutativity and the associativity of a standard interval-valued \bar{g}-convolution.

Theorem 4.2 If $\bar{g}, \bigoplus, \odot$, and \otimes satisfy the hypotheses of Theorem 3.2 and \bar{f}, \bar{h}, and $\bar{k} \in \mathfrak{I}^{*}(X)$, then we have
(1) $\bar{f} \star \bar{h}=\bar{h} \star \bar{f}$,
(2) $(\bar{f} \star \bar{h}) \star \bar{k}=\bar{f} \star(\bar{h} \star \bar{k})$.

Proof Let $\bar{f}=\left[f_{l}, f_{r}\right], \bar{h}=\left[h_{l}, h_{r}\right], \bar{k}=\left[k_{l}, k_{r}\right] \in \mathfrak{I} \mathfrak{F}^{*}(X)$. By (16), we have

$$
\begin{equation*}
f_{l} *_{l} h_{l}=h_{l} *_{l} f_{l} \quad \text { and } \quad f_{r} *_{r} h_{r}=h_{r} *_{r} f_{r} . \tag{46}
\end{equation*}
$$

By Theorem 4.1 and (46), we have

$$
\begin{align*}
\bar{f} \star \bar{h} & =\left[f_{l} *_{l} h_{l}, f_{r} *_{r} h_{r}\right] \\
& =\left[h_{l} *_{l} f_{l}, h_{r} *_{r} f_{r}\right] \\
& =\bar{h} \star \bar{f} . \tag{47}
\end{align*}
$$

By (17), we have

$$
\begin{equation*}
\left(f_{l} *_{l} h_{l}\right) *_{l} k_{l}=f_{l} *_{l}\left(h_{l} *_{l} k_{l}\right) \quad \text { and } \quad\left(f_{r} *_{r} h_{r}\right) *_{r} k_{r}=f_{r} *_{r}\left(h_{r} *_{r} k_{r}\right) . \tag{48}
\end{equation*}
$$

By Theorem 4.1 and (48),

$$
\begin{align*}
(\bar{f} \star \bar{h}) \star \bar{k} & =\left[\left(f_{l} *_{l} h_{l}\right) *_{l} k_{l},\left(f_{r} *_{r} h_{r}\right) *_{r} k_{r}\right] \\
& =\left[f_{l} *_{l}\left(h_{l} *_{l} k_{l}\right), f_{r} *_{r}\left(h_{r} *_{r} k_{r}\right)\right] \\
& =\bar{f} \star(\bar{h} \star \bar{k}) . \tag{49}
\end{align*}
$$

Finally, we illustrate the following examples which are related with the interval-valued \bar{g}-integral and the interval-valued \bar{g}-convolution as follows.

Example 4.1 We give three examples of the interval-valued \bar{g}-integral.
(1) If $g_{l}(x)=g_{r}(x)=x$ for all $x \in[0, \infty]$ are the generators of $\odot_{l}, \odot_{r}, \oplus_{l}$, and \oplus_{r}, and $\bar{f}(x)=\left[\frac{e^{-x}}{2}, e^{-x}\right]$ for all $x \in[0, \infty)$, and $A=[0, t]$ for all $t \in[0, \infty)$, then we have

$$
\begin{align*}
\int_{A}^{\oplus} \bar{f} \bigodot d \mu & =\left[g_{l}^{-1} \int_{0}^{t} g_{l}\left(f_{l}(x)\right) d x, g_{r}^{-1} \int_{0}^{t} g_{r}\left(f_{r}(x)\right) d x\right] \\
& =\left[\int_{0}^{t} \frac{1}{2} e^{-x} d x, \int_{0}^{t} e^{-x} d x\right] \\
& =\left[\frac{1}{2}\left(1-e^{-t}\right),\left(1-e^{-t}\right)\right] \tag{50}
\end{align*}
$$

(2) If $g_{l}(x)=\frac{1}{2} x, g_{r}(x)=x$ for all $x \in[0, \infty]$ are the generators of \odot_{l}, \odot_{r}, and $g_{l}(x)=g_{r}(x)=$ x for all $x \in[0, \infty]$ are the generators of \oplus_{l}, \oplus_{r}, and $\bar{f}(x)=\left[\frac{e^{-x}}{2}, e^{-x}\right]$ for all $x \in[0, \infty)$, and $A=[0, t]$ for all $t \in[0, \infty)$, then we have

$$
\begin{align*}
\int_{A}^{\oplus} \bar{f} \bigodot d \mu & =\left[g_{l}^{-1} \int_{0}^{t} g_{l}\left(f_{l}(x)\right) d x, g_{r}^{-1} \int_{0}^{t} g_{r}\left(f_{r}(x)\right) d x\right] \\
& =\left[2 \int_{0}^{t} \frac{1}{4} e^{-x} d x, \int_{0}^{t} e^{-x} d x\right] \\
& =\left[\frac{1}{2}\left(1-e^{-t}\right),\left(1-e^{-t}\right)\right] . \tag{51}
\end{align*}
$$

(3) If $g_{l}(x)=x^{2}, g_{r}(x)=3 x^{2}$ for all $x \in[0, \infty]$ are the generators of \odot_{l}, \odot_{r}, and $g_{l}(x)=$ $g_{r}(x)=x$ for all $x \in[0, \infty]$ are the generators of \oplus_{l}, \oplus_{r}, and $\bar{f}(x)=\left[\frac{e^{-x}}{2}, e^{-x}\right]$ for all $x \in[0, \infty)$, and $A=[0, t]$ for all $t \in[0, \infty)$, then we have

$$
\begin{align*}
\int_{A}^{\oplus} \bar{f} \bigodot d \mu & =\left[g_{l}^{-1} \int_{0}^{t} g_{l}\left(f_{l}(x)\right) d x, g_{r}^{-1} \int_{0}^{t} g_{r}\left(f_{r}(x)\right) d x\right] \\
& =\left[\sqrt{\int_{0}^{t} \frac{1}{2} e^{-2 x} d x} \sqrt{\frac{1}{3} \int_{0}^{t} 3 e^{-2 x} d x}\right] \\
& =\left[\frac{1}{4}\left(1-e^{-2 t}\right), \frac{1}{2}\left(1-e^{-t}\right)\right] . \tag{52}
\end{align*}
$$

Example 4.2 We give an example of the interval-valued \bar{g}-convolution.
If $g_{l}(x)=x^{2}, g_{r}(x)=3 x^{2}$ for all $x \in[0, \infty]$ are the generators of \odot_{l}, \odot_{r}, and $g_{l}(x)=g_{r}(x)=x$ for all $x \in[0, \infty]$ are the generators of $\oplus_{l}, \oplus_{r}, \otimes_{l}, \otimes_{r}$, and $\bar{f}(x)=\left[\frac{e^{-x}}{2}, e^{-x}\right]$ for all $x \in[0, \infty)$, $\bar{h}(x)=\left[\frac{1}{2} x, x\right]$ for all $x \in[0, \infty)$, and $A=[0, t]$ for all $t \in[0, \infty)$, then we have

$$
\begin{align*}
(\bar{f} \star \bar{h})(t) & =\int_{A}^{\oplus}[\bar{f}(t-u) \bigotimes \bar{h}(u)] \bigodot d \mu(u) \\
& =\left[\sqrt{\frac{1}{2} \int_{0}^{t} e^{-2(t-u)} e^{-2 u} d u}, \sqrt{3 \int_{0}^{t} \frac{1}{2} e^{-2(x-u)} e^{-2 u} d u}\right] \\
& =\left[\frac{t}{4} e^{-2 t}, \frac{3 t}{2} e^{-2 t}\right] . \tag{53}
\end{align*}
$$

5 Conclusions

In this paper, we have considered the g-integral represented by its generating g, the pseudo-addition, the pseudo-multiplication (see Definition 2.3). This study was to define the g-convolution by means of the g-integral (see Definition 2.4) and to investigate some characterizations of the g-integral and the commutativity and the associativity of the g-convolution (see Theorems 2.2, 2.3, and 2.4).

We also defined the interval-valued \bar{g}-integral represented by its interval-valued generator \bar{g}. By using general notions of an interval-representable pseudo-multiplication (see Definition 3.2), we defined an interval-valued \bar{g}-integral (see Definition 3.3) and investigated some basic characterizations of them (see Theorems 3.2, 3.3).
From Definitions 2.3, 2.4, and Theorems 2.2, 2.3, we defined a standard interval-valued \bar{g}-convolution (see Definition 4.1). We also investigated some characterizations of a standard interval-valued \bar{g}-convolution of interval-valued functions by means of the intervalvalued \bar{g}-integral including commutativity and associativity of an interval-representable convolution (see Theorems 4.1, 4.2).
In the future, we can study various inequalities of the interval-valued \bar{g}-integral and expect that the standard interval-valued \bar{g}-convolutions are used (i) to generalize the g Laplace transform, Hamilton-Jacobi equation on the space of functions, such as in nonlinearity and optimization and such as in information theory (see [1, 14, 29]); (ii) to generalize the Stolasky-type inequality for the pseudo-integral of functions such as in economics, finance, decision making (see [2, 30]), etc.

Competing interests

The author declares that they have no competing interests.

Acknowledgements

This paper was supported by Konkuk University in 2014.
Received: 27 October 2013 Accepted: 30 January 2014 Published: 20 Feb 2014

References

1. Benvenuti, P, Mesiar, R: Pseudo-arithmetical operations as a basis for the general measure and integration theory. Inf. Sci. 160, 1-11 (2004)
2. Daraby, B: Generalization of the Stolarsky type inequality for the pseudo-integrals. Fuzzy Sets Syst. 194, 90-96 (2012)
3. Deschrijver, G: Generalized arithmetic operators and their relationship to t-norms in interval-valued fuzzy set theory. Fuzzy Sets Syst. 160, 3080-3102 (2009)
4. Grbic, T, Stajner, I, Strboja, M: An approach to pseudo-integration of set-valued functions. Inf. Sci. 181, 2278-2292 (2011)
5. Klement, EP, Mesiar, R, Pap, E: Triangular Norms. Kluwer Academic, Dordrecht (2000)
6. Mesiar, R, Pap, E: Idempotent integral as limit of g-integrals. Fuzzy Sets Syst. 102, 385-392 (1999)
7. Stajner-Papuga, I, Grbic, T, Dankova, M: Pseudo-Riemann Stieltjes integral. Inf. Sci. 180, 2923-2933 (2010)
8. Sugeno, M: Theory of fuzzy integrals and its applications. Doctorial Thesis, Tokyo Institute of Technology, Tokyo (1974)
9. Sugeno, M, Murofushi, T: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122, 197-222 (1987)
10. Wu, C, Wang, S, Ma, M: Generalized fuzzy integrals: Part 1. Fundamental concept. Fuzzy Sets Syst. 57, 219-226 (1993)
11. Wu, C, Ma, M, Song, S, Zhang, S: Generalized fuzzy integrals: Part 3. Convergence theorems. Fuzzy Sets Syst. 70, 75-87 (1995)
12. Markova-Stupnanova, A: A note on the idempotent function with respect to pseudo-convolution. Fuzzy Sets Syst. 102, 417-421 (1999)
13. Maslov, VP, Samborskij, SN: Idempotent Analysis. Advances in Soviet Mathematics, vol. 13. Am. Math. Soc., Providence (1992)
14. Pap, E, Stajner, I: Generalized pseudo-convolution in the theory of probabilistic metric spaces, information, fuzzy numbers, optimization, system theory. Fuzzy Sets Syst. 102, 393-415 (1999)
15. Aubin, JP: Set-Valued Analysis. Birkhäuser Boston, Boston (1990)
16. Aumann, RJ: Integrals of set-valued functions. J. Math. Anal. Appl. 12, 1-12 (1965)
17. Grabisch, M: Fuzzy integral in multicriteria decision making. Fuzzy Sets Syst. 69, 279-298 (1995)
18. Guo, C, Zhang, D: On set-valued measures. Inf. Sci. 160, 13-25 (2004)
19. Jang, LC, Kil, BM, Kim, YK, Kwon, JS: Some properties of Choquet integrals of set-valued functions. Fuzzy Sets Syst. 91, 61-67 (1997)
20. Jang, LC, Kwon, JS: On the representation of Choquet integrals of set-valued functions and null sets. Fuzzy Sets Syst 112, 233-239 (2000)
21. Jang, LC, Kim, T, Jeon, JD: On the set-valued Choquet integrals and convergence theorems (II). Bull. Korean Math. Soc 40(1), 139-147 (2003)
22. Jang, LC: Interval-valued Choquet integrals and their applications. J. Appl. Math. Comput. 16(1-2), 429-445 (2004)
23. Jang, LC: A note on the monotone interval-valued set function defined by the interval-valued Choquet integral. Commun. Korean Math. Soc. 22, 227-234 (2007)
24. Jang, LC: On properties of the Choquet integral of interval-valued functions. J. Appl. Math. 2011, Article ID 492149 (2011)
25. Jang, LC: A note on convergence properties of interval-valued capacity functionals and Choquet integrals. Inf. Sci. 183, 151-158 (2012)
26. Jang, LC: A note on the interval-valued generalized fuzzy integral by means of an interval-representable pseudo-multiplication and their convergence properties. Fuzzy Sets Syst. 222, 45-57 (2013)
27. Jang, LC: Some characterizations of the Choquet integral with respect to a monotone interval-valued set function. Int. J. Fuzzy Log. Intell. Syst. 13(1), 75-81 (2013)
28. Wang, Z, Li, KW, Wang, W: An approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and in complete weights. Inf. Sci. 179, 3026-3040 (2009)
29. Wechselberger, K: The theory of interval-probability as a unifying concept for uncertainty. Int. J. Approx. Reason. 24, 149-170 (2000)
30. Pap, E, Ralevic, N: Pseudo-Laplace transform. Nonlinear Anal. 33, 533-550 (1998)

10.1186/1029-242X-2014-88

Cite this article as: Jang: Some properties of the interval-valued \bar{g}-integrals and a standard interval-valued
\bar{g}-convolution. Journal of Inequalities and Applications 2014, 2014:88

