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1 Introduction

Fixed-point theory is a major branch of nonlinear analysis because of its wide applicability.
The existence problem of fixed points of mappings satisfying a given metrical contractive
condition has attracted many researchers in past few decades. The Banach contraction
principle [1] is one of the most important theorems in this direction. Many generaliza-
tions of this famous principle exist in the literature, see, for examples, [2—6] and refer-
ences therein. On the other hand, several classical fixed-point theorems have been unified
by considering general contractive conditions expressed by an implicit condition, see for
examples, Turinici [7], Popa [8, 9], Berinde [10], and references therein.

This paper presents fixed-point theorems for implicit contractions on a metric space
endowed with two metrics. This paper will be divided into two main sections. Sec-
tion 2 presents local and global fixed-point results for implicit contractions involving
a-admissible mappings, a recent concept introduced in [11]. Section 3 presents some in-
teresting consequences that can be obtained from the results established in the previous

section.

2 Main results
Let F be the set of functions F : [0, +00)® — R satisfying the following conditions:
(i) F is continuous;
(ii) F is non-decreasing in the first variable;
(iii) F is non-increasing in the fifth variable;
(iv) 3k € (0,1) | F(u,v,v,u,u+v,0) <0 = u < hv.

Example Let F: [0,+00)° — R be the function defined by

’

ts + tg
F(tl) t27 t31 t47 tS) t6) = tl - qmax t2¢ t?n t4: T

where g € (0,1). We can check easily that F € F.
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Let X be a nonempty set endowed with two metrics d and d'. If xo € X and r > 0, let

B(xo,r) := {x € X :d(xg,x) < r}.
We denote by B(xo, r)d the d’'-closure of B(xo,r).

Let T: B(xo,r) — X and o : X x X — [0,00). We say that T is a-admissible (see [11])
if the following condition holds: for all x,y € B(xo, r), we have

axy)>1 = o(lx, Ty) > 1.

We say that X satisfies the property (H) with respect to the metric 4 if the following con-
dition holds:
If lim,,_, oo d(x,,, %) = O for some x € X and a(x,,x,.1) > 1 for all , then there exist a
positive integer « and a subsequence {x,)} of {x,} such that a(x,),x) > 1 for all
k>k.

Our first result is the following.

Theorem 2 1 Let (X,d') be a complete metric space, d another metric on X, xy € X, r > 0,

T: B(xo,r) — X, and a : X x X — [0,00). Suppose there exists F € F such that for x,y €

B(xo,r) , we have
F(a(x,)d(Tx, Ty), d(x,y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) <O0. 1
In addition, assume the following properties hold:
(I) d(xo, Txg) < A = h)r and a(xg, Txg) > 1;
(I1) T is a-admissible;
(1) ifd # d', assume T is uniformly continuous from (B(xo,r),d) into (X, d');

(IV) ifd=d', assume X satisfies the property (H) Wlth respect to the metric d;

V) ifd #d', assume T is continuous from (B(xy, ) ,d') into (X, d').
Then T has a fixed point.

Proof Let x; = Txq. From (I), we have
d(xg,x1) = d(xg, Txo) < (1 -h)r<r,
which implies that x; € B(xy, r). Let x; = Tx;. From (1), we have
F (a0, %1)d(Txo, Tx1), d(xo,%1), d(%0, %1), d(%1, %5), d(%0, %5),0) < 0.
From (I), we have
d(Txo, Tx1) < a(xg,x1)d(Txo, Tx1).
Since F is non-decreasing in the first variable (property (i)), we obtain

F(d(x1, %), d(x0, %1), d(x0, 1), d(x1,%2), d (%0, %2),0) < 0.
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Since d(xg,x5) < d(x0,x1) + d(x1,%,), using (iii), we obtain
F(d(x1,%2), d(x0, %1), d(x0,%1), d(x1,%2), d(x0,%1) + d(x1,%,),0) <0,
which implies from (iv) that
d(x1,%2) < hd(xg,x1) <h(1-h)r<r.
Now, we have
d(xo,%2) < d(xg,%1) + hd(xo,x1) = (1 + h)d(x9,%1) <A+ h) A -h)r<r.

This implies that x; € B(xo, 7). Again, letx3 = Tx,. Since T is «-admissible and & (xg, x1) > 1,

we have
d(x2,x3) < (%1, %2)d(Tx1, Txz).
Then, from (1), we obtain
F(d(%2,%3), d(x1,%2), d(x1, %), d(x2, x3), d(%1,3), 0) < 0.
Using (iii), we obtain
F(d(xy,%3), d(x1,%2), d(x1, %2), d (2, 83), d(%1, %) + d(x2,%3),0) <0,
which implies from (iv) that
d(xy,%3) < hd(x1,%,) <A —h)r<r.
Now, we have
d(x0,%3) < d(xo, %) + d(xa,x3) < A+ )1 - h)r + A - h)r = (1 - hs)r <.

This implies that x3 € B(xo, 7). Continuing this process, by induction, we can define the

sequence {x,} by

Xpe1 = Ix,, VYmeN.
Such sequence satisfies the following property:

X, € B(xo,7), a(®p,%1)>1 and dx,,x,.1) <H'A-Hh)r, VneN. (2)
Since /1 € (0,1), it follows from (2) that {x,} is a Cauchy sequence with respect to the met-
ric d.

Now, we shall prove that {x,} is also a Cauchy sequence with respect to d'. If &’ < d, the
result follows immediately from (2). If d # d’, from (III), given ¢ > 0, there exists § > such
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that
x,9 € B(xo,r), dxy)<s = d(IxTy) <e. (3)

On the other hand, since {x,} is Cauchy with respect to d, there exists a positive integer
N such that

dx,,x%m) <8, VYn,m=>N.
Using (3), we have
d/(x,,+1,xm+1) <& Vmm>N.

Thus we proved that {x,} is Cauchy with respect to d’.

Since (X, d’) is complete, there exists z € B(xo, r)d such that
lim d'(x,,2) = 0. (4)
n—00

We shall prove that z is a fixed point of 7. We consider two cases.
Casel.Ifd=d.

From (IV), there exist a positive integer « and a subsequence {x,)} of {x,} such that
a(xupy,z) =1, Vk>«k. (5)
Using (1), for all k > «, we obtain

F (o (n(» 2)A( Tt T2), A (i 2) AFonys Xy 11), A2 T2), Ay T2), A2 Xni41))

<0.
Using (5) and condition (ii), for all kK > «, we obtain
F(d@®ng+1, T2) dXnii) 2)s A% Xy 1), A (2, T2), d (i, T2), d(2, %0 11)) < 0.
Letting k — oo, using (4) and the continuity of F, we obtain
F(d(z, T72),0,0,d(z, Tz), d(z, Tz), 0) <o,
which implies from (iv) that d(z, Tz) = 0.

Case2.Ifd #d'.
In this case, using (V) and (4), we obtain

lim d'(Tx,, Tz) = lim d' (%1, Tz) = 0.

n—00

The uniqueness of the limit gives z = TZ. g

Taking d = d’ in Theorem 2.1, we obtain the following result.
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S
Theorem 2.2 Let (X, d) be a complete metric space, xo € X, r >0, T : B(xo,r) — X, and
—
a:X x X — [0,00). Suppose there exists F € F such that for x,y € B(xo,r) , we have

F(a(x,y)d(Tx, Ty),d(x, ), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) <0.

In addition, assume the following properties hold:
(I) d(xg, Txg) < (1 = h)r and a(xg, Txe) > 1;
(I1) T is a-admissible;
(III) X satisfies the property (H) with respect to the metric d.
Then T has a fixed point.

From Theorem 2.1, we can deduce the following global result.

Theorem 2.3 Let (X,d') be a complete metric space, d another metricon X, T : X — X,
and o : X x X — [0,00). Suppose there exists F € F such that for x,y € X, we have

F(oz(x,y)d(Tx, Ty),d(x,y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) <0.

In addition, assume the following properties hold.:
(I) there exists xo € X such that a(xg, Txo) > 1;
() T is a-admissible (x,y € X, a(x,y) > 1= a(Tx, Ty) > 1);
(1) ifd # d', assume T is uniformly continuous from (X, d) into (X, d');
(IV) ifd =d', assume X satisfies the property (H) with respect to the metric d;
(V) ifd #d, assume T is continuous from (X, d') into (X, d’).
Then T has a fixed point.

Proof We take r > 0 such that d(xg, Txo) < (1 — h)r. From Theorem 2.1, T has a fixed point
in B(xg, r)d . |

Taking d = d’ in Theorem 2.3, we obtain the following result.

Theorem 2.4 Let (X, d) be a complete metric space, T : X — X, and o : X x X — [0, 00).
Suppose there exists F € F such that for x,y € X, we have

F(a(x,y)d(Tx, Ty),d(x, ), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) <0.

In addition, assume the following properties hold:
(I) there exists xo € X such that a(xg, Txo) > 1;
() T is a-admissible (x,y € X, a(x,y) > 1 = a(Tx, Ty) > 1);
(II) X satisfies the property (H) with respect to the metric d.
Then T has a fixed point.

3 Consequences
We present here some interesting consequences that can be obtained from our main re-
sults.
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3.1 Thecase a(x,y) =1
Taking «(x,y) := 1 for all x,y € X, from Theorems 2.1, 2.2, 2.3, and 2.4, we obtain the fol-
lowing results that are generalizations of the fixed-point results in [2, 3, 5, 8, 10, 12, 13].

Corollary 3.1 Let (X,d') be a complete metric space, d another metric on X, xo eX,r>0,

and T : B(xo, 1) r) — X. Suppose there exists F € F such that for x,y € B(xo,7) r) we have
F(d(Tx, Ty),d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) <0.

In addition, assume the following properties hold:
() d(xo, Txo) < 1 = h)r;
() ifd # d', assume T is uniformly continuous from (B(xo,r),d) into (X,d');
() ifd #d', assume T is continuous from (Blro,1) »d') into (X, d).
Then T has a fixed point.

—d
Corollary 3.2 Let (X,d) be a complete metric space, xo € X, r >0, and T : B(xg,r) — X.
—
Suppose there exists F € F such that for x,y € B(xo,r) , we have

F(d(Tx, Ty),d(x,y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) <0.

In addition, assume that d(xy, Txo) < (1 — h)r. Then T has a fixed point.

Corollary 3.3 Let (X,d') be a complete metric space, d another metric on X, and
T : X — X. Suppose there exists F € F such that for x,y € X, we have

F(d(Tx, Ty), d(x,y), d(x, Tx),d(y, Ty), d(x, Ty),d(y, Tx)) < 0.
In addition, assume the following properties hold:
() ifd # d, assume T is uniformly continuous from (X,d) into (X, d');
(1) ifd#d', assume T is continuous from (X, d') into (X, d’).

Then T has a fixed point.

Corollary 3.4 Let (X,d) be a complete metric space and T : X — X. Suppose there exists
F € F such that for x,y € X, we have

F(d(Tx, Ty),d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) <0.

Then T has a fixed point.

Corollary 3.4 is an enriched version of Popa [8] that unifies the most important metrical
fixed-point theorems for contractive mappings in Rhoades’ classification [6].

3.2 The case of a partial ordered set
Let < be a partial order on X. Let < be the binary relation on X defined by

(xy)eXxX, x<y <= x=<y or y=ux
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We say that (X, <) satisfies the property (H) with respect to the metric d if the following
condition holds:
If lim,,_, o d(x,,, x) = O for some x € X and x,, <1 x,,,; for all i, then there exist a positive
integer « and a subsequence {x,)} of {x,} such that x,x < for all k > «.
From Theorems 2.1, 2.2, 2.3, and 2.4, we obtain the following results that are extensions
and generalizations of the fixed-point results in [14, 15].
At first, we denote by F the set of functions F : [0, +00)° — R satisfying the following
conditions:
(j) FeF;
(j) F(O,t,t3,ta,t5,t) <Oforalls; >0,i=2,...,6.
We start with the following fixed-point result.

Corollary 3.5 Let (X, d') be a complete metric space, d another metric on X, xo eX, r>0,
and T : B(xo, 1) r) — X. Suppose there exists F € F such that for x,y € B(xo,7) r) withx <y,

we have
F(d(Tx, Ty), d(x,y), d(x, Tx),d(y, Ty), d(x, Ty),d(y, Tx)) < 0.

In addition, assume the following properties hold:
(I) d(xg, Txo) < (1 h)r and xg < Txo;
(II) x,y€ B(xo,r) x<dy= Tx < Ty
(1) ifd # d', assume T is uniformly continuous from (B(xo,r),d) into (X, d');
(IV) ifd =d', assume (X, <) satisfies the property (H) with respect to the metric d;
V) ifd #d', assume T is continuous from (lmd/,d’) into (X,d').
Then T has a fixed point.

Proof 1t follows from Theorem 2.1 by taking

1 ifx<y;

aby):= 0 ifxAy. 0

Similarly, from Theorem 2.2, we obtain the following result.

Corollary 3.6 Let (X,d) be a complete metric space, xo € X, r >0, and T : B(xo, r)d — X.
Suppose there exists F € F such that for x,y € B(xo, r)d with x <y, we have

F(d(Tx, Ty),d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) <0

In addition, assume the following properties hold.:
(I) d(xo, Txg) < (1/— h)r and xq < Txo;
(I1) x,yemd,quﬁ Tx < Ty,
(III) (X, <) satisfies the property (H) with respect to the metric d;
Then T has a fixed point.

From Theorem 2.3, we obtain the following global result.
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Corollary 3.7 Let (X,d') be a complete metric space, d another metric on X, and
T : X — X. Suppose there exists F € F such that for x,y € X with x < y, we have

F(d(Tx, Ty),d(x,y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) <0.

In addition, assume the following properties hold:
(I) there exists xg € X such that xo <1 Txo;
() x,yeX,x<y= Tx < Ty;
(I) ifd # d', assume T is uniformly continuous from (X, d) into (X, d');
(IV) ifd =d', assume (X, <) satisfies the property (H) with respect to the metric d;
(V) ifd#d', assume T is continuous from (X, d’) into (X, d").
Then T has a fixed point.

Finally, from Theorem 2.4, we obtain the following fixed-point result.

Corollary 3.8 Let (X,d) be a complete metric space and T : X — X. Suppose there exists
F e F such that for x,y € X with x <y, we have

F(d(Tx, Ty),d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) <0.

In addition, assume the following properties hold:
(I) there exists xo € X such that xy < Txo;
(I wyeX, x<y= Tx < Ty
(III) (X, <) satisfies the property (H) with respect to the metric d.
Then T has a fixed point.

3.3 The case of cyclic mappings
From Theorem 2.4, we obtain the following fixed-point result that is a generalization of
Theorem 1.1 in [16].

Corollary 3.9 Let (Y,d) be a complete metric space, {A, B} a pair of nonempty closed sub-
setsof Y,and T : AU B — A U B. Suppose there exists F € F such that forx € A,y € B, we
have

F(d(Tx, Ty), d(x,y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) < 0.

In addition, assume that T(A) C B and T(B) C A.
Then T has a fixed point in AN B.

Proof Let X := AU B. Clearly (since A and B are closed), (X, d) is a complete metric space.
Define  : X x X — [0, 00) by

1 if(x,y) € (A x B)U(B x A);

alx,y) = 0 if(x,y) ¢ (AxB)U(BxA).

Clearly (since F € F), for all x,y € X, we have

F(a(x,y)d(Tx, Ty),d(x,y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) <0.
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Taking any point xg € A, since T(A) C B, we have Txy € B, which implies that «/(xo,
Txo) > 1.

Now, let (x,y) € X x X such that «(x,y) > 1. We have two cases.

Case 1. (x,y) € A x B.

Since T(A) € Band T(B) € A, we have (Tx, Ty) € B x A, which implies that a(7x, Ty) > 1.

Case 2. (x,7) € B X A.

In this case, we have (Tx, Ty) € A x B, which implies that o(Tx, Ty) > 1.

Then T is a-admissible.

Finally, we shall prove that X satisfies the property (H) with respect to the metric d.

Let {x,} be a sequence in X such that lim,_ . d(x,,x) = 0 for some x € X, and
(%, %,41) > 1 for all #n. From the definition of «, this implies that (x,,x,.1) € (A x B) U
(B x A) for all n. Since A and B are closed, we get x € A N B. Then we have a(x,,x) = 1 for
all #n. Thus, we proved that X satisfies the property (H) with respect to the metric d.

Now, from Theorem 2.4, T has a fixed point in X, that is, there exists z € A U B such that
Tz = z. Since T(A) C B and T(B) C A, obviously, we have z € AN B. O
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