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Abstract
This article deals with the existence and uniqueness of solution to the Rd1 -valued
parabolic variational inequalities with integro-differential terms which arise from the
valuation of American option. The authors use the penalty method to construct a
sequence of approximation parabolic problem and hence obtain the existence and
uniqueness of solution to the approximation problem by using fixed point theory.
Then the solution of parabolic variational inequalities is obtained by showing that the
solution of this penalty problem converges to the variational inequalities. The
uniqueness of the solution is also proven.
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1 Introduction
In this paper, we are concerned with the existence and uniqueness of solution to an Rd -
valued parabolic variational inequality with the integro-differential terms⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(uk)t – Lku – Fk(x, t,u,∇u) ≥ , in QT ,
uk(x, t)≥ uk(x), in QT ,
((uk)t – Lku – Fk(x, t,u,∇u))(uk – uk(x)) = , in QT ,
uk(x, ) = uk(x), on �,
uk(x, t) = gk(x, t), on ∂� × (,T),

()

where � ∈ Rd is an open set with a smooth boundary ∂�, QT = � × [,T] is a parabolic
domain for some T > . L = (L,L, . . . ,Ld ), and Lk = Lk(x, t) is a divergence form second-
order elliptic operator satisfying

Lku =
d∑
r=

d∑
i,j=

∂

∂xj

(
aijkr(x, t)

∂

∂xi
ur

)
–

d∑
r=

d∑
i=

bikr(x, t)
∂

∂xi
ur –

d∑
r=

ckr(x, t)ur .

Moreover, the integro-differential operator Fk is defined by

Fk(x, t,u,�u) =
∫

�

fk
(
x, t, y,u(x, t),∇u(x, t)

)
dy

which is a continuous integral operator as defined in [].
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The concrete motivations of studying () can be easily found in the literature. If d = ,
Fk(x, t,u,�u) = , and the operator Lk degenerates to

Lu = ∂tu –
σ 


∂

∂x
u +

(
σ 


– r

)
∂

∂x
u + ru,

() becomes the linear variational inequality based on the famous Black-Scholes equation
(see []). Such a variational inequality arises in many applications of American option
pricing (see [, ]). To deal with this problem, some scholars often introduce a free and
moving boundary problem. By adding a certain penalty term to the Black-Scholes equa-
tion, the solution of this variational inequality is extended to a fixed domain. Furthermore,
this penalty term forces the solution to stay above the payoff function at expiry. Through-
out the last decade, a number of papers addressing penalty schemes for American options
have been published (see, for instance, [–] and references therein).
However, several Black-Scholes models proposed in recent years, such as the model

found in [, ], have allowed the risk assets driven by levy processes. In this model, the
risk asset S as in the Black-Scholes model, follows the stochastic process (assume d = )

dSt = μSt dt + σSt dzt ,

from which we obtain the following PIDE:

∂tu =
σ 


[∂xxu – ∂xu] +

∫ [
u(x + y, t) – u(x, t) –

(
ey – 

)
∂xu

]
v(dx), ()

where zt is a kind of levy process ( for details, see [, ]). The authors in [] generalize ()
and prove the existence and uniqueness of a classical solution to a more general problem
in the parabolic domain QT = � × [,T], where � is an open, unbounded subset of Rd ,
with a smooth boundary ∂�. A related work in the context of quantum mechanics has
been studied in [, ].
Therefore, the authors of this paper intend to study amore complex variational inequal-

ity involved in American option based on the more complicated PIDE type Black-Scholes
equation than (). And we will considerRd -valued parabolic variational inequality () us-
ing the penalty method. The rest of this article is as follows. In Section , we state the
main result. Section  discusses the penalty problemwhich will be used to prove our main
result. In Section , we show the proof of our main result.

2 Main result
In this section, we present some notations and lemmas which are important to be used to
prove our main result. Define Lp(�) = Lp(�;Rd ) as the space of all Rd -value functions
u = (u,u, . . . ,ud ) satisfying

‖u‖p
Lp(�) =

d∑
k=

∥∥uk∥∥p
Lp(Rd)

< ∞.

Let  ≤ p ≤ ∞ and k ∈ N. ByWk
p , we mean that the R-value functions space satisfies

Wk
p (�) =

{
u ∈ Lp(�;R)|Dαu ∈ Lp(�;R), ≤ α ≤ k

}
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which is Banach spaces with the norm

‖v‖Wk
p (�) =

∑
≤|α|≤k

∥∥Dαv
∥∥
Lp(�).

Further, we use the following Sobolev spaces which are modified from R-value version to
Rd -value version

W
k
p(�) =

{
u ∈ Lp(�;Rd )|Dαu ∈ Lp(�;Rd ), ≤ α ≤ k

}

with the norm

‖v‖
W

k
p(�) =

∑
≤|α|≤k

∥∥Dαv
∥∥
Lp(�).

As mentioned in [], we shall use Ck+δ,k+δ/(Q̄T ) to denote the Holder space which satis-
fies

Ck+δ,k+δ/(Q̄T ) =
{
u|Dα∂

ρ
t ∈ Cδ,δ/(Q̄T ), |α| + ρ ≤ k

}
.

For  < T < ∞, we also use some following common notation from PDEs without men-
tioning:

Hk(�) =Wk
 (�), ‖·‖Hk (�) = ‖·‖Wk

 (�),

H
k(�) =W

k
(�), ‖·‖

Hk (�) = ‖·‖
W

k
(�),

Lp
(
,T ;Hk(�)

)
=

{
v(·, t)|v(·, t) ∈Hk(�) in (,T);

∥∥v(·, t)∥∥Hk (�) ∈ Lp(,T)
}
,

L
p(,T ;Hk(�)

)
=

{
v(·, t)|v(·, t) ∈H

k(�) in (,T);
∥∥v(·, t)∥∥

Hk (�) ∈ Lp(,T)
}
,

‖u‖pLp(,T ;Hk (�)) =
∫ T



∥∥u(·, t)∥∥p
Hk (�) dt, ‖u‖pLp(,T ;Hk (�)) =

∫ T



∥∥u(·, t)∥∥p
Hk (�) dt,

where  < T < ∞.
Moreover, we use the following lemmas to show the existence and uniqueness of the

solution for the penalty approximation of our main problem.

Definition . Assume that X is a real Banach space, the space C([,T];X) consists of all
continuous functions u : [,T] → X with

‖u‖C([,T];X) = max
≤t≤T

‖u‖X < ∞.

Then C([,T];X) is a Banach space endowed with the norm ‖u‖C([,T];X).

Definition . A mapping A : X → X is called to be compact if and only if the sequence
{A[u]}∞k= is precompact for each bounded sequence {u}∞k=, that is, there exists a subse-
quence {ukj}∞j= such that {A[ukj ]}∞j= converges in X.
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Lemma . (Schaefer’s fixed point theorem) Suppose that A : X → X is a continuous and
compact mapping. Further, assume that the set

{
u ∈ X : u = λA[u], for some  ≤ λ ≤ 

}
is bounded. Then A has a fixed point.

The following two lemmas from the linear theory of parabolic partial differential equa-
tions can be found in [].

Lemma . (Energy estimates) Consider the problem

⎧⎪⎨
⎪⎩

∂vk
∂t – Lkv = fk(x, t), in QT ,
vk(x, ) = , on �,
vk(x, t) = , on ∂� × (,T)

()

with fk ∈ L(,T ;L(�)). Then there exists a unique solution v ∈ L(,T ;H
(BR)) ∩

C([,T];L(BR)) to problem () that satisfies

max
<t<T

∥∥v(t)∥∥
L(�) +

∥∥v(t)∥∥L(,T ;H
(�)) +

∥∥∥∥∂v
∂t

∥∥∥∥
L(,T ;H–

 (�))
≤ C‖f ‖L(,T ;L(�)),

where C is a positive constant depending only on �, T and the operator L.

Lemma . (Improved regularity) There exists a unique weak solution

u ∈ L
(
,T ;H

(BR)
) ∩C

(
[,T];L(BR)

)
to problem (), with ∂u

∂t ∈ L(,T ;H–(�)).Moreover,

u ∈ L
(
,T ;H(�)

) ∩ L∞(
,T ;H

(�)
)
,

∂u
∂t

∈ L
(
,T ;H–(�)

)
.

We also have the estimate

ess sup
<t<T

∥∥u(t)∥∥
H

(�) +

∥∥u(t)∥∥L(,T ;H(�)) +
∥∥∥∥∂u

∂t

∥∥∥∥
L(,T ;L(�))

≤ C‖f ‖L(,T ;L(�)), ()

where C is a positive constant depending only on �, T and the operator L.

Throughout this section, we impose the following assumptions:
(A) The coefficients aijkr(x, t), b

i
kr(x, t), ckr(x, t) belong to the Holder space Cδ,δ/(Q̄T ).

(A) The operator ∂
∂t – Lk is (uniformly) parabolic, that is, there exists a constant θ > 

such that

θ

d∑
k=

∣∣∇vk
∣∣ ≤

d∑
k,r=

d∑
i,j=

aijkr(x, t)∂iv
r · ∂jvk for all (x, t) ∈QTv ∈Rd.
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(A) There exists a positive constant B such that for all v ∈ H
(�) and (x, t) ∈ QT , we

have

B
d∑
k=

∂ivk · vk ≤
d∑

k,r=

bikr(x, t)∂iv
r · vk , ckr(x, t) > ,k, r = , , . . . ,d.

(A) uk(x) and gk(x, t) belong to the Holder spaces C+δ(Rd) and C+δ,+δ/(Q̄T ), respec-
tively. Moreover, for all (x, t) ∈QT , we have that uk(x) < gk(x, t), k = , , . . . ,d.
(A) The following two consistency conditions

gk(x, ) = uk(x) and gk(x, ) – Lk(x, )uk(x) = 

hold for all x ∈ ∂�, k = , , . . . ,d.
(A) fk(x, t, y, z,p) is nonnegative and belongs to C(QT ×�×Rd ×Rd ), k = , , . . . ,d,

and there exists  < ε <  satisfying

∣∣fk(·, ·, ·, z,p) – fk(·, ·, ·, z,p)
∣∣ ≤ ε|z – z| + ε|p – p|.

(A) For some C > , f = (f, f, . . . , fd ) satisfies the estimate

∣∣fk(x, t, y, z,p)∣∣ ≤ C

(
f,k +

d∑
r=

∣∣zr∣∣ + d∑
r=

∣∣pr∣∣
)

for all (x, t, y, z,p) ∈ QT × � × Rd × Rd , where C is a positive constant independent of
f , f,k ∈ L

(�).
(A) If u ∈ H


loc(Rd), then F(x, t,u,∇u) ∈ L(,T ;L

loc(R)). If wn → w in L(,T ;H
(�)),

then Fk(x, t,wn,�wn) → Fk(x, t,w,�w) in L(,T ;L(�)).
Using these assumptions, we will elaborate our main result.

Theorem . Under hypotheses (A)-(A), there exists a unique solution u ∈ L(,T ;
H

(�))∩C([,T];L(�)) to variational inequality () satisfying

‖u‖L(,T ;H
(�)) ≤N

(‖u‖L(�) + ‖g‖L(,T ;L(�)) +
∥∥F(·, ·, , )∥∥L(,T ;L(�))

)
.

The proof of Theorem . will be given in Section .

3 The penalty problem
In order to prove the existence and uniqueness of the solution, we consider the following
penalty approximation of problem ()

⎧⎪⎨
⎪⎩
(ukε)t – Lkuε – Fk(x, t,uε ,∇uε) + βε(ukε – uk(x)) = , in QT ,
ukε(x, ) = uk(x), on �,
ukε(x, t) = gk(x, t), on ∂� × (,T),

()

http://www.journalofinequalitiesandapplications.com/content/2014/1/8
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where βε,k(·) is the penalty function satisfying

 < ε ≤ , βε,k(x) ∈ C(R), βε,k(x)≤ , β ′
ε,k(x)≥ , β ′′

ε,k(x) ≤ ,

lim
ε→

βε,k(x) =

{
, x > ,
–∞, x < .

()

Next, we introduce a change of variables

v(x, t) = uε(x, t) – ϕ(x, t)

to transform problem () into the zero boundary condition of the form

⎧⎪⎨
⎪⎩
(vk)t – Lkv = Fk(x, t, v + ϕ,∇(v + ϕ)) – βε(vk + ϕk – uk(x)), in QT ,
vk(x, ) = , on �,
vk(x, t) = ϕk(x, t) = , on ∂� × (,T).

()

Here ϕ = (ϕ,ϕ, . . . ,ϕd ) ∈ C+δ,+δ/(Q̄T ) is the unique solution to the problem

⎧⎪⎨
⎪⎩
(uk)t – Lku = , in QT ,
uk(x, ) = uk(x), on �,
uk(x, t) = gk(x, t), on ∂� × (,T)

()

satisfying

‖ϕ‖L(,T ;H(�)) ≤N
(‖u‖L(�) + ‖g‖L(,T ;L(�))

)
.

For further details, see Theorem .. in [].

Definition . v is said to be a weak solution to problem () if

v ∈ L
(
,T ;H

(�)
)
,

∂v
∂t

∈ L
(
,T ;H–(�)

)
and

∫
�

(
∂vk

∂t
g +

d∑
r=

d∑
i,j=

aijkr(x, t)∂iv
r · ∂jg

)
dx

+
∫

�

( d∑
r=

d∑
i=

bikr(x, t)∂iv
r · g +

d∑
r=

ckr(x, t)vr · g
)
dx

=
∫

�

Fk
(
x, t, v + ϕ,∇(v + ϕ)

)
g dx –

∫
�

βε

(
vk + ϕk – uk

)
g dx ()

for all g ∈H

(�).

Lemma . If v ∈ L(,T ;H
(�)) and ∂v

∂t ∈ L(,T ;H–(�)), then

v ∈ C
(
[,T];L(�)

)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/8
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The mapping t → ‖v(t)‖
L(�) is absolutely continuous with

d
dt

∥∥vk(t)∥∥
L(�) = 

∫
�

∂vk

∂t
vk dt,

d
dt

∥∥v(t)∥∥
L(�) = 

d∑
k=

∫
�

∂vk

∂t
· vk dt

for any  ≤ t ≤ T . The proof is quite standard and can be found in [].

Lemma . If v is a weak solution to problem (), then there exists a positive constant C
such that

∥∥v(t)∥∥L(,T ;H
(�)) ≤ C,

where C is independent of v.

Proof Choosing v ∈H

(�) as the test function in (), we obtain

∫
�

(
∂vk

∂t
vk +

d∑
r=

d∑
i,j=

aijkr(x, t)∂iv
r · ∂jvk

)
dx

+
∫

�

( d∑
r=

d∑
i,j=

bikr(x, t)∂iv
r · vk +

d∑
r=

ckr(x, t)vrvk
)
dx

=
∫

�

Fk
(
x, t, v + ϕ,∇(v + ϕ)

)
vdx –

∫
�

βε

(
vk + ϕk – uk

)
vk dx. ()

From (), we easily have that

vk + ϕk ≥ uk for all (x, t) ∈QT .

This and () lead to

∣∣∣∣
∫

�

βε

(
vk + ϕk – uk

)
vk dx

∣∣∣∣ ≤ ∣∣βε()
∣∣ ·

∫
�

∣∣vk∣∣dx. ()

By (A), so that we get

∣∣Fk(x, t, v + ϕ,∇(v + ϕ)
)∣∣

≤
∣∣∣∣
∫

�

fk
(
x, t, y, v + ϕ,∇(v + ϕ)

)
dy

∣∣∣∣
≤ C

∫
�

(
f,k +

d∑
k=

∣∣vk∣∣ + d∑
k=

∣∣∇vk
∣∣ + d∑

k=

∣∣ϕk∣∣ + d∑
k=

∣∣∇ϕk∣∣)dx, ()

where C is a positive constant which depends only on the region �. It follows by (A) and
(A) that

θ

d∑
k=

∣∣∇vk
∣∣ ≤

d∑
k,r=

d∑
i,j=

aijkr∂iv
r · ∂jvk , ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/8
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∫
�

d∑
k,r=

d∑
i=

bikr(x, t)∂iv
r · vk dx ≥ B

d∑
k=

d∑
i=

∫
�

∂ivk · vk dx

=
B


d∑
k=

d∑
i=

∫
�

∂i
(
vk

) dx =  ()

and ∫
�

ckr(x, t)v dx≥ . ()

Now, we use Theorem .. in [] and substitute ()-() into () to arrive at



d
dt

∥∥vk∥∥
L(�) + θ

d∑
k=

∫
�

∣∣∇vk
∣∣ dx

≤ C

∫
�

(
f,k +

d∑
k=

∣∣vk∣∣ + d∑
k=

∣∣∇vk
∣∣ + d∑

k=

∣∣ϕk∣∣ + d∑
k=

∣∣∇ϕk∣∣) ·
d∑
k=

∣∣vk∣∣dx

+
∣∣βε()

∣∣ ·
∫

�

d∑
k=

∣∣vk∣∣dx. ()

It follows, by using the Cauchy inequality with ω > , that



d
dt

∥∥vk∥∥
L(�) + θ

d∑
k=

∫
�

∣∣∇vk
∣∣ dx

≤ C

(
ω

∫
�

f ,k dx +

ω

∫
�

( d∑
k=

∣∣vk∣∣
)

dx

)
+C

∫
�

( d∑
k=

∣∣vk∣∣
)

dx

+C

(
ω

∫
�

( d∑
k=

∣∣∇vk
∣∣)

dx +

ω

∫
�

( d∑
k=

∣∣vk∣∣
)

dx

)

+C

(
ω

∫
�

( d∑
k=

∣∣ϕk∣∣)

dx +

ω

∫
�

( d∑
k=

∣∣vk∣∣
)

dx

)

+C

(
ω

∫
�

( d∑
k=

∣∣∇ϕk∣∣)

dx +

ω

∫
�

( d∑
k=

∣∣vk∣∣
)

dx

)

+
∣∣βε()

∣∣ ·
(

ω

∫
�

dx +

ω

∫
�

( d∑
k=

∣∣vk∣∣
)

dx

)
.

Next, we choose  < ω �  to arrive at



d
dt

∥∥vk∥∥
L(�) +C‖v‖

H

(�) ≤ C‖v‖L(�) + C̃(t),

where C and C are positive constants and

C̃(t) = Cω

∫
�

(
f ,k +

( d∑
k=

∣∣ϕk∣∣)

+

( d∑
k=

∣∣∇ϕk∣∣))
dx +ω

∣∣βε()
∣∣ ·

∫
�

dx.

http://www.journalofinequalitiesandapplications.com/content/2014/1/8
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Note that ϕk ∈ C+δ,+δ/(Q̄T ). Therefore we choose a positive constant C = sup<t<T C̃(t)
to obtain



d
dt

∥∥v(t)∥∥
L(�) +C‖v‖

H

(�) ≤ C‖v‖L(�) +C. ()

On the one hand, letting η(t) = ‖v(t)‖
L(�), () gives

η′(t) ≤ Cη(t) + C.

Using the differential form of Gronwall inequality with η() = ‖v()‖L(�) = , we get

∥∥v(t)∥∥
L(�) ≤ eCtCt

and

max
<t<T

∥∥v(t)∥∥
L(�) ≤ C, ()

where C is a positive constant independent of v.
On the other hand, an integration of () from  to T with ‖v()‖

L(�) =  yields

C

∫ T


‖v‖

H

(�) dt ≤ C

∫ T


‖v‖

L(�) dt +CT + lim
t→T–

∥∥v(t)∥∥
L(�).

Using inequality (), we obtain

∥∥v(t)∥∥L(,T ;H
(�)) ≤

CC

C
T +

C

C
T +

C

C
.

Thus, the proof is ended by letting C = CC
C

T + C
C
T + C

C
> . �

Lemma . The solution to problem () satisfies

uk(x, t)≥ uk(x).

Proof Using (A), there exists a positive constant M satisfying

∣∣Fk(x, t,u,∇u)
∣∣ ≤M.

Here we plan to finish the proof by using contradiction. Assume that
⋃d

k={uk(x, t) < uk(x)}
is not empty, that is, at least there exists one k satisfying uk < uk. Let βε() = –M, from (),
one gets

ut – Lu = Fk(x, t,u,∇u) – βε

(
uk – uk(x)

)
> Fk(x, t,u,∇u) – βε() ≥ .

Using the standard maximum principle and (A), one gets

uk(x, t)≥ uk(x).

http://www.journalofinequalitiesandapplications.com/content/2014/1/8
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This is obviously contradictory. Therefore, we conclude that uk(x, t) ≥ uk(x) for any
(x, t) ∈QT . �

Lemma . If (A)-(A) are satisfied, there exists a unique weak solution v ∈ L(,T ;
H


(�))∩C([,T];L(�)) to problem () satisfying

‖v‖L(,T ;H
(�)) ≤N

∥∥F(·, ·, , )∥∥L(,T ;L(�)) +N
∣∣βε()

∣∣T , ()

where N is a positive constant independent of v.

Proof Given w ∈ L(,T ;H
(�)), set

fw = (f,w, f,w, . . . , fd,w), fk,w(x, t) = Fk
(
x, t,w + ϕ,∇(w + ϕ)

)
– βε

(
wk + ϕk – uk

)
.

The use of (A) leads to

fw(x, t) ∈ L
(
,T ;L(�)

)
. ()

By Lemma ., there exists a unique solution v ∈ L(,T ;H
(�))∩C([,T];L(�)) to

⎧⎪⎨
⎪⎩
(vk)t – Lkv = fk,w(x, t) in QT ,
vk(x, ) = , on �,
vk(x, t) = , on ∂� × (,T).

()

Define the mapping

M : L
(
,T ;H

(�)
) → L

(
,T ;H

(�)
)
, w �→M(w) = v,

where v is derived from w via ().
Here we plan to prove the existence and uniqueness by Schaefer’s fixed point theorem.

So that we need to present the continuity and compactness of the mapping M. In this
proof we only prove the continuity of the mapping M. The compactness can be obtained
by following similar arguments, so we omit it here.
Let {wn}n ∈ L(,T ;H

(�)) be a sequence such that

wk → w in L
(
,T ;H

(�)
)
. ()

By the improved regularity (), we obtain

‖vn‖L(,T ;H(�)) ≤ ‖fwk‖L(,T ;L(�)) for vn =M[wn],n = , , . . . .

By using (A) and Lemma . with βε(x)≤ , β ′
ε(x)≥ , we have

‖fwk‖L(,T ;L(�))

≤ ∥∥Fk(x, t,w + ϕ,∇w +∇ϕ)
∥∥
L(,T ;L(�)) +

∣∣βε()
∣∣dT

≤ ∥∥Fk(x, t,w + ϕ,∇w +∇ϕ) – Fk(x, t, , )
∥∥
L(,T ;L(�))

http://www.journalofinequalitiesandapplications.com/content/2014/1/8
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+
∥∥Fk(x, t, , )∥∥L(,T ;L(�)) +

∣∣βε()
∣∣dT

≤ α‖w‖L(,T ;L(�)) + α‖∇w‖L(,T ;L(�))

+
∥∥Fk(x, t, , )∥∥L(,T ;L(�)) +

∣∣βε()
∣∣dT

≤ α‖w‖L(,T ;H(�)) +
∥∥Fk(x, t, , )∥∥L(,T ;L(�)) +

∣∣βε()
∣∣dT .

The two inequalities above lead to

‖vn‖L(,T ;H(�))

≤ α‖wn‖L(,T ;H(�)) +
∥∥Fk(x, t, , )∥∥L(,T ;L(�)) +

∣∣βε()
∣∣dT . ()

Next, we pay our attention to the sequence {‖fwn‖L(,T ;L(�))}n. Since wn → w in L(,T ;
H


(�)), from (A) we have

∥∥fwn (x, t)
∥∥
L(,T ;L(�)) →

∥∥fw(x, t)∥∥L(,T ;L(�)).

This and () lead to the fact that the sequence {‖fwn‖L(,T ;L(�))}n is bounded, that is,

‖fwn‖L(,T ;L(�)) ≤ C. ()

Combing () with (), the sequence {vn}n is bounded uniformly in L(,T ;H(�)).
In a similar way, { ∂vn

∂t }nis uniformly bounded in L(,T ;H–(�)). By using Rellich’s the-
orem (see []), there exist a subsequence {vj}j ∈ L(,T ;H

(�)) and a function v ∈
L(,T ;H

(�)) which satisfies

vnj → v in L
(
,T ;H

(�)
)
as j → ∞

such that

∫
�

(∂vknj
∂t

φ – Lkvnjφ
)
dx =

∫
�

fk,wnj
(x, t)φ dx for each φ ∈ H

(�). ()

We combine () with () to arrive at

∫
�

(
∂vk

∂t
φ – Lkvφ

)
dx =

∫
�

fk,w(x, t)φ dx.

Therefore,

v = A[w], A[wn] → A[w] in L
(
,T ;H

(�)
)
.

Further, by Lemma ., we have that {w ∈ L(,T ;H
(�)) : w = A[w]} is bounded. Hence

the existence and uniqueness of this theorem are proven by using Lemma . with λ = .
Finally, we pay our attention to the estimate (). Letting n→ ∞ in (), we obtain

‖v‖L(,T ;H(�)) ≤ α‖v‖L(,T ;H(�)) +
∥∥Fk(x, t, , )∥∥L(,T ;L(�)) +

∣∣βε()
∣∣dT .

http://www.journalofinequalitiesandapplications.com/content/2014/1/8
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It follows by  < α <  that

‖v‖L(,T ;H(�)) ≤ 
 – α

∥∥Fk(x, t, , )∥∥L(,T ;L(�)) +


 – α

∣∣βε()
∣∣dT .

Therefore, the proof is complete. �

4 The proof of themain result
In this section, we prove that the solution to problem () converges to that of problem ()
when ε → . From Lemma . and Lemma ., we conclude that uε in () exists a unique
solution satisfying

‖uε‖L(,T ;H
(�)) ≤ C,

‖uε‖L(,T ;H
(�)) ≤N

∥∥F(·, ·, , )∥∥L(,T ;L(�)) +N
∣∣βε()

∣∣dT .
Thus, there exists a subsequence of {uε} still denoted by itself for convenience, and u ∈
L(,T ;H(�)) such that

ukε
weak→ uk in L

(
,T ;H(�)

)
,k = , , . . . ,d,

ukε
uniformly→ uk in C(�T ),k = , , . . . ,d.

Letting ε →  in () and using the maximum principle, we arrive at

⎧⎪⎨
⎪⎩
(uk)t – Lku – Fk(x, t,u,∇u) ≥ ,
uk(x, ) = uk(x),
uk(x, t) = gk(x).

()

Comparing () with (), we only need to prove that

[(
uk

)
t – Lku – Fk(x, t,u,∇u)

](
uk(x, t) – uk(x)

)
= 

holds. Note that uk(x, )≥ uk(x) derived from Lemma .. Thus, we can end the proof by
showing

(
uk

)
t – Lku – Fk(x, t,u,∇u) =  when uk(x, t)≥ uk(x). ()

In fact, there exists a positive constant such that for all (x, t) ∈ {uk(x, t) > uk(x)},

ukε(x, t) > α + uk(x)

holds when ε is sufficiently small. Further, from () we have that

 ≥ βε

(
ukε – uk

) ≥ βε(α)→ . ()

Therefore, we conclude that

(
uk

)
t – Lku – Fk(x, t,u,∇u) =  in L

(
,T ;H(�)

)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/8
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Now, we prove the uniqueness by contradiction. Assume that u = (u,u , . . . ,u
d
 ) and

u = (u,u, . . . ,u
d
 ) are the solutions of () and u = u. That is, there exists at least one k

satisfying uk = uk. For simplicity, we assume that {uk > uk} is not empty (if not, we assume
{uk < uk} is not empty), so that we have

uk > uk ≥ uk(x) in
{
uk > uk

}
.

This and () lead to

(
uk

)
t – Lku – Fk(x, t,u,�u) =  in

{
uk > uk

}
,(

uk
)
t – Lku – Fk(x, t,u,�u) ≥  in

{
uk > uk

}
,(

uk – uk
)
t – Lk(u – u) –

(
Fk(x, t,u,�u) – Fk(x, t,u,�u)

) ≤ .

By the maximum principle and (A), we have that

uk – uk ≤  in
{
uk > uk

}
.

This is obviously contradictory. Therefore, we conclude that problem () has a unique
solution.Moreover the estimate can be easily obtained by Lemma . and () with ε → .
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