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Abstract
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1 Preliminaries
A recent research direction in fixed-point theory is the study of the fixed-point problem
for single-valued andmultivalued operators in the context of ametric space endowedwith
a graph. This approach was recently considered by Jachymski in [], Gwóźdź-Lukawska
and Jachymski in [], and then it was developed in many other papers ([–], etc.).
On the other hand, fixed points and strict fixed points (also called end-points) are im-

portant elements inmathematical economics and game theory. It represents optimal pref-
erences in some Arrow-Debreu type models or Nash type equilibrium points for some
abstract noncooperative games, see, for example, [] and []. From this perspective, it is
important to give fixed and strict fixed-point theorems for multivalued operators.
We shall begin by presenting some notions and notations that will be used throughout

the paper.
Let (X,d) be a metric space and � be the diagonal of X × X. Let G be a directed graph

such that the set V (G) of its vertices coincides with X and � ⊆ E(G), E(G) being the set of
the edges of the graph. Assuming that G has no parallel edges, we will suppose that G can
be identified with the pair (V (G),E(G)).
If x and y are vertices ofG, then a path inG from x to y of length k ∈N is a finite sequence

(xn)n∈{,,,...,k} of vertices such that x = x, xk = y and (xi–,xi) ∈ E(G), for i ∈ {, , . . . ,k}.
Let us denote by G̃ the undirected graph obtained from G by ignoring the direction of

edges. Notice that a graph G is connected if there is a path between any two vertices and
it is weakly connected if G̃ is connected.
Let us consider the following families of subsets of a metric space (X,d):

P(X) :=
{
Y ∈P(X)|Y �= ∅}

, Pb(X) :=
{
Y ∈ P(X)|Y is bounded

}
,

Pcl(X) :=
{
Y ∈ P(X)|Y is closed

}
, Pcp(X) :=

{
Y ∈ P(X)|Y is compact

}
.
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Let us define the gap functional between the sets A and B in the metric space (X,d) as:

D : P(X)× P(X) →R+ ∪ {+∞}, D(A,B) = inf
{
d(a,b)|a ∈ A,b ∈ B

}

and the (generalized) Pompeiu-Hausdorff functional as

H : P(X)× P(X) →R+ ∪ {+∞},
H(A,B) =max

{
sup
a∈A

D(a,B), sup
b∈B

D(A,b)
}
.

The generalized diameter functional is denoted by δ : P(X) × P(X) → R+ ∪ {∞}, and
defined by

δ(A,B) = sup
{
d(a,b)|a ∈ A,b ∈ B

}
.

Denote by diam(A) := δ(A,A) the diameter of the set A.
Let T : X → P(X) be a multivalued operator and Graphic(T) := {(x, y)|y ∈ T(x)} the

graphic of T . x ∈ X is called fixed point for T if and only if x ∈ T(x), and it is called strict
fixed point if and only if {x} = T(x).
The set Fix(T) := {x ∈ X|x ∈ T(x)} is called the fixed-point set of T , while SFix(T) =

{x ∈ X|{x} = T(x)} is called the strict fixed-point set of T . Notice that SFix(T) ⊆ Fix(T).
We will write E(G) ∈ I(T ×T) if and only if for every x, y ∈ X with (x, y) ∈ E(G) we have

T(x)× T(y) ⊂ E(G).
For the particular case of a single-valued operator t : X → X the above notations should

be considered accordingly. In particular, the condition E(G) ∈ I(t × t) means that the op-
erator t is edge preserving (in the sense of the Jachymski’s definition of a Banach contrac-
tion), i.e. for each x, y ∈ X with (x, y) ∈ E(G) we have (t(x), t(y)) ∈ E(G) (see []). We will
also denote by O(x,n) := {x, t(x), t(x), . . . , tn(x)} the orbit of order n of the operator t
corresponding to x ∈ X.
In this paper we prove some fixed-point and strict fixed-point theorems for single-

valued and multivalued operators satisfying a contractive condition of Ćirić type with
respect to the functional δ. Our results also generalize and extend some fixed-point theo-
rems in partially ordered complete metric spaces given in Harjani, Sadarangani [], Nieto,
Rodríguez-López [] and [], Nieto et al. [], O’Regan, Petruşel [], Petruşel, Rus []
and Ran, Reurings []. For other general results concerning Ćirić type fixed-point theo-
rems see Rus [].
In the main section of the paper we give results concerning the existence and unique-

ness of the fixed point and of the strict fixed point of a Ćirić type (single-valued andmulti-
valued) contraction. Then the well-posedness of the fixed-point problem, the data depen-
dence of the fixed-point set, and the limit shadowing property are also studied. Our results
complement and extend some recent theorems given in [] for multivalued Reich-type
operators.

2 Main results
In this section we present the main results of the paper concerning the fixed-point prob-
lem and, respectively, the strict fixed-point problem for a single-valued, respectively, of a
multivalued Ćirić type contraction.
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Definition . Let (X,d) be a metric space and T : X → Pcl(X) be a multivalued operator.
By definition, the fixed-point problem is well-posed for T with respect to H if:

(i) SFixT = {x∗};
(ii) If (xn)n∈N is a sequence in X such that H(xn,T(xn)) → , as n→ ∞, then xn

d→ x∗,
as n→ ∞.

Definition . Let (X,d) be a metric space and T : X → P(X) be a multivalued operator.
By definition T has the limit shadowing property if for any sequence (yn)n∈N from X such
that D(yn+,T(yn)) → , as n→ ∞, there exists (xn)n∈N, a sequence of successive approxi-
mation of T , such that d(xn, yn) → , as n → ∞.

In order to prove the limit shadowing property we shall need Cauchy’s lemma.

Lemma . (Cauchy’s lemma) Let (an)n∈N and (bn)n∈N be two sequences of non-negative
real numbers, such that

∑+∞
k= ak < +∞ and bn → , as n→ ∞. Then

n∑
k=

an–kbk → , as n→ ∞.

The first main result of this paper is the following result for the case of single-valued
operators. The proof of this result is inspired by the proof of Ćirić’s fixed-point theorem
in [] and the approach introduced for metric spaces endowed with a graph by Jachymski
in [].

Theorem . Let (X,d) be a complete metric space and G be a directed graph such that
the triple (X,d,G) satisfies the following property:

(P)
for any sequence (xn)n∈N ⊂ X with xn → x as n→ ∞, there exists a subsequence
(xkn )n∈N of (xn)n∈N such that (xkn ,x) ∈ E(G).

Let t : X → X be a single-valued operator. Suppose the following assertions hold:
(i) there exists a ∈ [, [ such that

d
(
t(x), t(y)

) ≤ a ·max
{
d(x, y),d

(
x, t(x)

)
,d

(
y, t(y)

)
,d

(
x, t(y)

)
,d

(
y, t(x)

)}
,

for all (x, y) ∈ E(G);
(ii) there exists x ∈ X such that (x, t(x)) ∈ E(G);
(iii) E(G) ∈ I(t × t);
(iv) if (x, y) ∈ E(G) and (y, z) ∈ E(G), then (x, z) ∈ E(G).
In these conditions we have:
(a) (existence) Fix(t) �= ∅;
(b) (uniqueness) If, in addition, the following implication holds

x∗, y∗ ∈ Fix(t) ⇒ (
x∗, y∗) ∈ E(G),

then Fix(t) = {x∗}.

http://www.journalofinequalitiesandapplications.com/content/2014/1/77
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Proof (a) Let x ∈ X such that (x, t(x)) ∈ E(G). By (iii) we obtain (ti(x), ti+(x)) ∈ E(G),
for all i ∈N. Then, by (iv), we get

(
ti(x), tj(x)

) ∈ E(G), for all i, j ∈ N with i < j.

Since � ⊂ E(G) we get

(
ti(x), tj(x)

) ∈ E(G), for all i, j ∈ N with i≤ j. (.)

For n ∈N
∗, let i, j ∈N with ≤ i < j ≤ n. Then

d
(
ti(x), tj(x)

) ≤ adiam
(
O(x;n)

)
.

Notice now that, from the above relation, it follows that there exists k ∈ N
∗ with k ≤ n

such that

d
(
x, tk(x)

)
= diam

(
O(x;n)

)
. (.)

In order to show that the sequence (tn(x))n∈N is Cauchy, let us consider n,m ∈ N with
n <m. Then we have

d
(
tn(x), tm(x)

) ≤ adiam
(
O

(
tn–(x);m – n + 

))
.

By (.) there exists p ∈N with p ≤m – n +  such that

diam
(
O

(
tn–(x);m – n + 

))
= d

(
tn–(x), tp

(
tn–(x)

))
.

Then

d
(
tn–(x), tp

(
tn–(x)

))
= d

(
tn–(x), tp+n–(x)

)
= d

(
t
(
tn–(x)

)
, tp+

(
tn–(x)

))
≤ adiam

(
O

(
tn–(x);p + 

))
≤ adiam

(
O

(
tn–(x);m – n + 

))
.

Thus, we get

diam
(
O

(
tn–(x);m – n + 

)) ≤ adiam
(
O

(
tn–(x);m – n + 

)) ≤ · · ·
≤ an diam

(
O(x;m)

)
.

Hence

d
(
tn(x), tm(x)

) ≤ an diam
(
O(x;m)

)
.

Notice now that

diam
(
O(x;m)

) ≤ 
 – a

d
(
x, t(x)

)
, for allm ∈ N. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/77
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Indeed, if we take m ∈ N arbitrary, then by (.), there exists r ∈ N such that  ≤ r ≤ m
and d(x, tr(x)) = diam(O(x;m)). Then, using (.), we get

d
(
x, tr(x)

) ≤ d
(
x, t(x)

)
+ d

(
t(x), tr(x)

) ≤ d
(
x, t(x)

)
+ adiam

(
O(x;m)

)
= d

(
x, t(x)

)
+ ad

(
x, tr(x)

)
.

Hence we have

diam
(
O(x;m)

)
= d

(
x, tr(x)

) ≤ 
 – a

d
(
x, t(x)

)
,

proving (.). Now, we can conclude that

d
(
tn(x), tm(x)

) ≤ an

 – a
d
(
x, t(x)

)
, for all n,m ∈N with n <m. (.)

Thus, (.) shows that the sequence (tn(x))n∈N is Cauchy and, as a consequence of the
completeness of the space, it converges to an element x∗ ∈ X.
We will show now that x∗ ∈ Fix(t).
Notice first that, by the property (P), there exists a subsequence (xkn )n∈N of (xn)n∈N such

that (xkn ,x∗) ∈ E(G) for each n ∈N. Now, we can write

d
(
x∗, t

(
x∗))

≤ d
(
x∗,xkn+

)
+ d

(
t(xkn ), t

(
x∗))

≤ d
(
x∗,xkn+

)
+ amax

{
d
(
xkn ,x

∗),d(
xkn , t(xkn )

)
,d

(
x∗, t

(
x∗)),d(

xkn , t
(
x∗)),d(

x∗, t(xkn )
)}

≤ d
(
x∗,xkn+

)
+ a

(
d
(
xkn ,x

∗) + d
(
xkn , t(xkn )

)
+ d

(
x∗, t

(
x∗)) + d

(
x∗, t(xkn )

))
.

Hence

d
(
x∗, t

(
x∗)) ≤ 

 – a
[
( + a)d

(
x∗,xkn+

)
+ ad

(
xkn ,x

∗) + ad(xkn ,xkn+ )
]
.

Letting n → +∞ we get x∗ ∈ Fix(t).
(b) Suppose that there exist x∗, y∗ ∈ Fix(t) with x∗ �= y∗.
Using (i) and the additional hypothesis of (b), we obtain

d
(
x∗, y∗) = d

(
t
(
x∗), t(y∗))

≤ amax
{
d
(
x∗, y∗),d(

x∗, t
(
x∗)),d(

t
(
y∗), y∗),d(

x∗, t
(
y∗)),d(

y∗, t
(
x∗))}

= ad
(
x∗, y∗),

which is a contradiction. �

Remark . Notice that, from the proof of the above theorem, it follows that the sequence
(tn(x))n∈N converges to x∗ in (X,d).

http://www.journalofinequalitiesandapplications.com/content/2014/1/77
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Remark . If in the above theorem, instead of property (P) we suppose that t has closed
graphic, then we can reach the same conclusion. Moreover if we suppose that

x∗, y∗ ∈ Fix(t) ⇒ (
x∗, y∗) ∈ E(G),

then we get again Fix(t) = {x∗}.

Based on the above theorem, we can prove now our second main result.

Theorem . Let (X,d) be a complete metric space and G be a directed graph such that
the triple (X,d,G) satisfies the following property:

(P)
for any sequence (xn)n∈N ⊂ X with xn → x as n→ ∞, there exists a subsequence
(xkn )n∈N of (xn)n∈N such that (xkn ,x) ∈ E(G).

Let T : X → Pb(X) be a multivalued operator. Suppose the following assertions hold:
(i) there exists a ∈ [, [ such that

δ
(
T(x),T(y)

) ≤ a ·max
{
d(x, y), δ

(
x,T(x)

)
, δ

(
y,T(y)

)
,D

(
x,T(y)

)
,D

(
y,T(x)

)}
,

for all (x, y) ∈ E(G);
(ii) there exists x ∈ X such that, for all y ∈ T(x), we have (x, y) ∈ E(G);
(iii) E(G) ∈ I(T × T);
(iv) if (x, y) ∈ E(G) and (y, z) ∈ E(G), then (x, z) ∈ E(G).
In these conditions we have:
(a) (existence) Fix(T) = SFix(T) �= ∅;
(b) (uniqueness) If, in addition, the following implication holds:

x∗, y∗ ∈ Fix(T) ⇒ (
x∗, y∗) ∈ E(G),

then Fix(T) = SFix(T) = {x∗};
(c) (well-posedness of the fixed-point problem) If T has closed graphic and for any

sequence (xn)n∈N, xn ∈ X with H(xn,T(xn)) → , as n → ∞, we have (xn,x∗) ∈ E(G),
then the fixed-point problem is well-posed for T with respect to H ;

(d) (limit shadowing property of T) If a < 
 and (yn)n∈N is a sequence in X such that the

following implication holds:

D
(
yn+,T(yn)

) → , as n→ ∞ ⇒ (
yn,x∗) ∈ E(G), ∀n ∈ N,

then T has the limit shadowing property.

Proof (a) Let  < q <  be an arbitrary real number. Notice first that, for any x ∈ X, there
exists u ∈ T(x) such that aqδ(x,T(x)) ≤ d(x,u). In this way, we get an operator t : X → X
which assigns to each x ∈ X the element t(x) ∈ T(x) with

aqδ
(
x,T(x)

) ≤ d
(
x, t(x)

)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/77
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Then, for (x, y) ∈ E(G), we have

d
(
t(x), t(y)

)
≤ δ

(
T(x),T(y)

)
≤ aa–qmax

{
aqd(x, y),aqδ

(
x,T(x)

)
,aqδ

(
y,T(y)

)
,aqD

(
x,T(y)

)
,aqD

(
y,T(x)

)}
≤ a–qmax

{
d(x, y),d

(
x, t(x)

)
,d

(
y, t(y)

)
,d

(
x, t(y)

)
,d

(
y, t(x)

)}
.

Thus, the operator t satisfies all the hypotheses of Theorem . and, as a consequence,
it has a fixed point x∗ ∈ X. Then x∗ ∈ Fix(T). If we suppose now that there exists
x ∈ Fix(T) \ SFix(T), then, since (x,x) ∈ �, from the condition (i) (with y = x), we get
δ(T(x)) ≤ aδ(T(x)), which implies (since a < ) that δ(T(x)) = . Thus T(x) = {x}. This is a
contradiction with x ∈ Fix(T) \ SFix(T), proving that Fix(T) = SFix(T) �= ∅.
(b) Suppose that there exist x∗, y∗ ∈ Fix(T) = SFix(T).
Using (i) we obtain

d
(
x∗, y∗) = δ

(
T

(
x∗),T(

y∗))
≤ a ·max

{
d
(
x∗, y∗), δ(x∗,T

(
x∗)), δ(y∗,T

(
y∗)),D(

x∗,T
(
y∗)),D(

y∗,T
(
x∗))}

= ad
(
x∗, y∗),

which implies that d(x∗, y∗) = . Hence Fix(T) = SFix(T) = {x∗}.
(c) Let (xn)n∈N, xn ∈ X, be a sequencewith the property thatH(xn,T(xn)) → , as n → ∞.

It is obvious that H(xn,T(xn)) = δ(xn,T(xn)).
Let x∗ ∈ Fix(T) = SFix(T). Then

d
(
xn,x∗) = δ

(
xn,T

(
x∗)) ≤ δ

(
xn,T(xn)

)
+ δ

(
T(xn),T

(
x∗))

≤ δ
(
xn,T(xn)

)
+ a ·max

{
d
(
xn,x∗), δ(xn,T(xn)),d(

xn,x∗),D(
x∗,T(xn)

)}
≤ δ

(
xn,T(xn)

)
+ aδ

(
xn,T(xn)

)
+ ad

(
xn,x∗).

Hence

d
(
xn,x∗) ≤  + a

 – a
δ
(
xn,T(xn)

) → , as n→ +∞,

and, as a consequence, the fixed-point problem is well-posed for T with respect to H .
(d) Let (yn)n∈N be a sequence inX such thatD(yn+,T(yn)) → , as n→ ∞ and let (xn)n∈N

be a sequence of successive approximation of T starting from x ∈ X, constructed as in the
proof of Theorem .. We shall prove that d(xn, yn)→ , as n→ ∞.
Let x∗ ∈ Fix(T) = SFix(T). Then

d(xn, yn) ≤ d
(
xn,x∗) + d

(
x∗, yn

)
.

In what follows we shall prove that d(x∗, yn) → , as n→ ∞. Then we have

d
(
x∗, yn+

) ≤ δ
(
x∗,T(yn)

)
+D

(
yn+,T(yn)

)
= δ

(
T

(
x∗),T(yn)) +D

(
yn+,T(yn)

)
≤ a ·max

{
d
(
x∗, yn

)
, δ

(
yn,T(yn)

)
,D

(
x∗,T(yn)

)
,d

(
yn,x∗)} +D

(
yn+,T(yn)

)
≤ aδ

(
yn,T(yn)

)
+ ad

(
x∗, yn

)
+D

(
yn+,T(yn)

)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/77
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Now, we can write

δ
(
yn,T(yn)

) ≤ d
(
x∗, yn

)
+ δ

(
x∗,T(yn)

)
= d

(
x∗, yn

)
+ δ

(
T

(
x∗),T(yn))

≤ d
(
x∗, yn

)
+ aδ

(
yn,T(yn)

)
+ ad

(
x∗, yn

)
.

Thus

δ
(
yn,T(yn)

) ≤  + a
 – a

d
(
x∗, yn

)
.

If we replace this in the above relation, we get

d
(
x∗, yn+

) ≤ a
 – a

d
(
x∗, yn

)
+D

(
yn+,T(yn)

)
.

Hence

d
(
yn+,x∗) ≤ a

 – a
d
(
yn,x∗) +D

(
yn+,T(yn)

)

≤
(

a
 – a

)

d
(
yn–,x∗) + a

 – a
D

(
yn,T(yn–)

)
+D

(
yn+,T(yn)

)
.

Continuing this process we shall obtain

d
(
yn+,x∗) ≤

(
a
 – a

)n+

d
(
y,x∗) +

n∑
k=

(
a
 – a

)n–k

D
(
yk+,T(yk)

)
.

If we consider an = ( a
–a )

n and bn =D(yn+,T(yn)) and using the fact that a < 
 , we obtain,

via Cauchy’s lemma, d(x∗, yn) → , as n → ∞. Thus d(x∗, yn) → , as n → ∞, and hence,
the operator T has the limit shadowing property. �

Remark . If in Theorem ., instead of property (P), we suppose that every selection
t of T has closed graphic, then we obtain Fix(T) = SFix(T) �= ∅. Moreover if we suppose
that the following implication holds:

x∗, y∗ ∈ Fix(T) ⇒ (
x∗, y∗) ∈ E(G),

then Fix(T) = SFix(T) = {x∗}.

Proof Since every selection t of T has closed graphic, the conclusion follows by Theo-
rem ., via Remark .. �

Definition . Let (X,d) be a metric space and T : X → Pcl(X) be a multivalued operator.
By definition the fixed-point problem is well-posed in the generalized sense for T with
respect to H if

(i) SFixT �= ∅;
(ii) If (xn)n∈N is a sequence in X such that H(xn,T(xn)) → , as n→ ∞, then there

exists a subsequence (xkn )n∈N of (xn)n∈N such that xkn
d→ x∗, as n→ ∞.

http://www.journalofinequalitiesandapplications.com/content/2014/1/77
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Remark . If in Theorem . instead of (c) we suppose the following assumption, (c′):

(c′) If every selection t of T has closed graphic and, in addition, we suppose that for any
sequence (xn)n∈N ⊂ X with H(xn,T(xn)) → , as n → ∞, there exists a subsequence
(xkn )n∈N such that (xkn ,x∗) ∈ E(G) and H(xkn ,T(xkn )) → , then the fixed-point prob-
lem is well-posed in the generalized sense for T with respect to H .

In what follows we shall present some examples of operators satisfying the hypotheses
of our main results.

Example . Let X = {, } ∪ { 
k : k ∈N

∗} and f : X → X given by

f (x) =

⎧⎨
⎩
x/, if x ∈ { 

k : k ∈N
∗},

, if x ∈ {, }.

Let V (G) := X and E(G) := {(, ), (, )} ∪ {(, 
k ), (


k , ), (,


k ), (


k , ) : k ∈N

∗} ∪ �.
Then all the hypotheses of Theorem . are satisfied, Fix(t) = {} and, if we take x = 

 ,
then (tn(x))n∈N∗ converges to x∗ = .

Example . Let X = {(, ), (, ), (, )} and T : X → Pb(X) given by

T(x) =

⎧⎪⎪⎨
⎪⎪⎩

{(, )}, x = (, ),

{(, ), (, )}, x = (, ),

{(, )}, x = (, ).

Let E(G) := {((, ); (, )), ((, ); (, ))} ∪ �.
Notice that Fix(T) = SFix(T) = {(, )} and all the hypotheses in Theorem . are satis-

fied (the condition (i) is verified for a≥ , ).

Remark . It is also important to notice that, if we suppose that there exists x ∈ Fix(T) \
SFix(T), then, since (x,x) ∈ �, from the condition (i) in the above theorem (with y = x),
we get δ(T(x)) ≤ aδ(T(x)), which implies δ(T(x)) =  (since a < ). This is a contradiction
with x ∈ Fix(T) \ SFix(T), showing that we cannot get fixed points which are not strict
fixed points in the presence of the condition (i) of the above theorem. It is an open prob-
lem to prove a similar theorem to the above one for a more general class of multivalued
operators T .

The next result presents the data dependence of the fixed-point set of a multivalued
operator which satisfies a contractive condition of Ćirić type.

Theorem. Let (X,d) be a completemetric space andG be a directed graph such that the
triple (X,d,G) satisfies property (P). Let T,T : X → Pb(X) be two multivalued operators.
Suppose the following assertions hold:

(i) for i ∈ {, }, there exist ai ∈ [, ) such that

δ
(
Ti(x),Ti(y)

) ≤ a ·max
{
d(x, y), δ

(
x,Ti(x)

)
, δ

(
y,Ti(y)

)
,D

(
x,Ti(y)

)
,D

(
y,Ti(x)

)}
,

for all (x, y) ∈ E(G);
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(ii) for each x ∈ X and each y ∈ T(x) we have (x, y) ∈ E(G), for i ∈ {, };
(iii) E(G) ∈ I(T × T);
(iv) if (x, y) ∈ E(G) and (y, z) ∈ E(G), then (x, z) ∈ E(G);
(v) there exists η >  such that H(T(x),T(x))≤ η for all x ∈ X .
Under these conditions we have:
(a) Fix(Ti) = SFix(Ti) �= ∅, i ∈ {, };
(b) If, in addition, for i ∈ {, }, the following implication holds:

x∗
i , y

∗
i ∈ Fix(Ti) ⇒ (

x∗
i , y

∗
i
) ∈ E(G),

then Fix(Ti) = SFix(Ti) = {x∗
i }, for each i ∈ {, };

(c) H(SFix(T),SFix(T)) ≤ η

–max{a,a} .

Proof Conclusions (a) and (b) are immediate if we apply Theorem ..
For (c) notice that we can prove that for every x∗

 ∈ SFix(T), there exists x∗
 ∈ SFix(T),

such that

d
(
x∗
 ,x

∗

) ≤ η

 – a
.

A second relation of this type will be obtained by interchanging the role of T and T.
Hence, the conclusion follows by the properties of the functional H . �
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2. Gwóźdź-Lukawska, G, Jachymski, J: IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin

theorem. J. Math. Anal. Appl. 356, 453-463 (2009)
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12. O’Regan, D, Petruşel, A: Fixed point theorems in ordered metric spaces. J. Math. Anal. Appl. 341, 1241-1252 (2008)
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