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Abstract
We prove the existence of common fuzzy fixed points for a sequence of locally
contractive fuzzy mappings satisfying generalized Banach type contraction
conditions in a complete metric space by using iterations. Our main result generalizes
and unifies several well-known fixed-point theorems for multivalued maps. Illustrative
examples are also given.
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1 Introduction
The Banach contraction theorem and its subsequent generalizations play a fundamental
role in the field of fixed point theory. In particular, Heilpern introduced in [] the no-
tion of a fuzzy mapping in a metric linear space and proved a Banach type contraction
theorem in this framework. Subsequently several other authors [–] have studied and
established the existence of fixed points of fuzzy mappings. The aim of this paper is to
prove a common fixed-point theorem for a sequence of fuzzy mappings in the context of
metric spaces without the assumption of linearity. Our results generalize and unify several
typical theorems of the literature.

2 Preliminaries
Given a metric space (X,d), denote by CB(X) the family of all nonempty closed bounded
subsets of (X,d). As usual, for ζ ∈ X and A ∈ CB(X), we define

d(ζ ,A) = inf
a∈A

d(ζ ,a).

Then the Hausdorff metric H on CB(X) induced by d is defined as

H(A,B) =max
{
sup
a∈A

d(a,B), sup
b∈B

d(A,b)
}
,

for all A,B ∈ CB(X).
A fuzzy set in (X,d) is a function with domain X and values in I = [, ]. IX denotes the

collection of all fuzzy sets in X. If A is a fuzzy set and ζ ∈ X, then the function value A(ζ )
is called the grade of membership of ζ in A. The α-level set of a fuzzy set A is denoted by
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Aα , and it is defined as follows:

Aα =
{
ζ : A(ζ ) ≥ α

}
if α ∈ (, ],

A = closure of
{
ζ : A(ζ ) > 

}
.

According to Heilpern [], a fuzzy set A in a metric linear space (X,d) is said to be
an approximate quantity if Aα is compact and convex in X, for each α ∈ (, ], and
supζ∈X A(ζ ) = . The family of all approximate quantities of the metric linear space (X,d)
is denoted byW (X).
Now, for A,B ∈ W (X) and α ∈ [, ], define

Dα(A,B) =H(Aα ,Bα),

and

d∞(A,B) = sup
α∈[,]

Dα(Aα ,Bα).

It is well known that d∞ is a metric onW (X).
In case that (X,d) is a (non-necessarily linear) metric space, we also define

Dα(A,B) =H(Aα ,Bα),

whenever A,B ∈ IX and Aα ,Bα ∈ CB(X), α ∈ [, ].
In the sequel the letter N will denote the set of positive integer numbers.
The followingwell-knownproperties on theHausdorffmetric (see e.g. []) will be useful

in the next section.

Lemma . Let (X,d) be a metric space and let A,B ∈ CB(X) with H(A,B) < r, r > . If
a ∈ A, then there exists b ∈ B such that d(a,b) < r.

Lemma . Let (X,d) be a metric space and let {An}∞n= be a sequence in CB(X) such that
limn→∞ H(An,A) = , for some A ∈ CB(X). If ξn ∈ An, for all n ∈ N, and d(ξn, ξ ) → , then
ξ ∈ A.

Now, let X be an arbitrary set and let Y be a metric space. A mapping T is called fuzzy
mapping if T is a mapping from X into IY . In fact, a fuzzy mapping T is a fuzzy subset
on X ×Y with membership function T(ζ ). The value T(ζ )(ξ ) is the grade of membership
of ξ in T(ζ ).
If (X,d) is a metric space and T is a (fuzzy) mapping from X into IX , we say that ξ ∈ X

is a fixed point of T if ξ ∈ T(ξ ).
We conclude this sectionwith the notion of contractiveness that will be used in ourmain

result.

Definition . (compare []) Let ε ∈ (,∞]. A function ψ : [, ε) → [, ) is said to be a
MT-function if it satisfies Mizoguchi-Takahashi’s condition (i.e., lim supr→t+ ψ(r) < , for
all t ∈ [, ε)).
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Clearly, if ψ : [, ε) → [, ) is a nondecreasing function or a nonincreasing function,
then it is aMT-function. So the set ofMT-functions is a rich class.

3 Fixed points of fuzzy mappings
Fixed-point theorems for locally contractive mappings were studied, among others, by
Edelstein [], Beg and Azam [], Holmes [], Hu [], Hu and Rosen [], Ko and Tasi
[], Kuhfitting [] and Nadler [].
Heilpern [] established a fixed-point theorem for fuzzy contraction mappings in met-

ric linear spaces, which is a fuzzy extension of Banach’s contraction principle. Afterwards
Azam et al. [, ], and Lee and Cho [] further extended Banach’s contraction principle
to fuzzy contractive mappings in Heilpern’s sense. In ourmain result (Theorem . below)
we establish a common fixed-point theorem for a sequence of generalized fuzzy uniformly
locally contraction mappings on a complete metric space without the requirement of lin-
earity. This is a generalization of many conventional results of the literature.
Let ε ∈ (,∞], and λ ∈ (, ). A metric space (X,d) is said to be ε-chainable if given

ζ , ξ ∈ X , there exists an ε-chain from ζ to ξ (i.e., a finite set of points ζ = ζ, ζ, ζ, . . . , ζm = ξ

such that d(ζj–, ζj) < ε, for all j = , , . . . ,m). A mapping T : X → X is called an (ε,λ) uni-
formly locally contractive mapping if ζ , ζ ∈ X and  < d(ζ , ζ ) < ε, implies d(Tζ ,Tξ ) ≤
λd(ζ , ξ ). A mapping T : X → W (X) is called an (ε,λ) uniformly locally contractive fuzzy
mapping if ζ , ξ ∈ X and  < d(ζ , ξ ) < ε, imply d∞(T(ζ ),T(ξ )) ≤ λd(ζ , ξ ). We remark that
a globally contractive mapping can be regarded as an (∞,λ) uniformly locally contractive
mapping and for some special spaces every locally contractive mapping is globally con-
tractive.

Theorem . Let ε ∈ (,∞], (X,d) a complete ε-chainable metric space and {Ti}∞i= a se-
quence of fuzzy mappings from X into IX such that, for each ζ ∈ X and i ∈ N, Ti(ζ ) ∈
CB(X). If

ζ , ξ ∈ X,  < d(ζ , ξ ) < ε implies D
(
Ti(ζ ),Tj(ξ )

) ≤ ψ
(
d(ζ , ξ )

)
d(ζ , ξ ), ()

for all i, j ∈ N, where ψ : [, ε) → [, ) is a MT-function, then the sequence {Ti}∞i= has a
common fixed point, i.e., there is ξ ∗ ∈ X such that ξ ∗ ∈ Ti(ξ ∗), for all i ∈N.

Proof Let ξ be an arbitrary, but fixed element of X. Find ξ ∈ X such that ξ ∈ T(ξ). Let

ξ = ζ(,), ζ(,), ζ(,), . . . , ζ(,m) = ξ ∈ T(ξ)

be an arbitrary ε-chain from ξ to ξ. (We suppose, without loss of generality, that ζ(,i) �=
ζ(,j), for each i, j ∈ {, , , . . . ,m} with i �= j.)
Since  < d(ζ(,), ζ(,)) < ε, we deduce that

D
(
T(ζ(,)),T(ζ(,))

) ≤ ψ
(
d(ζ(,), ζ(,))

)
d(ζ(,), ζ(,))

<
√

ψ
(
d(ζ(,), ζ(,))

)
d(ζ(,), ζ(,))

< d(ζ(,), ζ(,)) < ε.
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Rename ξ as ζ(,). Since ζ(,) ∈ T(ζ(,)), using Lemma . we find ζ(,) ∈ T(ζ(,)) such
that

d(ζ(,), ζ(,)) <
√

ψ
(
d(ζ(,), ζ(,))

)
d(ζ(,), ζ(,))

< d(ζ(,), ζ(,)) < ε.

Similarly we may choose an element ζ(,) ∈ T(ζ(,)) such that

d(ζ(,), ζ(,)) <
√

ψ
(
d(ζ(,), ζ(,))

)
d(ζ(,), ζ(,))

< d(ζ(,), ζ(,)) < ε.

Thus we obtain a set {ζ(,), ζ(,), ζ(,), . . . , ζ(,m)} of m +  points of X such that ζ(,) ∈
T(ζ(,)) and ζ(,j) ∈ T(ζ(,j)), for j = , , . . . ,m, with

d(ζ(,j), ζ(,j+)) <
√

ψ
(
d(ζ(,j), ζ(,j+))

)
d(ζ(,j), ζ(,j+))

< d(ζ(,j), ζ(,j+)) < ε,

for j = , , , . . . ,m – .
Let ζ(,m) = ξ. Thus the set of points ξ = ζ(,), ζ(,), ζ(,), . . . , ζ(,m) = ξ ∈ T(ξ) is an

ε-chain from ξ to ξ. Rename ξ as ζ(,). Then by the sameprocedurewe obtain an ε-chain

ξ = ζ(,), ζ(,), ζ(,), . . . , ζ(,m) = ξ ∈ T(ξ)

from ξ to ξ. Inductively, we obtain

ξn = ζ(n+,), ζ(n+,), ζ(n+,), . . . , ζ(n+,m) = ξn+ ∈ Tn+(ξn)

with

d(ζ(n+,j), ζ(n+,j+)) <
√

ψ
(
d(ζ(n,j), ζ(n,j+))

)
d(ζ(n,j), ζ(n,j+))

< d(ζ(n,j), ζ(n,j+)) < ε, ()

for j = , , , . . . ,m – .
Consequently, we construct a sequence {ξn}∞n= of points of X with

ξ = ζ(,m) = ζ(,) ∈ T(ξ),

ξ = ζ(,m) = ζ(,) ∈ T(ξ),

ξ = ζ(,m) = ζ(,) ∈ T(ξ),

...

ξn+ = ζ(n+,m) = ζ(n+,) ∈ Tn+(ξn),

for all n ∈N.
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For each j ∈ {, , , . . . ,m–}, we deduce from () that {d(ζ(n,j), ζ(n,j+))}∞n= is a decreasing
sequence of non-negative real numbers and therefore there exists lj ≥  such that

lim
n→∞d(ζ(n,j), ζ(n,j+)) = lj.

By assumption, lim supt→l+j
ψ(t) < , so there exists nj ∈ N such that ψ(d(ζ(n,j), ζ(n,j+))) <

s(lj), for all n≥ nj where lim supt→l+j
ψ(t) < s(lj) < .

Now put

Mj =max
{
max
i=,...,nj

√
ψ

(
d(ζ(i,j), ζ(i,j+))

)
,
√
s(lj)

}
.

Then, for every n > nj, we obtain

d(ζ(n,j), ζ(n,j+)) <
√

ψ
(
d(ζ(n–,j), ζ(n–,j+))

)
d(ζ(n–,j), ζ(n–,j+))

<
√
s(lj)d(ζ(n–,j), ζ(n–,j+))

≤ Mjd(ζ(n–,j), ζ(n–,j+))

≤ (Mj)d(ζ(n–,j), ζ(n–,j+))

≤ · · ·
≤ (Mj)n–d(ζ(,j), ζ(,j+)).

Putting N =max{nj : j = , , , . . . ,m – }, we have

d(ξn–, ξn) = d(ζ(n,), ζ(n,m)) ≤
m–∑
j=

d(ζ(n,j), ζ(n,j+))

<
m–∑
j=

(Mj)n–d(ζ(,j), ζ(,j+)),

for all n >N + . Hence

d(ξn, ξp) ≤ d(ξn, ξn+) + d(ξn+, ξn+) + · · · + d(ξp–, ξp)

<
m–∑
j=

(Mj)nd(ζ(,j), ζ(,j+)) + · · · +
m–∑
j=

(Mj)p–d(ζ(,j), ζ(,j+)),

whenever p > n >N + .
Since Mj < , for all j ∈ {, , , . . . ,m – }, it follows that {ξn}∞n= is a Cauchy sequence.

Since (X,d) is complete, there is ξ ∗ ∈ X such that ξn → ξ ∗. So for each δ ∈ (, ε] there
is Mδ ∈ N such that n > Mδ implies d(ξn, ξ ∗) < δ. This in view of inequality () implies
D(Tn+(ξn),Ti(ξ ∗)) < δ, for all i ∈ N. Consequently, H(Tn+(ξn),Ti(ξ ∗)) → . Since ξn+ ∈
Tn+(ξn) with d(ξn+, ξ ∗) → , we deduce from Lemma . that ξ ∗ ∈ Ti(ξ ∗), for all i ∈ N.
This completes the proof. �
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Corollary . Let ε ∈ (,∞], (X,d) a complete ε-chainable metric space and {Ti}∞i= a
sequence of fuzzy mappings from X into IX such that, for each ζ ∈ X and i ∈ N, Ti(ζ ) ∈
CB(X). If

ζ , ξ ∈ X,  < d(ζ , ξ ) < ε implies D
(
Ti(ζ ),Tj(ξ )

) ≤ λd(ζ , ξ ),

for all i, j ∈N, where λ ∈ (, ), then the sequence {Ti}∞i= has a common fixed point.

Proof Apply Theorem . when ψ is the MT-function defined as ψ(t) = λ, for all t ∈
[, ε). �

Corollary . Let ε ∈ (,∞], (X,d) a complete ε-chainable metric linear space and {Ti}∞i=
a sequence of fuzzy mappings from X into W (X) satisfying the following condition:

ζ , ξ ∈ X,  < d(ζ , ξ ) < ε implies d∞
(
Ti(ζ ),Tj(ξ )

) ≤ ψ
(
d(ζ , ξ )

)
d(ζ , ξ ),

for all i, j ∈ N, where ψ : [, ε) → [, ) is a MT-function. Then the sequence {Ti}∞i= has a
common fixed point.

Proof Since W (X) ⊆ CB(X) and D(Ti(ζ ),Tj(ξ )) ≤ d∞(Ti(ζ ),Tj(ξ )), for all i, j ∈ N, the re-
sult follows immediately from Theorem .. �

Corollary . Let ε ∈ (,∞], (X,d) a complete ε-chainable metric linear space and {Ti}∞i=
a sequence of fuzzy mappings from X into W (X) satisfying the following condition:

ζ , ξ ∈ X,  < d(ζ , ξ ) < ε implies d∞
(
Ti(ζ ),Tj(ξ )

) ≤ λd(ζ , ξ ),

for all i, j ∈N, where λ ∈ (, ). Then the sequence {Ti}∞i= has a common fixed point.

Corollary . [] Let ε ∈ (,∞], (X,d) a complete ε-chainable metric linear space and T,
T, two fuzzy mappings from X into W (X) satisfying the following condition:

ζ , ξ ∈ X,  < d(ζ , ξ ) < ε implies d∞
(
Ti(ζ ),Tj(ξ )

) ≤ ψ
(
d(ζ , ξ )

)
d(ζ , ξ ),

for i, j = , , where ψ : [, ε) → [, ) is a MT-function. Then T and T have a common
fixed point.

Corollary . [, ] Let ε ∈ (,∞], (X,d) a complete ε-chainable metric linear space and
T : X → W (X) an (ε,λ) uniformly locally contractive fuzzy mapping. Then T has a fixed
point.

Corollary . Let ε ∈ (,∞], (X,d) a complete ε-chainable metric space and S be a mul-
tivalued mapping from X into CB(X) satisfying the following condition:

ζ , ξ ∈ X,  < d(ζ , ξ ) < ε implies H
(
S(ζ ),S(ξ )

) ≤ ψ
(
d(ζ , ξ )

)
d(ζ , ξ ),

where ψ : [, ε) → [, ) is a MT-function. Then S has a fixed point.
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Proof Define a fuzzy mapping T from X into IX as T(ξ )(t) =  if t ∈ S(ξ ) and T(ξ )(t) = ,
otherwise. Then T(ξ ) = S(ξ ), for all ξ ∈ X, so T(ξ ) ∈ CB(X), for all ξ ∈ X. Since

D
(
T(ζ ),T(ξ )

)
=H

(
T(ζ ),T(ξ )

)
=H

(
S(ζ ),S(ξ )

)
,

for all ζ , ξ ∈ X, we deduce that condition () of Theorem . is satisfied for T . Hence T has
a fixed point ξ ∗, i.e., ξ ∗ ∈ T(ξ ∗). We conclude that ξ ∗ ∈ S(ξ ∗). The proof is complete. �

Corollary . [] Let ε ∈ (,∞], (X,d) a complete ε-chainable metric space and S be a
multivalued mapping from X into CB(X) satisfying the following condition:

ζ , ξ ∈ X,  < d(ζ , ξ ) < ε implies H
(
S(ζ ),S(ξ )

) ≤ λd(ζ , ξ ),

where λ ∈ (, ). Then S has a fixed point.

Corollary . ([, ], see also [, ]) Let (X,d) be a complete metric space, S a multi-
valued mapping from X into CB(X) and ψ : [,∞)→ [, ) a MT-function such that

H(Sζ ,Sξ )≤ ψ
(
d(ζ , ξ )

)
d(ζ , ξ ),

for all ζ , ξ ∈ X. Then S has a fixed point in X.

Proof Apply Corollary . with ε =∞. �

We conclude the paper with two examples to support Theorem . and Corollary ..

Example . Let (X,d) be the compact, and thus complete, metric space such that X =
[, ], and d(x, y) = |x – y|, for all x, y ∈ X. Let λ be a constant such that λ ∈ [/, ) and let
{Tk}∞k= be the sequence of fuzzy mappings defined from X into IX as follows:

if x = , Tk(x)(y) =

⎧⎪⎨
⎪⎩
 if y = ,
/k if  < y≤ /,
 if / < y≤ ,

k ∈N,

if x �= , Tk(x)(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
 if ≤ y ≤ x/,
λ/k if x/ < y≤ x/,
λ/k if x/ < y < x,
 if x≤ y≤ ,

k ∈N.

For each x, y ∈ X with x �= y, and i, j ∈N we have

D
(
Ti(x),Tj(y)

)
=H

(
Ti(x),Tj(y)

)
=H

(
[,x/], [, y/]

)
=




|x – y|.

Hence, forψ(t) = λ, the conditions of Corollary ., and hence of Theorem., are satisfied
for any ε ∈ (,∞], whereas X is not linear. Therefore all previous relevant fixed point
results Corollaries .-. on metric linear spaces are not applicable.
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Example . Let (X,d) be the completemetric space such thatX = [,∞), d(x,x) = , for
all x ∈ X, and d(x, y) =max{x, y} whenever x �= y (in the sequel we shall write x∨ y instead
of max{x, y}).
Note that a sequence {xn}∞n= is a Cauchy sequence in (X,d) if and only if d(xn, ) → .

Moreover, x =  is the only non-isolated point of X for the topology induced by d.
Let ψ : [,∞)→ [, ) be theMT-function defined as

ψ(t) =

{
/ if  ≤ t ≤ ,
t/(t + ) if t > ,

and let {Tk}∞k= be the sequence of fuzzy mappings defined from X into IX as follows:

if ≤ x ≤ , Tk(x)(y) =

{
 if x/k ≤ y ≤ x/k,
 otherwise,

k ∈N,

if x > , Tk(x)(y) =

{
 if x/k ≤ y < x/k( + x),
 otherwise,

k ∈N.

Observe that, for  ≤ x≤ ,

Tk(x) =
[
x
k

,
x
k

]
,

and, for x > ,

Tk(x) =
[
x
k

,
x

k( + x)

)
.

ThereforeTk(x) ∈ CB(X), for all x ∈ X and k ∈ N (recall that each x �=  is an isolated point
for the induced topology, so every bounded interval belongs to CB(X)).
We show that condition () of Theorem . is satisfied for ε =∞ andψ as defined above.

Indeed, let x, y ∈ X with x �= y and j,k ∈N. Assume without loss of generality that x > y.
If x, y > , for each b ∈ Tj(y), we obtain

d
(
Tk(x),b

)
= inf

a∈Tk (x)
(a∨ b) ≤ x

k( + x)
∨ b ≤ x

k( + x)
∨ y

j( + y)
.

Similarly, for each a ∈ Tk(x), we obtain

d
(
a,Tj(y)

) ≤ x

k( + x)
∨ y

j( + y)
.

Consequently

D
(
Tk(x),Tj(y)

)
= H

(
Tk(x),Tj(y)

) ≤ x

k( + x)
∨ y

j( + y)

≤ (x∨ y)

 + (x∨ y)
=

d(x, y)
 + d(x, y)

d(x, y)

= ψ
(
d(x, y)

)
d(x, y).
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If x >  and y ≤ , we deduce, in a similar way, that

D
(
Tk(x),Tj(y)

)
= H

(
Tk(x),Tj(y)

) ≤ x

k( + x)
∨ y

j

≤ x

 + x
∨ y


≤ x

 + x
∨ x


=

x

 + x

=
(x∨ y)

 + (x∨ y)
=

d(x, y)
 + d(x, y)

d(x, y)

= ψ
(
d(x, y)

)
d(x, y).

Finally, if x, y≤ , we deduce

D
(
Tk(x),Tj(y)

)
= H

(
Tk(x),Tj(y)

) ≤ x
k

∨ y
j

≤ x∨ y


=ψ
(
d(x, y)

)
d(x, y).

We have shown that all conditions of Theorem . are satisfied (in fact x =  is the only
fixed point of T ).
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