# RESEARCH

# **Open Access**

# On locally contractive fuzzy set-valued mappings

Jamshaid Ahmad<sup>1</sup>, Akbar Azam<sup>1</sup> and Salvador Romaguera<sup>2\*</sup>

\*Correspondence: sromague@mat.upv.es <sup>2</sup>Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia, 46022, Spain Full list of author information is available at the end of the article

# Abstract

We prove the existence of common fuzzy fixed points for a sequence of locally contractive fuzzy mappings satisfying generalized Banach type contraction conditions in a complete metric space by using iterations. Our main result generalizes and unifies several well-known fixed-point theorems for multivalued maps. Illustrative examples are also given.

**MSC:** 46S40; 47H10; 54H25

Keywords: fixed point; fuzzy mapping; contractive mapping; locally contractive

# **1** Introduction

The Banach contraction theorem and its subsequent generalizations play a fundamental role in the field of fixed point theory. In particular, Heilpern introduced in [1] the notion of a fuzzy mapping in a metric linear space and proved a Banach type contraction theorem in this framework. Subsequently several other authors [2–10] have studied and established the existence of fixed points of fuzzy mappings. The aim of this paper is to prove a common fixed-point theorem for a sequence of fuzzy mappings in the context of metric spaces without the assumption of linearity. Our results generalize and unify several typical theorems of the literature.

## 2 Preliminaries

Given a metric space (X, d), denote by CB(X) the family of all nonempty closed bounded subsets of (X, d). As usual, for  $\zeta \in X$  and  $A \in CB(X)$ , we define

$$d(\zeta, A) = \inf_{a \in A} d(\zeta, a)$$

Then the Hausdorff metric H on CB(X) induced by d is defined as

$$H(A,B) = \max\left\{\sup_{a\in A} d(a,B), \sup_{b\in B} d(A,b)\right\},\$$

for all  $A, B \in CB(X)$ .

A fuzzy set in (X, d) is a function with domain X and values in I = [0, 1].  $I^X$  denotes the collection of all fuzzy sets in X. If A is a fuzzy set and  $\zeta \in X$ , then the function value  $A(\zeta)$  is called the grade of membership of  $\zeta$  in A. The  $\alpha$ -level set of a fuzzy set A is denoted by

©2014 Ahmad et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



 $A_{\alpha}$ , and it is defined as follows:

$$A_{\alpha} = \{ \zeta : A(\zeta) \ge \alpha \} \quad \text{if } \alpha \in (0,1],$$
$$A_{0} = \text{closure of } \{ \zeta : A(\zeta) > 0 \}.$$

According to Heilpern [1], a fuzzy set *A* in a metric linear space (X, d) is said to be an approximate quantity if  $A_{\alpha}$  is compact and convex in *X*, for each  $\alpha \in (0, 1]$ , and  $\sup_{\zeta \in X} A(\zeta) = 1$ . The family of all approximate quantities of the metric linear space (X, d)is denoted by W(X).

Now, for  $A, B \in W(X)$  and  $\alpha \in [0, 1]$ , define

$$D_{\alpha}(A,B) = H(A_{\alpha},B_{\alpha}),$$

and

$$d_{\infty}(A,B) = \sup_{\alpha \in [0,1]} D_{\alpha}(A_{\alpha},B_{\alpha}).$$

It is well known that  $d_{\infty}$  is a metric on W(X).

In case that (X, d) is a (non-necessarily linear) metric space, we also define

$$D_{\alpha}(A,B) = H(A_{\alpha},B_{\alpha}),$$

whenever  $A, B \in I^X$  and  $A_\alpha, B_\alpha \in CB(X), \alpha \in [0, 1]$ .

In the sequel the letter  $\mathbb{N}$  will denote the set of positive integer numbers.

The following well-known properties on the Hausdorff metric (see *e.g.* [11]) will be useful in the next section.

**Lemma 2.1** Let (X,d) be a metric space and let  $A, B \in CB(X)$  with H(A,B) < r, r > 0. If  $a \in A$ , then there exists  $b \in B$  such that d(a,b) < r.

**Lemma 2.2** Let (X, d) be a metric space and let  $\{A_n\}_{n=1}^{\infty}$  be a sequence in CB(X) such that  $\lim_{n\to\infty} H(A_n, A) = 0$ , for some  $A \in CB(X)$ . If  $\xi_n \in A_n$ , for all  $n \in \mathbb{N}$ , and  $d(\xi_n, \xi) \to 0$ , then  $\xi \in A$ .

Now, let *X* be an arbitrary set and let *Y* be a metric space. A mapping *T* is called fuzzy mapping if *T* is a mapping from *X* into  $I^Y$ . In fact, a fuzzy mapping *T* is a fuzzy subset on  $X \times Y$  with membership function  $T(\zeta)$ . The value  $T(\zeta)(\xi)$  is the grade of membership of  $\xi$  in  $T(\zeta)$ .

If (X, d) is a metric space and T is a (fuzzy) mapping from X into  $I^X$ , we say that  $\xi \in X$  is a fixed point of T if  $\xi \in T(\xi)_1$ .

We conclude this section with the notion of contractiveness that will be used in our main result.

**Definition 2.3** (compare [12]) Let  $\varepsilon \in (0, \infty]$ . A function  $\psi : [0, \varepsilon) \to [0, 1)$  is said to be a *MT*-function if it satisfies Mizoguchi-Takahashi's condition (*i.e.*,  $\limsup_{r \to t^+} \psi(r) < 1$ , for all  $t \in [0, \varepsilon)$ ).

Clearly, if  $\psi : [0, \varepsilon) \rightarrow [0, 1)$  is a nondecreasing function or a nonincreasing function, then it is a *MT*-function. So the set of *MT*-functions is a rich class.

## 3 Fixed points of fuzzy mappings

Fixed-point theorems for locally contractive mappings were studied, among others, by Edelstein [13], Beg and Azam [14], Holmes [15], Hu [11], Hu and Rosen [16], Ko and Tasi [17], Kuhfitting [18] and Nadler [19].

Heilpern [1] established a fixed-point theorem for fuzzy contraction mappings in metric linear spaces, which is a fuzzy extension of Banach's contraction principle. Afterwards Azam *et al.* [4, 5], and Lee and Cho [10] further extended Banach's contraction principle to fuzzy contractive mappings in Heilpern's sense. In our main result (Theorem 3.1 below) we establish a common fixed-point theorem for a sequence of generalized fuzzy uniformly locally contraction mappings on a complete metric space without the requirement of linearity. This is a generalization of many conventional results of the literature.

Let  $\varepsilon \in (0, \infty]$ , and  $\lambda \in (0, 1)$ . A metric space (X, d) is said to be  $\varepsilon$ -chainable if given  $\zeta, \xi \in X$ , there exists an  $\varepsilon$ -chain from  $\zeta$  to  $\xi$  (*i.e.*, a finite set of points  $\zeta = \zeta_0, \zeta_1, \zeta_2, \ldots, \zeta_m = \xi$  such that  $d(\zeta_{j-1}, \zeta_j) < \varepsilon$ , for all  $j = 1, 2, \ldots, m$ ). A mapping  $T : X \to X$  is called an  $(\varepsilon, \lambda)$  uniformly locally contractive mapping if  $\zeta, \zeta \in X$  and  $0 < d(\zeta, \zeta) < \varepsilon$ , implies  $d(T\zeta, T\xi) \le \lambda d(\zeta, \xi)$ . A mapping  $T : X \to W(X)$  is called an  $(\varepsilon, \lambda)$  uniformly locally contractive fuzzy mapping if  $\zeta, \xi \in X$  and  $0 < d(\zeta, \xi) < \varepsilon$ , imply  $d_{\infty}(T(\zeta), T(\xi)) \le \lambda d(\zeta, \xi)$ . We remark that a globally contractive mapping can be regarded as an  $(\infty, \lambda)$  uniformly locally contractive mapping and for some special spaces every locally contractive mapping is globally contractive.

**Theorem 3.1** Let  $\varepsilon \in (0, \infty]$ , (X, d) a complete  $\varepsilon$ -chainable metric space and  $\{T_i\}_{i=1}^{\infty}$  a sequence of fuzzy mappings from X into  $I^X$  such that, for each  $\zeta \in X$  and  $i \in \mathbb{N}$ ,  $T_i(\zeta)_1 \in CB(X)$ . If

$$\zeta, \xi \in X, \quad 0 < d(\zeta, \xi) < \varepsilon \quad implies \quad D_1(T_i(\zeta), T_j(\xi)) \le \psi(d(\zeta, \xi))d(\zeta, \xi), \tag{1}$$

for all  $i, j \in \mathbb{N}$ , where  $\psi : [0, \varepsilon) \to [0, 1)$  is a MT-function, then the sequence  $\{T_i\}_{i=1}^{\infty}$  has a common fixed point, i.e., there is  $\xi^* \in X$  such that  $\xi^* \in T_i(\xi^*)_1$ , for all  $i \in \mathbb{N}$ .

*Proof* Let  $\xi_0$  be an arbitrary, but fixed element of *X*. Find  $\xi_1 \in X$  such that  $\xi_1 \in T_1(\xi_0)_1$ . Let

 $\xi_0 = \zeta_{(1,0)}, \qquad \zeta_{(1,1)}, \zeta_{(1,2)}, \dots, \zeta_{(1,m)} = \xi_1 \in T_1(\xi_0)_1$ 

be an arbitrary  $\varepsilon$ -chain from  $\xi_0$  to  $\xi_1$ . (We suppose, without loss of generality, that  $\zeta_{(1,i)} \neq \zeta_{(1,j)}$ , for each  $i, j \in \{0, 1, 2, ..., m\}$  with  $i \neq j$ .)

Since  $0 < d(\zeta_{(1,0)}, \zeta_{(1,1)}) < \varepsilon$ , we deduce that

$$\begin{split} D_1\big(T_1(\zeta_{(1,0)}),T_2(\zeta_{(1,1)})\big) &\leq \psi\big(d(\zeta_{(1,0)},\zeta_{(1,1)})\big)d(\zeta_{(1,0)},\zeta_{(1,1)})\\ &< \sqrt{\psi\big(d(\zeta_{(1,0)},\zeta_{(1,1)})\big)}d(\zeta_{(1,0)},\zeta_{(1,1)})\\ &< d(\zeta_{(1,0)},\zeta_{(1,1)}) < \varepsilon. \end{split}$$

Rename  $\xi_1$  as  $\zeta_{(2,0)}$ . Since  $\zeta_{(2,0)} \in T_1(\zeta_{(1,0)})_1$ , using Lemma 2.1 we find  $\zeta_{(2,1)} \in T_2(\zeta_{(1,1)})_1$  such that

$$\begin{aligned} d(\zeta_{(2,0)},\zeta_{(2,1)}) &< \sqrt{\psi\big(d(\zeta_{(1,0)},\zeta_{(1,1)})\big)}d(\zeta_{(1,0)},\zeta_{(1,1)}) \\ &< d(\zeta_{(1,0)},\zeta_{(1,1)}) < \varepsilon. \end{aligned}$$

Similarly we may choose an element  $\zeta_{(2,2)} \in T_2(\zeta_{(1,2)})_1$  such that

$$\begin{split} d(\zeta_{(2,1)},\zeta_{(2,2)}) &< \sqrt{\psi\big(d(\zeta_{(1,1)},\zeta_{(1,2)})\big)} d(\zeta_{(1,1)},\zeta_{(1,2)}) \\ &< d(\zeta_{(1,1)},\zeta_{(1,2)}) < \varepsilon. \end{split}$$

Thus we obtain a set  $\{\zeta_{(2,0)}, \zeta_{(2,1)}, \zeta_{(2,2)}, \dots, \zeta_{(2,m)}\}$  of m + 1 points of X such that  $\zeta_{(2,0)} \in T_1(\zeta_{(1,0)})_1$  and  $\zeta_{(2,j)} \in T_2(\zeta_{(1,j)})_1$ , for  $j = 1, 2, \dots, m$ , with

$$\begin{aligned} d(\zeta_{(2,j)},\zeta_{(2,j+1)}) &< \sqrt{\psi(d(\zeta_{(1,j)},\zeta_{(1,j+1)}))} d(\zeta_{(1,j)},\zeta_{(1,j+1)}) \\ &< d(\zeta_{(1,j)},\zeta_{(1,j+1)}) < \varepsilon, \end{aligned}$$

for  $j = 0, 1, 2, \dots, m - 1$ .

Let  $\zeta_{(2,m)} = \xi_2$ . Thus the set of points  $\xi_1 = \zeta_{(2,0)}, \zeta_{(2,1)}, \zeta_{(2,2)}, \dots, \zeta_{(2,m)} = \xi_2 \in T_2(\xi_1)_1$  is an  $\varepsilon$ -chain from  $\xi_0$  to  $\xi_1$ . Rename  $\xi_2$  as  $\zeta_{(3,0)}$ . Then by the same procedure we obtain an  $\varepsilon$ -chain

 $\xi_2 = \zeta_{(3,0)}, \qquad \zeta_{(3,1)}, \zeta_{(3,2)}, \dots, \zeta_{(3,m)} = \xi_3 \in T_3(\xi_2)_1$ 

from  $\xi_2$  to  $\xi_3$ . Inductively, we obtain

$$\xi_n = \zeta_{(n+1,0)}, \qquad \zeta_{(n+1,1)}, \zeta_{(n+1,2)}, \dots, \zeta_{(n+1,m)} = \xi_{n+1} \in T_{n+1}(\xi_n)_1$$

with

$$d(\zeta_{(n+1,j)},\zeta_{(n+1,j+1)}) < \sqrt{\psi(d(\zeta_{(n,j)},\zeta_{(n,j+1)}))}d(\zeta_{(n,j)},\zeta_{(n,j+1)}) < d(\zeta_{(n,j)},\zeta_{(n,j+1)}) < \varepsilon,$$
(2)

for  $j = 0, 1, 2, \dots, m - 1$ .

Consequently, we construct a sequence  $\{\xi_n\}_{n=1}^{\infty}$  of points of X with

$$\begin{split} \xi_1 &= \zeta_{(1,m)} = \zeta_{(2,0)} \in T_1(\xi_0)_1, \\ \xi_2 &= \zeta_{(2,m)} = \zeta_{(3,0)} \in T_2(\xi_1)_1, \\ \xi_3 &= \zeta_{(3,m)} = \zeta_{(4,0)} \in T_3(\xi_2)_1, \\ \vdots \\ \xi_{n+1} &= \zeta_{(n+1,m)} = \zeta_{(n+2,0)} \in T_{n+1}(\xi_n)_1, \end{split}$$

for all  $n \in \mathbb{N}$ .

$$\lim_{n\to\infty} d(\zeta_{(n,j)},\zeta_{(n,j+1)}) = l_j.$$

By assumption,  $\limsup_{t \to l_j^+} \psi(t) < 1$ , so there exists  $n_j \in \mathbb{N}$  such that  $\psi(d(\zeta_{(n,j)}, \zeta_{(n,j+1)})) < s(l_j)$ , for all  $n \ge n_j$  where  $\limsup_{t \to l_j^+} \psi(t) < s(l_j) < 1$ .

Now put

$$M_j = \max\left\{\max_{i=1,\dots,n_j} \sqrt{\psi\left(d(\zeta_{(i,j)},\zeta_{(i,j+1)})\right)}, \sqrt{s(l_j)}\right\}.$$

Then, for every  $n > n_j$ , we obtain

$$\begin{aligned} d(\zeta_{(n,j)},\zeta_{(n,j+1)}) &< \sqrt{\psi\big(d(\zeta_{(n-1,j)},\zeta_{(n-1,j+1)})\big)} d(\zeta_{(n-1,j)},\zeta_{(n-1,j+1)}) \\ &< \sqrt{s(l_j)} d(\zeta_{(n-1,j)},\zeta_{(n-1,j+1)}) \\ &\leq M_j d(\zeta_{(n-1,j)},\zeta_{(n-1,j+1)}) \\ &\leq (M_j)^2 d(\zeta_{(n-2,j)},\zeta_{(n-2,j+1)}) \\ &\leq \cdots \\ &\leq (M_j)^{n-1} d(\zeta_{(1,j)},\zeta_{(1,j+1)}). \end{aligned}$$

Putting  $N = \max\{n_j : j = 0, 1, 2, ..., m - 1\}$ , we have

$$egin{aligned} &d(\xi_{n-1},\xi_n) = d(\zeta_{(n,0)},\zeta_{(n,m)}) \leq \sum_{j=0}^{m-1} d(\zeta_{(n,j)},\zeta_{(n,j+1)}) \ &< \sum_{j=0}^{m-1} (\mathcal{M}_j)^{n-1} d(\zeta_{(1,j)},\zeta_{(1,j+1)}), \end{aligned}$$

for all n > N + 1. Hence

$$d(\xi_n,\xi_p) \le d(\xi_n,\xi_{n+1}) + d(\xi_{n+1},\xi_{n+2}) + \dots + d(\xi_{p-1},\xi_p)$$
  
$$< \sum_{j=0}^{m-1} (M_j)^n d(\zeta_{(1,j)},\zeta_{(1,j+1)}) + \dots + \sum_{j=0}^{m-1} (M_j)^{p-1} d(\zeta_{(1,j)},\zeta_{(1,j+1)}),$$

whenever p > n > N + 1.

Since  $M_j < 1$ , for all  $j \in \{0, 1, 2, ..., m - 1\}$ , it follows that  $\{\xi_n\}_{n=1}^{\infty}$  is a Cauchy sequence. Since (X, d) is complete, there is  $\xi^* \in X$  such that  $\xi_n \to \xi^*$ . So for each  $\delta \in (0, \varepsilon]$  there is  $M_{\delta} \in \mathbb{N}$  such that  $n > M_{\delta}$  implies  $d(\xi_n, \xi^*) < \delta$ . This in view of inequality (1) implies  $D_1(T_{n+1}(\xi_n), T_i(\xi^*)) < \delta$ , for all  $i \in \mathbb{N}$ . Consequently,  $H(T_{n+1}(\xi_n)_1, T_i(\xi^*)_1) \to 0$ . Since  $\xi_{n+1} \in T_{n+1}(\xi_n)_1$  with  $d(\xi_{n+1}, \xi^*) \to 0$ , we deduce from Lemma 2.2 that  $\xi^* \in T_i(\xi^*)_1$ , for all  $i \in \mathbb{N}$ . This completes the proof. **Corollary 3.2** Let  $\varepsilon \in (0, \infty]$ , (X, d) a complete  $\varepsilon$ -chainable metric space and  $\{T_i\}_{i=1}^{\infty}$  a sequence of fuzzy mappings from X into  $I^X$  such that, for each  $\zeta \in X$  and  $i \in \mathbb{N}$ ,  $T_i(\zeta)_1 \in CB(X)$ . If

$$\zeta, \xi \in X, \quad 0 < d(\zeta, \xi) < \varepsilon \quad implies \quad D_1(T_i(\zeta), T_i(\xi)) \le \lambda d(\zeta, \xi),$$

for all  $i, j \in \mathbb{N}$ , where  $\lambda \in (0, 1)$ , then the sequence  $\{T_i\}_{i=1}^{\infty}$  has a common fixed point.

*Proof* Apply Theorem 3.1 when  $\psi$  is the *MT*-function defined as  $\psi(t) = \lambda$ , for all  $t \in [0, \varepsilon)$ .

**Corollary 3.3** Let  $\varepsilon \in (0, \infty]$ , (X, d) a complete  $\varepsilon$ -chainable metric linear space and  $\{T_i\}_{i=1}^{\infty}$  a sequence of fuzzy mappings from X into W(X) satisfying the following condition:

 $\zeta, \xi \in X, \quad 0 < d(\zeta, \xi) < \varepsilon \quad implies \quad d_{\infty}(T_i(\zeta), T_j(\xi)) \le \psi(d(\zeta, \xi))d(\zeta, \xi),$ 

for all  $i, j \in \mathbb{N}$ , where  $\psi : [0, \varepsilon) \to [0, 1)$  is a *MT*-function. Then the sequence  $\{T_i\}_{i=1}^{\infty}$  has a common fixed point.

*Proof* Since  $W(X) \subseteq CB(X)$  and  $D_1(T_i(\zeta), T_j(\xi)) \leq d_{\infty}(T_i(\zeta), T_j(\xi))$ , for all  $i, j \in \mathbb{N}$ , the result follows immediately from Theorem 3.1.

**Corollary 3.4** Let  $\varepsilon \in (0, \infty]$ , (X, d) a complete  $\varepsilon$ -chainable metric linear space and  $\{T_i\}_{i=1}^{\infty}$  a sequence of fuzzy mappings from X into W(X) satisfying the following condition:

 $\zeta, \xi \in X, \quad 0 < d(\zeta, \xi) < \varepsilon \quad implies \quad d_{\infty}(T_i(\zeta), T_j(\xi)) \leq \lambda d(\zeta, \xi),$ 

for all  $i, j \in \mathbb{N}$ , where  $\lambda \in (0, 1)$ . Then the sequence  $\{T_i\}_{i=1}^{\infty}$  has a common fixed point.

**Corollary 3.5** [4] Let  $\varepsilon \in (0, \infty]$ , (X, d) a complete  $\varepsilon$ -chainable metric linear space and  $T_1$ ,  $T_2$ , two fuzzy mappings from X into W(X) satisfying the following condition:

 $\zeta, \xi \in X, \quad 0 < d(\zeta, \xi) < \varepsilon \quad implies \quad d_{\infty}(T_i(\zeta), T_j(\xi)) \le \psi(d(\zeta, \xi))d(\zeta, \xi),$ 

for i, j = 1, 2, where  $\psi : [0, \varepsilon) \rightarrow [0, 1)$  is a MT-function. Then  $T_1$  and  $T_2$  have a common fixed point.

**Corollary 3.6** [4, 11] Let  $\varepsilon \in (0, \infty]$ , (X, d) a complete  $\varepsilon$ -chainable metric linear space and  $T: X \to W(X)$  an  $(\varepsilon, \lambda)$  uniformly locally contractive fuzzy mapping. Then T has a fixed point.

**Corollary 3.7** Let  $\varepsilon \in (0, \infty]$ , (X, d) a complete  $\varepsilon$ -chainable metric space and S be a multivalued mapping from X into CB(X) satisfying the following condition:

 $\zeta, \xi \in X, \quad 0 < d(\zeta, \xi) < \varepsilon \quad implies \quad H(S(\zeta), S(\xi)) \le \psi(d(\zeta, \xi))d(\zeta, \xi),$ 

where  $\psi : [0, \varepsilon) \rightarrow [0, 1)$  is a *MT*-function. Then *S* has a fixed point.

*Proof* Define a fuzzy mapping *T* from *X* into  $I^X$  as  $T(\xi)(t) = 1$  if  $t \in S(\xi)$  and  $T(\xi)(t) = 0$ , otherwise. Then  $T(\xi)_1 = S(\xi)$ , for all  $\xi \in X$ , so  $T(\xi)_1 \in CB(X)$ , for all  $\xi \in X$ . Since

$$D_1\bigl(T(\zeta),T(\xi)\bigr)=H\bigl(T(\zeta)_1,T(\xi)_1\bigr)=H\bigl(S(\zeta),S(\xi)\bigr),$$

for all  $\zeta, \xi \in X$ , we deduce that condition (1) of Theorem 3.1 is satisfied for *T*. Hence *T* has a fixed point  $\xi^*$ , *i.e.*,  $\xi^* \in T(\xi^*)_1$ . We conclude that  $\xi^* \in S(\xi^*)$ . The proof is complete.  $\Box$ 

**Corollary 3.8** [13] Let  $\varepsilon \in (0, \infty]$ , (X, d) a complete  $\varepsilon$ -chainable metric space and S be a multivalued mapping from X into CB(X) satisfying the following condition:

 $\zeta, \xi \in X, \quad 0 < d(\zeta, \xi) < \varepsilon \quad implies \quad H(S(\zeta), S(\xi)) \leq \lambda d(\zeta, \xi),$ 

where  $\lambda \in (0, 1)$ . Then S has a fixed point.

**Corollary 3.9** ([20, 21], see also [9, 13]) Let (X, d) be a complete metric space, S a multivalued mapping from X into CB(X) and  $\psi : [0, \infty) \to [0, 1)$  a MT-function such that

 $H(S\zeta,S\xi) \le \psi(d(\zeta,\xi))d(\zeta,\xi),$ 

for all  $\zeta, \xi \in X$ . Then S has a fixed point in X.

*Proof* Apply Corollary 3.8 with  $\varepsilon = \infty$ .

We conclude the paper with two examples to support Theorem 3.1 and Corollary 3.2.

**Example 3.10** Let (X, d) be the compact, and thus complete, metric space such that X = [0,1], and d(x,y) = |x - y|, for all  $x, y \in X$ . Let  $\lambda$  be a constant such that  $\lambda \in [1/14, 1)$  and let  $\{T_k\}_{k=1}^{\infty}$  be the sequence of fuzzy mappings defined from X into  $I^X$  as follows:

$$\text{if } x = 0, \quad T_k(x)(y) = \begin{cases} 1 & \text{if } y = 0, \\ 1/3k & \text{if } 0 < y \le 1/100, \quad k \in \mathbb{N}, \\ 0 & \text{if } 1/100 < y \le 1, \end{cases}$$
$$\text{if } x \neq 0, \quad T_k(x)(y) = \begin{cases} 1 & \text{if } 0 \le y \le x/14, \\ \lambda/2k & \text{if } x/14 < y \le x/12, \\ \lambda/3k & \text{if } x/12 < y < x, \\ 0 & \text{if } x \le y \le 1, \end{cases}$$

For each  $x, y \in X$  with  $x \neq y$ , and  $i, j \in \mathbb{N}$  we have

$$D_1(T_i(x), T_j(y)) = H(T_i(x)_1, T_j(y)_1) = H([0, x/14], [0, y/14]) = \frac{1}{14}|x - y|$$

Hence, for  $\psi(t) = \lambda$ , the conditions of Corollary 3.2, and hence of Theorem 3.1, are satisfied for any  $\varepsilon \in (0, \infty]$ , whereas X is not linear. Therefore all previous relevant fixed point results Corollaries 3.3-3.6 on metric linear spaces are not applicable.

**Example 3.11** Let (X, d) be the complete metric space such that  $X = [0, \infty)$ , d(x, x) = 0, for all  $x \in X$ , and  $d(x, y) = \max\{x, y\}$  whenever  $x \neq y$  (in the sequel we shall write  $x \lor y$  instead of  $\max\{x, y\}$ ).

Note that a sequence  $\{x_n\}_{n=1}^{\infty}$  is a Cauchy sequence in (X, d) if and only if  $d(x_n, 0) \to 0$ . Moreover, x = 0 is the only non-isolated point of X for the topology induced by d. Let  $\psi : [0, \infty) \to [0, 1)$  be the *MT*-function defined as

$$\psi(t) = \begin{cases} 1/2 & \text{if } 0 \le t \le 1, \\ t/(t+1) & \text{if } t > 1, \end{cases}$$

and let  $\{T_k\}_{k=1}^{\infty}$  be the sequence of fuzzy mappings defined from X into  $I^X$  as follows:

Observe that, for  $0 \le x \le 1$ ,

$$T_k(x)_1 = \left[\frac{x}{4k}, \frac{x}{2k}\right],$$

and, for x > 1,

$$T_k(x)_1 = \left[\frac{x}{2k}, \frac{x^2}{k(1+x)}\right).$$

Therefore  $T_k(x)_1 \in CB(X)$ , for all  $x \in X$  and  $k \in \mathbb{N}$  (recall that each  $x \neq 0$  is an isolated point for the induced topology, so every bounded interval belongs to CB(X)).

We show that condition (1) of Theorem 3.1 is satisfied for  $\varepsilon = \infty$  and  $\psi$  as defined above. Indeed, let  $x, y \in X$  with  $x \neq y$  and  $j, k \in \mathbb{N}$ . Assume without loss of generality that x > y.

If x, y > 1, for each  $b \in T_j(y)_1$ , we obtain

$$d(T_k(x)_1, b) = \inf_{a \in T_k(x)_1} (a \lor b) \le \frac{x^2}{k(1+x)} \lor b \le \frac{x^2}{k(1+x)} \lor \frac{y^2}{j(1+y)}.$$

Similarly, for each  $a \in T_k(x)_1$ , we obtain

$$d(a, T_j(y)_1) \leq \frac{x^2}{k(1+x)} \vee \frac{y^2}{j(1+y)}.$$

Consequently

$$D_1(T_k(x), T_j(y)) = H(T_k(x)_1, T_j(y)_1) \le \frac{x^2}{k(1+x)} \lor \frac{y^2}{j(1+y)}$$
$$\le \frac{(x \lor y)^2}{1+(x \lor y)} = \frac{d(x, y)}{1+d(x, y)} d(x, y)$$
$$= \psi(d(x, y))d(x, y).$$

If x > 1 and  $y \le 1$ , we deduce, in a similar way, that

$$D_1(T_k(x), T_j(y)) = H(T_k(x)_1, T_j(y)_1) \le \frac{x^2}{k(1+x)} \lor \frac{y}{2j}$$
$$\le \frac{x^2}{1+x} \lor \frac{y}{2} \le \frac{x^2}{1+x} \lor \frac{x}{2} = \frac{x^2}{1+x}$$
$$= \frac{(x \lor y)^2}{1+(x \lor y)} = \frac{d(x, y)}{1+d(x, y)} d(x, y)$$
$$= \psi(d(x, y))d(x, y).$$

Finally, if  $x, y \le 1$ , we deduce

$$\begin{split} D_1\big(T_k(x),T_j(y)\big) &= H\big(T_k(x)_1,T_j(y)_1\big) \leq \frac{x}{2k} \vee \frac{y}{2j} \\ &\leq \frac{x \vee y}{2} = \psi\big(d(x,y)\big)d(x,y). \end{split}$$

We have shown that all conditions of Theorem 3.1 are satisfied (in fact x = 0 is the only fixed point of *T*).

#### **Competing interests**

The authors declare that they have no competing interests.

#### Authors' contributions

The three authors contributed equally in writing this article. They read and approved the final manuscript.

#### Author details

<sup>1</sup>Department of Mathematics, COMSATS Institute of Information Technology, Chak Shahzad, 44000, Pakistan. <sup>2</sup>Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia, 46022, Spain.

#### Acknowledgements

The third author thanks the support of the Ministry of Economy and Competitiveness of Spain, Grant MTM2012-37894-C02-01.

#### Received: 28 October 2013 Accepted: 20 January 2014 Published: 13 Feb 2014

#### References

- 1. Heilpern, S: Fuzzy mappings and fixed point theorems. J. Math. Anal. Appl. 83, 566-569 (1981)
- 2. Ali, B, Abbas, M: Suzuki-type fixed point theorem for fuzzy mappings in ordered metric spaces. Fixed Point Theory Appl. 2013, Article ID 9 (2013)
- 3. Arshad, M, Azam, A: Fixed points solutions of sequence of locally contractive fuzzy mappings via iterative process. In: International Conference of Mathematical Sciences (ICM), 2012, 11-14 March, Al Ain, UAE (2012)
- 4. Azam, A, Beg, I: Common fixed points of fuzzy maps. Math. Comput. Model. 49, 1331-1336 (2009)
- 5. Azam, A, Arshad, M, Beg, I: Fixed points of fuzzy contractive and fuzzy locally contractive maps. Chaos Solitons Fractals 42, 2836-2841 (2009)
- 6. Azam, A, Arshad, M, Vetro, P: On a pair of fuzzy- $\phi$  contractive mappings. Math. Comput. Model. 52, 207-214 (2010)
- Azam, A, Arshad, M: A note on 'Fixed point theorems for fuzzy mappings' by P. Vijayaraju and M. Marudai. Fuzzy Sets Syst. 161, 1145-1149 (2010)
- Azam, A, Waseem, M, Rashid, M: Fixed point theorems for fuzzy contractive mappings in quasi-pseudo-metric spaces. Fixed Point Theory Appl. 2013, Article ID 27 (2013)
- 9. Kamran, T: Common fixed points theorems for fuzzy mappings. Chaos Solitons Fractals 38, 1378-1382 (2008)
- 10. Lee, BS, Cho, SJ: A fixed point theorem for contractive type fuzzy mappings. Fuzzy Sets Syst. 61, 309-312 (1994)
- 11. Hu, T: Fixed point theorems for multivalued mappings. Can. Math. Bull. 23, 193-197 (1980)
- 12. Du, WS: On coincidence point and fixed point theorems for nonlinear multivalued maps. Topol. Appl. **159**, 49-56 (2012)
- 13. Edelstein, M: An extension of Banach's contraction principle. Proc. Am. Math. Soc. 12, 7-12 (1961)
- 14. Beg, I, Azam, A: Fixed points of multivalued locally contractive mappings. Boll. Unione Mat. Ital., A (7) 7, 227-233 (1990)
- 15. Holmes, RD: On fixed and periodic points under certain set of mappings. Can. Math. Bull. 12, 813-822 (1969)
- 16. Hu, T, Rosen, H: Locally contractive and expansive mappings. Proc. Am. Math. Soc. 86, 656-662 (1982)

- 17. Ko, HM, Tasi, YH: Fixed point theorems for localized property. Tamkang J. Math. 8, 81-85 (1977)
- Kuhfitting, PK: Fixed point of locally contractive and nonexpansive set valued mappings. Pac. J. Math. 65, 399-403 (1976)
- 19. Nadler, SB: Multivalued contraction mappings. Pac. J. Math. 30, 475-488 (1969)
- 20. Mizoguchi, N, Takahashi, W: Fixed point theorems for multi-valued mappings on complete metric spaces. J. Math. Anal. Appl. **188**, 141-177 (1989)
- Suzuki, T: Mizoguchi-Takahashi's fixed point theorem is a real generalization of Nadler's. J. Math. Anal. Appl. 340, 752-755 (2008)

#### 10.1186/1029-242X-2014-74

Cite this article as: Ahmad et al.: On locally contractive fuzzy set-valued mappings. Journal of Inequalities and Applications 2014, 2014:74

# Submit your manuscript to a SpringerOpen<sup>®</sup> journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com