Another type of Mann iterative scheme for two mappings in a complete geodesic space

Yasunori Kimura and Koichi Nakagawa*
"Correspondence:
6513009n@nc.toho-u.ac.jp
Department of Information Science, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan

Abstract

In this paper, we show a Δ-convergence theorem for a Mann iteration procedure in a complete geodesic space with two quasinonexpansive and Δ-demiclosed mappings. The proposed method is different from known procedures with respect to the order of taking the convex combination.

1 Introduction

The fixed point approximation has been studied in a variety of ways and its results are useful for the other studies. In 1953, Mann [1] introduced an iteration procedure for approximating fixed points of a nonexpansive mapping T in a Hilbert space. Later, Reich [2] discussed this iteration procedure in a uniformly convex Banach space whose norm is Fréchet differentiable. In 1998, Takahashi and Tamura [3] considered an iteration procedure with two nonexpansive mappings and obtained weak convergence theorems for this procedure in a uniformly convex Banach space which satisfies Opial's condition or whose norm is Fréchet differentiable. On the other hand, in 2008, Dhompongsa and Panyanak [4] proved the following theorem.

Theorem 1.1 Let C be a bounded closed convex subset of a complete CAT(0) space and $T: C \rightarrow C$ a nonexpansive mapping. For any initial point x_{0} in C, define the Mann iterative sequence $\left\{x_{n}\right\}$ by

$$
x_{n+1}=\left(1-t_{n}\right) x_{n} \oplus t_{n} T x_{n}, \quad n=0,1,2, \ldots,
$$

where $\left\{t_{n}\right\}$ is a sequence in $[0,1]$, with the restrictions that $\sum_{n=0}^{\infty} t_{n}$ diverges and $\limsup p_{n \rightarrow \infty} t_{n}<1$. Then $\left\{x_{n}\right\} \Delta$-converges to a fixed point of T.

Further, in a CAT(1) space, Kimura et al. [5] proved the Δ-convergence theorem for a family of nonexpansive mappings including the following scheme:

$$
x_{n+1}=\left(1-\alpha_{n}\right) x_{n} \oplus \alpha_{n}\left(\left(1-\beta_{n}\right) S x_{n} \oplus \beta_{n} T x_{n}\right) .
$$

In a Hilbert space H, the following equality holds for any $x, y, z \in H$:

$$
\alpha x+(1-\alpha)(\beta y+(1-\beta) z)=\gamma(\delta x+(1-\delta) y)+(1-\gamma) z,
$$

where $\alpha, \beta, \gamma, \delta \in] 0,1[$ such that $\alpha=\gamma \delta$ and $\beta=\gamma(1-\delta) /(1-\gamma \delta)$. However, in CAT (κ) spaces with $\kappa>0$, it does not hold in general, that is, the value of the convex combination taken twice depends on their order. Thus, the following formulas are different in general:

$$
\begin{align*}
& x_{n+1}=\left(1-\alpha_{n}\right) x_{n} \oplus \alpha_{n}\left(\left(1-\beta_{n}\right) S x_{n} \oplus \beta_{n} T x_{n}\right), \tag{1}\\
& x_{n+1}=\left(1-\alpha_{n}\right)\left(\beta_{n} x_{n} \oplus\left(1-\beta_{n}\right) S x_{n}\right) \oplus \alpha_{n}\left(\left(1-\beta_{n}\right) x_{n} \oplus \beta_{n} T x_{n}\right) .
\end{align*}
$$

In this paper, we show an analogous result to Theorem 1.1 using the iterative scheme (1) in a complete $\mathrm{CAT}(1)$ space with two quasinonexpansive and Δ-demiclosed mappings. We also deal with the image recovery problem for two closed convex sets.

2 Preliminaries

Let X be a metric space. For $x, y \in X$, a mapping $c:[0, l] \rightarrow X$ is said to be a geodesic if c satisfies $c(0)=x, c(l)=y$ and $d(c(s), c(t))=|s-t|$ for all $s, t \in[0, l]$. An image $[x, y]$ of c is called a geodesic segment joining x and y. For $r>0, X$ is said to be an r-geodesic metric space if, for any $x, y \in X$ with $d(x, y)<r$, there exists a geodesic segment $[x, y]$. In particular, if a segment $[x, y]$ is unique for any $x, y \in X$ with $d(x, y)<r$, then X is said to be a uniquely r-geodesic metric space. In what follows, we always assume $d(x, y)<\pi / 2$ for any $x, y \in X$. Thus, we say X is a geodesic metric space instead of a $\pi / 2$-geodesic metric space. For the more general case, see [6].

Let X be a uniquely geodesic metric space. A geodesic triangle is defined by $\Delta(x, y, z)=$ $[x, y] \cup[y, z] \cup[z, x]$. Let M be the two-dimensional unit sphere in \mathbb{R}^{3}. For $\bar{x}, \bar{y}, \bar{z} \in M$, a triangle $\triangle(\bar{x}, \bar{y}, \bar{z}) \subset M$ is called a comparison triangle of $\triangle(x, y, z)$ if $d(x, y)=d_{M}(\bar{x}, \bar{y})$, $d(y, z)=d_{M}(\bar{y}, \bar{z}), d(z, x)=d_{M}(\bar{z}, \bar{x})$. Further, for any $x, y \in X$ and $\left.t \in\right] 0,1[$, if $z \in[x, y]$ satisfies $d(x, z)=(1-t) d(x, y)$ and $d(z, y)=t d(x, y)$, then z is denoted by $z=t x \oplus(1-t) y$. A point $\bar{z} \in[\bar{x}, \bar{y}]$ is called a comparison point of $z \in[x, y]$ if $d(x, z)=d_{M}(\bar{x}, \bar{z}) . X$ is said to be a CAT(1) space if, for any $p, q \in \Delta(x, y, z) \subset X$ and its comparison points $\bar{p}, \bar{q} \in \Delta(\bar{x}, \bar{y}, \bar{z}) \subset M$, the inequality $d(p, q) \leq d_{M}(\bar{p}, \bar{q})$ holds.
Let X be a geodesic metric space and $\left\{x_{n}\right\}$ a bounded sequence of X. For $x \in X$, we put $r\left(x,\left\{x_{n}\right\}\right)=\limsup \operatorname{sum}_{n \rightarrow \infty} d\left(x, x_{n}\right)$. The asymptotic radius of $\left\{x_{n}\right\}$ is defined by $r\left(\left\{x_{n}\right\}\right)=$ $\inf _{x \in X} r\left(x,\left\{x_{n}\right\}\right)$. Further, the asymptotic center of $\left\{x_{n}\right\}$ is defined by $A C\left(\left\{x_{n}\right\}\right)=\{x \in X$: $\left.r\left(x,\left\{x_{n}\right\}\right)=r\left(\left\{x_{n}\right\}\right)\right\}$. If, for any subsequences $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}, A C\left(\left\{x_{n_{k}}\right\}\right)=\left\{x_{0}\right\}$, i.e., their asymptotic center consists of the unique element x_{0}, then we say $\left\{x_{n}\right\} \Delta$-converges to x_{0} and we denote it by $x_{n} \stackrel{\Delta}{\Delta} x_{0}$.
Let X be a metric space. A mapping $T: X \rightarrow X$ is said to be a nonexpansive if T satisfies $d(T x, T y) \leq d(x, y)$ for any $x, y \in X$. The set of fixed points of T is denoted by $F(T)=\{z \in X: T z=z\}$. Further, a mapping $T: X \rightarrow X$ with $F(T) \neq \emptyset$ is said to be a quasinonexpansive if T satisfies $d(T x, z) \leq d(x, z)$ for any $x \in X$ and $z \in F(T)$. Moreover, T is said to be Δ-demiclosed if, for any bounded sequence $\left\{x_{n}\right\} \subset X$ and $x_{0} \in X$ satisfying $d\left(x_{n}, T x_{n}\right) \rightarrow 0$ and $x_{n} \stackrel{\Delta}{\Delta} x_{0}$, we have $x_{0} \in F(T)$.

3 Tools for the main results

In this section, we introduce some tools for using the main theorem.

Theorem 3.1 (Kimura and Satô [7]) Let $\triangle(x, y, z)$ be a geodesic triangle in a CAT(1) space such that $d(x, y)+d(y, z)+d(z, x)<2 \pi$. Let $u=t x \oplus(1-t) y$ for some $t \in[0,1]$. Then

$$
\cos d(u, z) \sin d(x, y) \geq \cos d(x, z) \sin t d(x, y)+\cos d(y, z) \sin (1-t) d(x, y)
$$

Corollary 3.2 (Kimura and Satô [8]) Let $\Delta(x, y, z)$ be a geodesic triangle in a CAT(1) space such that $d(x, y)+d(y, z)+d(z, x)<2 \pi$. Let $u=t x \oplus(1-t) y$ for some $t \in[0,1]$. Then

$$
\cos d(u, z) \geq t \cos d(x, z)+(1-t) \cos d(y, z)
$$

Theorem 3.3 (Espínola and Fernández-León [9]) Let X be a complete CAT(1) space and $\left\{x_{n}\right\}$ a sequence in X. If $r\left(\left\{x_{n}\right\}\right)<\pi / 2$, then the following hold.
(i) $A C\left(\left\{x_{n}\right\}\right)$ consists of exactly one point;
(ii) $\left\{x_{n}\right\}$ has a Δ-convergent subsequence.

Theorem 3.4 (Kimura and Satô [8]) Let X be a metric space and T a mapping from X into itself. If T is a nonexpansive with $F(T) \neq \emptyset$, then T is quasinonexpansive and Δ-demiclosed.

The following lemmas are important properties of real numbers and they are easy to show. Thus, we omit the proofs.

Lemma 3.5 Let δ be a real number such that $-1<\delta<0$ and $\left\{b_{n}\right\}$, $\left\{c_{n}\right\}$ real sequences satisfying $\delta \leq b_{n} \leq 1, \delta \leq c_{n} \leq 1$ and $\liminf _{n \rightarrow \infty} b_{n} c_{n} \geq 1$. Then $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n}=1$.

Lemma 3.6 Let $s \in] 0, \infty\left[\right.$ and $\left\{b_{n}\right\},\left\{c_{n}\right\}$ bounded real sequences satisfying $b_{n} \leq 0, s<c_{n}$ and $\lim _{n \rightarrow \infty} b_{n} / c_{n}=0$. Then $\lim _{n \rightarrow \infty} b_{n}=0$.

Lemma 3.7 Let $\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ be bounded real sequences satisfying $\lim _{n \rightarrow \infty}\left(b_{n}-c_{n}\right)=0$. Then $\liminf _{n \rightarrow \infty} b_{n}=\liminf _{n \rightarrow \infty} c_{n}$.

4 The main result

In this section, we show the main result.

Theorem 4.1 Let X be a complete $\mathrm{CAT}(1)$ space such that for any $u, v \in X, d(u, v)<\pi / 2$. Let S and T be quasinonexpansive and Δ-demiclosed mappings from X into itself with $F(S) \cap F(T) \neq \emptyset$. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ be sequences of $\left.[a, b] \subset\right] 0,1[$. Define a sequence $\left\{x_{n}\right\} \subset X$ by the following recurrence formula: $x_{1} \in X$ and

$$
\left\{\begin{array}{l}
u_{n}=\left(1-\beta_{n}\right) x_{n} \oplus \beta_{n} S x_{n}, \\
v_{n}=\left(1-\gamma_{n}\right) x_{n} \oplus \gamma_{n} T x_{n}, \\
x_{n+1}=\left(1-\alpha_{n}\right) u_{n} \oplus \alpha_{n} v_{n}
\end{array}\right.
$$

for $n \in \mathbb{N}$. Then $\left\{x_{n}\right\} \Delta$-converges to a common fixed point of S and T.

Proof Let $z \in F(S) \cap F(T)$. By Corollary 3.2, we have

$$
\begin{aligned}
\cos d\left(u_{n}, z\right) & \geq\left(1-\beta_{n}\right) \cos d\left(x_{n}, z\right)+\beta_{n} \cos d\left(S x_{n}, z\right) \\
& \geq\left(1-\beta_{n}\right) \cos d\left(x_{n}, z\right)+\beta_{n} \cos d\left(x_{n}, z\right) \\
& =\cos d\left(x_{n}, z\right) \\
\cos d\left(v_{n}, z\right) & \geq\left(1-\gamma_{n}\right) \cos d\left(x_{n}, z\right)+\gamma_{n} \cos d\left(T x_{n}, z\right) \\
& \geq\left(1-\gamma_{n}\right) \cos d\left(x_{n}, z\right)+\gamma_{n} \cos d\left(x_{n}, z\right) \\
& =\cos d\left(x_{n}, z\right) .
\end{aligned}
$$

Then, by Corollary 3.2 again, we have

$$
\begin{aligned}
\cos d\left(x_{n+1}, z\right) & \geq\left(1-\alpha_{n}\right) \cos d\left(u_{n}, z\right)+\alpha_{n} \cos d\left(v_{n}, z\right) \\
& \geq\left(1-\alpha_{n}\right) \cos d\left(x_{n}, z\right)+\alpha_{n} \cos d\left(x_{n}, z\right) \\
& \geq \cos d\left(x_{n}, z\right)
\end{aligned}
$$

So, we get $d\left(x_{n+1}, z\right) \leq d\left(x_{n}, z\right)$ for all $n \in \mathbb{N}$ and there exists $d_{0}=\lim _{n \rightarrow \infty} d\left(x_{n}, z\right) \leq d\left(x_{1}, z\right)<$ $\pi / 2$.

Furthermore, by Theorem 3.1, we have

$$
\begin{align*}
& \cos d\left(u_{n}, z\right) \sin d\left(x_{n}, S x_{n}\right) \\
& \quad \geq \cos d\left(x_{n}, z\right) \sin \left(1-\beta_{n}\right) d\left(x_{n}, S x_{n}\right)+\cos d\left(S x_{n}, z\right) \sin \beta_{n} d\left(x_{n}, S x_{n}\right) \\
& \quad \geq 2 \cos d\left(x_{n}, z\right) \sin \frac{d\left(x_{n}, S x_{n}\right)}{2} \cos \frac{\left(1-2 \beta_{n}\right) d\left(x_{n}, S x_{n}\right)}{2} \tag{2}
\end{align*}
$$

and

$$
\begin{align*}
& \cos d\left(v_{n}, z\right) \sin d\left(x_{n}, T x_{n}\right) \\
& \quad \geq \cos d\left(x_{n}, z\right) \sin \left(1-\gamma_{n}\right) d\left(x_{n}, T x_{n}\right)+\cos d\left(T x_{n}, z\right) \sin \gamma_{n} d\left(x_{n}, T x_{n}\right) \\
& \quad \geq 2 \cos d\left(x_{n}, z\right) \sin \frac{d\left(x_{n}, T x_{n}\right)}{2} \cos \frac{\left(1-2 \gamma_{n}\right) d\left(x_{n}, T x_{n}\right)}{2} . \tag{3}
\end{align*}
$$

Let $d_{n}=d\left(x_{n}, z\right), s_{n}=d\left(x_{n}, S x_{n}\right) / 2$ and $t_{n}=d\left(x_{n}, T x_{n}\right) / 2$ for $n \in \mathbb{N}$. If there exists $n_{0} \in \mathbb{N}$ such that $s_{n_{0}}=t_{n_{0}}=0$, then we have $x_{n_{0}} \in F(S) \cap F(T)$ and since

$$
\begin{aligned}
x_{n_{0}+1} & =\left(1-\alpha_{n_{0}}\right)\left(\left(1-\beta_{n_{0}}\right) x_{n_{0}} \oplus \beta_{n_{0}} S x_{n_{0}}\right) \oplus \alpha_{n_{0}}\left(\left(1-\gamma_{n_{0}}\right) x_{n_{0}} \oplus \gamma_{n_{0}} T x_{n_{0}}\right) \\
& =\left(1-\alpha_{n_{0}}\right) x_{n_{0}} \oplus \alpha_{n_{0}} x_{n_{0}} \\
& =x_{n_{0}}
\end{aligned}
$$

and the proof is finished. So, we may assume $s_{n} \neq 0$ or $t_{n} \neq 0$ for all $n \in \mathbb{N}$.
If $s_{n}=0$ and $t_{n} \neq 0$, then we have $u_{n}=x_{n}$. From (2), (3), and Corollary 3.2, we get

$$
\begin{gathered}
2 \cos d_{n+1} \sin t_{n} \cos t_{n} \\
=\cos d_{n+1} \sin 2 t_{n}
\end{gathered}
$$

$$
\begin{aligned}
& \geq\left(1-\alpha_{n}\right) \cos d\left(u_{n}, z\right) \sin 2 t_{n}+\alpha_{n} \cos d\left(v_{n}, z\right) \sin 2 t_{n} \\
& \geq 2\left(1-\alpha_{n}\right) \cos d_{n} \sin t_{n} \cos t_{n}+2 \alpha_{n} \cos d_{n} \sin t_{n} \cos \left(1-2 \gamma_{n}\right) t_{n} .
\end{aligned}
$$

Dividing by $2 \sin t_{n}>0$, we get

$$
\begin{equation*}
\cos d_{n+1} \cos t_{n} \geq\left(1-\alpha_{n}\right) \cos d_{n} \cos t_{n}+\alpha_{n} \cos d_{n} \cos \left(1-2 \gamma_{n}\right) t_{n} \tag{4}
\end{equation*}
$$

If $t_{n}=0$ and $s_{n} \neq 0$, then we have $v_{n}=x_{n}$. In a similar way as above, we get

$$
\begin{equation*}
\cos d_{n+1} \cos s_{n} \geq\left(1-\alpha_{n}\right) \cos d_{n} \cos \left(1-2 \beta_{n}\right) s_{n}+\alpha_{n} \cos d_{n} \cos s_{n} \tag{5}
\end{equation*}
$$

If $s_{n} \neq 0$ and $t_{n} \neq 0$, then from (2), (3), and Corollary 3.2, we get

$$
\begin{aligned}
& \cos d_{n+1} \sin 2 s_{n} \sin 2 t_{n} \\
& \quad \geq\left(1-\alpha_{n}\right) \cos d\left(u_{n}, z\right) \sin 2 s_{n} \sin 2 t_{n}+\alpha_{n} \cos d\left(v_{n}, z\right) \sin 2 s_{n} \sin 2 t_{n} \\
& \quad \geq 4 \cos d_{n} \sin s_{n} \sin t_{n}\left(\left(1-\alpha_{n}\right) \cos t_{n} \cos \left(1-2 \beta_{n}\right) s_{n}+\alpha_{n} \cos s_{n} \cos \left(1-2 \gamma_{n}\right) t_{n}\right)
\end{aligned}
$$

Dividing by $4 \sin s_{n} \sin t_{n}>0$, we get

$$
\begin{align*}
& \cos d_{n+1} \cos s_{n} \cos t_{n} \\
& \quad \geq\left(1-\alpha_{n}\right) \cos d_{n} \cos t_{n} \cos \left(1-2 \beta_{n}\right) s_{n}+\alpha_{n} \cos d_{n} \cos s_{n} \cos \left(1-2 \gamma_{n}\right) t_{n} \tag{6}
\end{align*}
$$

Therefore, (4) and (5) can be reduced to the inequality (6) and it is equivalent to

$$
\left(\frac{\varepsilon_{n} \cos s_{n}}{\alpha_{n} \cos \left(1-2 \beta_{n}\right) s_{n}}-\frac{1-\alpha_{n}}{\alpha_{n}}\right)\left(\frac{\varepsilon_{n} \cos t_{n}}{\left(1-\alpha_{n}\right) \cos \left(1-2 \gamma_{n}\right) t_{n}}-\frac{\alpha_{n}}{1-\alpha_{n}}\right) \geq 1
$$

where $\varepsilon_{n}=\cos d_{n+1} / \cos d_{n}$ for $n \in \mathbb{N}$. It follows that $\lim _{n \rightarrow \infty} \varepsilon_{n}=\cos d_{0} / \cos d_{0}=1$. Since $\left.\left\{\alpha_{n}\right\} \subset[a, b] \subset\right] 0,1[$ for $n \in \mathbb{N}$, we get

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left(\frac{\cos s_{n}}{\alpha_{n} \cos \left(1-2 \beta_{n}\right) s_{n}}-\frac{1-\alpha_{n}}{\alpha_{n}}\right)\left(\frac{\cos t_{n}}{\left(1-\alpha_{n}\right) \cos \left(1-2 \gamma_{n}\right) t_{n}}-\frac{\alpha_{n}}{1-\alpha_{n}}\right) \geq 1 \tag{7}
\end{equation*}
$$

Then we show that there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$, the following hold:

$$
\begin{equation*}
-\frac{1}{2} \leq \frac{\cos s_{n}}{\alpha_{n} \cos \left(1-2 \beta_{n}\right) s_{n}}-\frac{1-\alpha_{n}}{\alpha_{n}} \leq 1 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
-\frac{1}{2} \leq \frac{\cos t_{n}}{\left(1-\alpha_{n}\right) \cos \left(1-2 \gamma_{n}\right) t_{n}}-\frac{\alpha_{n}}{1-\alpha_{n}} \leq 1 . \tag{9}
\end{equation*}
$$

First, we show the right inequality of (8). Since $\left.\left\{\beta_{n}\right\} \subset[a, b] \subset\right] 0,1[$ for $n \in \mathbb{N}$, we get $\cos s_{n} \leq \cos \left|1-2 \beta_{n}\right| s_{n}=\cos \left(1-2 \beta_{n}\right) s_{n}$. Hence we get

$$
\frac{\cos s_{n}}{\alpha_{n} \cos \left(1-2 \beta_{n}\right) s_{n}}-\frac{1-\alpha_{n}}{\alpha_{n}} \leq \frac{1}{\alpha_{n}}-\frac{1-\alpha_{n}}{\alpha_{n}}=1 .
$$

By the same method as above, the right inequality of (9) also holds. Next, let us show the left inequality of (8). If it does not hold, then letting

$$
\sigma_{n}=\frac{\cos s_{n}}{\alpha_{n} \cos \left(1-2 \beta_{n}\right) s_{n}}-\frac{1-\alpha_{n}}{\alpha_{n}} \quad \text { and } \quad \tau_{n}=\frac{\cos t_{n}}{\left(1-\alpha_{n}\right) \cos \left(1-2 \gamma_{n}\right) t_{n}}-\frac{\alpha_{n}}{1-\alpha_{n}}
$$

we can find a subsequence $\left\{\sigma_{n_{i}}\right\} \subset\left\{\sigma_{n}\right\}$ such that $\sigma_{n_{i}}<-1 / 2$ for $i \in \mathbb{N}$ and $\lim _{i \rightarrow \infty} \sigma_{n_{i}}=$ $\sigma \leq-1 / 2$. Since $\left.\left\{\alpha_{n}\right\},\left\{\gamma_{n}\right\} \subset[a, b] \subset\right] 0,1\left[\right.$ and $\left\{t_{n}\right\} \subset\left[0, \pi / 4\left[\subset\left[0, \pi / 2\left[\right.\right.\right.\right.$, we have $\left\{\tau_{n}\right\}$ is bounded. Therefore, by taking a subsequence again if necessary, we may assume that $\left\{\tau_{n_{i}}\right\}$ converges to $\tau \in \mathbb{R}$. Then, by (7), we get $\sigma \tau=\lim _{i \rightarrow \infty} \sigma_{n_{i}} \tau_{n_{i}} \geq \liminf _{n \rightarrow \infty} \sigma_{n} \tau_{n} \geq 1$. Hence we may assume that $\tau_{n_{i}}<0$ for all $i \in \mathbb{N}$. Since $\sqrt{2} / 2<\cos s_{n}, \sqrt{2} / 2<\cos t_{n}, 0<\cos (1-$ $\left.2 \beta_{n}\right) s_{n} \leq 1,0<\cos \left(1-2 \gamma_{n}\right) t_{n} \leq 1$ and $\left.\left\{\alpha_{n}\right\} \subset[a, b] \subset\right] 0,1[$, we also have

$$
\begin{equation*}
0<\frac{\sqrt{2}}{2 b} \leq \frac{\cos s_{n}}{\alpha_{n} \cos \left(1-2 \beta_{n}\right) s_{n}} \quad \text { and } \quad 0<\frac{\sqrt{2}}{2(1-a)} \leq \frac{\cos t_{n}}{\left(1-\alpha_{n}\right) \cos \left(1-2 \gamma_{n}\right) t_{n}} . \tag{10}
\end{equation*}
$$

Let ρ be a real number such that

$$
\begin{equation*}
0<\rho<\min \left\{\frac{\sqrt{2}}{2 b}, \frac{\sqrt{2}}{2(1-a)}, \frac{1-b}{b}+\frac{a}{1-a}\right\} \tag{11}
\end{equation*}
$$

Then, by (10), we get

$$
\begin{equation*}
\rho-\frac{1-\alpha_{n_{i}}}{\alpha_{n_{i}}} \leq \sigma_{n_{i}}<0 \quad \text { and } \quad \rho-\frac{\alpha_{n_{i}}}{1-\alpha_{n_{i}}} \leq \tau_{n_{i}}<0 . \tag{12}
\end{equation*}
$$

Then, by (11) and (12), we have

$$
\begin{aligned}
\sigma_{n_{i}} \tau_{n_{i}} & \leq\left(\rho-\frac{1-\alpha_{n_{i}}}{\alpha_{n_{i}}}\right)\left(\rho-\frac{\alpha_{n_{i}}}{1-\alpha_{n_{i}}}\right) \\
& =\rho^{2}-\left(\frac{1-\alpha_{n_{i}}}{\alpha_{n_{i}}}+\frac{\alpha_{n_{i}}}{1-\alpha_{n_{i}}}\right) \rho+1 \\
& \leq \rho^{2}-\left(\frac{1-b}{b}+\frac{a}{1-a}\right) \rho+1 \\
& =\rho\left(\rho-\left(\frac{1-b}{b}+\frac{a}{1-a}\right)\right)+1
\end{aligned}
$$

Thus, as $i \rightarrow \infty$, we have

$$
\begin{equation*}
1 \leq \sigma \tau \leq \rho\left(\rho-\left(\frac{1-b}{b}+\frac{a}{1-a}\right)\right)+1<1 . \tag{13}
\end{equation*}
$$

This is a contradiction. We also obtain the left inequality of (9) in a similar way. Hence we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\frac{\cos s_{n}}{\alpha_{n} \cos \left(1-2 \beta_{n}\right) s_{n}}-\frac{1-\alpha_{n}}{\alpha_{n}}\right)=\lim _{n \rightarrow \infty}\left(\frac{\cos t_{n}}{\left(1-\alpha_{n}\right) \cos \left(1-2 \gamma_{n}\right) t_{n}}-\frac{\alpha_{n}}{1-\alpha_{n}}\right)=1 \tag{14}
\end{equation*}
$$

by Lemma 3.5, (8), and (9). Furthermore, from (14), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\cos s_{n}-\cos \left(1-2 \beta_{n}\right) s_{n}}{\alpha_{n} \cos \left(1-2 \beta_{n}\right) s_{n}}=0 \tag{15}
\end{equation*}
$$

By Lemma 3.6 and (15), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\cos s_{n}-\cos \left(1-2 \beta_{n}\right) s_{n}\right)=0 . \tag{16}
\end{equation*}
$$

Moreover, by Lemma 3.7 and (16), we get

$$
\liminf _{n \rightarrow \infty} \cos s_{n}=\liminf _{n \rightarrow \infty} \cos \left(1-2 \beta_{n}\right) s_{n}=\liminf _{n \rightarrow \infty} \cos \left|1-2 \beta_{n}\right| s_{n} .
$$

Hence we get

$$
\limsup _{n \rightarrow \infty} s_{n}=\limsup _{n \rightarrow \infty}\left(\left|1-2 \beta_{n}\right| s_{n}\right) \leq \limsup _{n \rightarrow \infty}\left|1-2 \beta_{n}\right| \limsup _{n \rightarrow \infty} s_{n},
$$

and we have

$$
0 \geq\left(1-\limsup _{n \rightarrow \infty}\left|1-2 \beta_{n}\right|\right) \limsup _{n \rightarrow \infty} s_{n}=\liminf _{n \rightarrow \infty}\left(1-\left|1-2 \beta_{n}\right|\right) \limsup _{n \rightarrow \infty} s_{n} .
$$

Since $\left.\left\{\beta_{n}\right\} \subset[a, b] \subset\right] 0,1\left[\right.$ for $n \in \mathbb{N}$, we have $\liminf _{n \rightarrow \infty}\left(1-\left|1-2 \beta_{n}\right|\right)>0$ and thus, $\lim \sup _{n \rightarrow \infty} s_{n} \leq 0$. Therefore, we get $\lim \sup _{n \rightarrow \infty} s_{n}=0$ and we also get $\lim \sup _{n \rightarrow \infty} t_{n}=0$. It implies $d\left(x_{n}, S x_{n}\right) \rightarrow 0$ and $d\left(x_{n}, T x_{n}\right) \rightarrow 0$.

Next, let $\left\{y_{k}\right\}$ be a subsequence of $\left\{x_{n}\right\}$. Since $r\left(\left\{x_{n}\right\}\right) \leq d_{0}<\pi / 2$, by Theorem 3.3(i), there exists a unique asymptotic center x_{0} of $\left\{y_{k}\right\}$. Moreover, since $r\left(\left\{y_{k}\right\}\right)<\pi / 2$, by Theorem 3.3(ii), there exists a subsequence $\left\{z_{l}\right\}$ of $\left\{y_{k}\right\}$ such that $z_{l} \xrightarrow{\Delta} z_{0} \in X$. Further, since $d\left(z_{l}, S z_{l}\right) \rightarrow 0, d\left(z_{l}, T z_{l}\right) \rightarrow 0$ and S, T are Δ-demiclosed, we have $z_{0} \in F(S) \cap F(T)$. Then we can show that $x_{0}=z_{0}$, i.e., $x_{0} \in F(S) \cap F(T)$. If not, from the uniqueness of the asymptotic centers x_{0}, z_{0} of $\left\{y_{k}\right\},\left\{z_{l}\right\}$, respectively, due to Theorem 3.3(i), we have

$$
\begin{aligned}
\limsup _{k \rightarrow \infty} d\left(y_{k}, x_{0}\right) & <\limsup _{k \rightarrow \infty} d\left(y_{k}, z_{0}\right) \\
& =\lim _{n \rightarrow \infty} d\left(x_{n}, z_{0}\right) \\
& =\limsup _{l \rightarrow \infty} d\left(z_{l}, z_{0}\right) \\
& <\limsup _{l \rightarrow \infty} d\left(z_{l}, x_{0}\right) \\
& \leq \limsup _{k \rightarrow \infty} d\left(y_{k}, x_{0}\right) .
\end{aligned}
$$

This is a contradiction. Hence we get $x_{0} \in F(S) \cap F(T)$. Next, we show that for any subsequences of $\left\{x_{n}\right\}$, their asymptotic center consists of the unique element. Let $\left\{u_{k}\right\},\left\{v_{k}\right\}$ be subsequences of $\left\{x_{n}\right\}, x_{0} \in A C\left(\left\{u_{k}\right\}\right)$ and $x_{0}^{\prime} \in A C\left(\left\{v_{k}\right\}\right)$. We show $x_{0}=x_{0}^{\prime}$ by using contradiction. Assume $x_{0} \neq x_{0}^{\prime}$. Then $x_{0}^{\prime} \notin A C\left(\left\{u_{k}\right\}\right)$ and $x_{0} \notin A C\left(\left\{v_{k}\right\}\right)$ by Theorem 3.3(i). It follows that

$$
\begin{aligned}
\limsup _{k \rightarrow \infty} d\left(u_{k}, x_{0}\right) & <\limsup _{k \rightarrow \infty} d\left(u_{k}, x_{0}^{\prime}\right) \\
& =\lim _{n \rightarrow \infty} d\left(x_{n}, x_{0}^{\prime}\right) \\
& =\limsup _{k \rightarrow \infty} d\left(v_{k}, x_{0}^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& <\limsup _{k \rightarrow \infty} d\left(v_{k}, x_{0}\right) \\
& =\lim _{n \rightarrow \infty} d\left(x_{n}, x_{0}\right) \\
& =\limsup _{k \rightarrow \infty} d\left(u_{k}, x_{0}\right) .
\end{aligned}
$$

This is a contradiction. Hence we get $x_{0}=x_{0}^{\prime}$. Therefore, we have $\left\{x_{n}\right\} \Delta$-converges to a common fixed point of S and T.

By Theorem 3.4, we know that a nonexpansive mapping having a fixed point satisfies the assumptions in Theorem 4.1. Thus, we get the following result.

Corollary 4.2 Let X be a complete CAT(1) space such that for any $u, v \in X, d(u, v)<\pi / 2$. Let S and T be nonexpansive mappings of X into itself such that $F(S) \cap F(T) \neq \emptyset$. Let $\left\{\alpha_{n}\right\}$, $\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ be sequences in $\left.[a, b] \subset\right] 0,1\left[\right.$. Define a sequence $\left\{x_{n}\right\} \subset X$ as the following recurrence formula: $x_{1} \in X$ and

$$
\left\{\begin{array}{l}
u_{n}=\left(1-\beta_{n}\right) x_{n} \oplus \beta_{n} S x_{n}, \\
v_{n}=\left(1-\gamma_{n}\right) x_{n} \oplus \gamma_{n} T x_{n}, \\
x_{n+1}=\left(1-\alpha_{n}\right) u_{n} \oplus \alpha_{n} v_{n}
\end{array}\right.
$$

for $n \in \mathbb{N}$. Then $\left\{x_{n}\right\} \Delta$-converges to a common fixed point of S and T.

5 An application to the image recovery

The image recovery problem is formulated as to find the nearest point in the intersection of family of closed convex subsets from a given point by using corresponding metric projection of each subset. In this section, we consider this problem for two subsets of a complete CAT(1) space.

Theorem 5.1 Let X be a complete CAT(1) space such that for any $u, v \in X, d(u, v)<\pi / 2$. Let C_{1} and C_{2} be nonempty closed convex subsets of X such that $C_{1} \cap C_{2} \neq \emptyset$. Let P_{1} and P_{2} be metric projections onto C_{1} and C_{2}, respectively. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ be real sequences in $[a, b] \subset] 0,1\left[\right.$. Define a sequence $\left\{x_{n}\right\} \subset X$ by the following recurrence formula: $x_{1} \in X$ and

$$
\left\{\begin{array}{l}
u_{n}=\left(1-\beta_{n}\right) x_{n} \oplus \beta_{n} P_{1} x_{n}, \\
v_{n}=\left(1-\gamma_{n}\right) x_{n} \oplus \gamma_{n} P_{2} x_{n}, \\
x_{n+1}=\left(1-\alpha_{n}\right) u_{n} \oplus \alpha_{n} v_{n}
\end{array}\right.
$$

for $n \in \mathbb{N}$. Then $\left\{x_{n}\right\} \Delta$-converges to a fixed point of the intersection of C_{1} and C_{2}.

Proof We see that P_{1} and P_{2} are quasinonexpansive [9] and Δ-demiclosed [8]. Further, we also get $F\left(P_{1}\right)=C_{1}$ and $F\left(P_{2}\right)=C_{2}$. Thus, letting $S=P_{1}$ and $T=P_{2}$ in Theorem 4.1, we obtain the desired result.

Authors' contributions

The authors have contributed in this work on an equal basis. All authors read and approved the final manuscript.

Acknowledgements

The authors thank the anonymous referees for their valuable comments and suggestions. The first author is supported by Grant-in-Aid for Scientific Research No. 22540175 from the Japan Society for the Promotion of Science.

Received: 15 October 2013 Accepted: 23 January 2014 Published: 13 Feb 2014

References

1. Mann, WR: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506-510 (1953)
2. Reich, S: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274-276 (1979)
3. Takahashi, W, Tamura, T: Convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67(1), 45-56 (1998)
4. Dhompongsa, S, Panyanak, B: On Δ-convergence theorems in CAT(0) spaces. Comput. Math. Appl. 56(10), 2572-2579 (2008)
5. Kimura, Y, Saejung, S, Yotkaew, P: The Mann algorithm in a complete geodesic space with curvature bounded above. Fixed Point Theory Appl. 2013, 1-13 (2013)
6. Bridson, MR, Haefliger, A: Metric Spaces of Non-Positive Curvature. Grundlehren der Mathematischen Wissenschaften, vol. 319. Springer, Berlin (1999)
7. Kimura, Y, Satô, K: Convergence of subsets of a complete geodesic space with curvature bounded above. Nonlinear Anal. 75(13), 5079-5085 (2012)
8. Kimura, Y, Satô, K: Halpern iteration for strongly quasinonexpansive mappings on a geodesic space with curvature bounded above by one. Fixed Point Theory Appl. 2013, Article ID 7 (2013)
9. Espínola, R, Fernández-León, A: CAT(κ)-spaces, weak convergence and fixed points. J. Math. Anal. Appl. 353(1), 410-427 (2009)
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

```
Submit your next manuscript at \ springeropen.com
```


[^0]: 10.1186/1029-242X-2014-72

 Cite this article as: Kimura and Nakagawa: Another type of Mann iterative scheme for two mappings in a complete geodesic space. Journal of Inequalities and Applications 2014, 2014:72

