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Abstract
In this paper, we show a �-convergence theorem for a Mann iteration procedure in a
complete geodesic space with two quasinonexpansive and �-demiclosed
mappings. The proposed method is different from known procedures with respect to
the order of taking the convex combination.

1 Introduction
The fixed point approximation has been studied in a variety of ways and its results are
useful for the other studies. In , Mann [] introduced an iteration procedure for ap-
proximating fixed points of a nonexpansive mapping T in a Hilbert space. Later, Reich
[] discussed this iteration procedure in a uniformly convex Banach space whose norm is
Fréchet differentiable. In , Takahashi and Tamura [] considered an iteration proce-
dure with two nonexpansive mappings and obtained weak convergence theorems for this
procedure in a uniformly convex Banach space which satisfies Opial’s condition or whose
norm is Fréchet differentiable. On the other hand, in , Dhompongsa and Panyanak
[] proved the following theorem.

Theorem . Let C be a bounded closed convex subset of a complete CAT() space and
T : C → C a nonexpansivemapping. For any initial point x in C, define theMann iterative
sequence {xn} by

xn+ = ( – tn)xn ⊕ tnTxn, n = , , , . . . ,

where {tn} is a sequence in [, ], with the restrictions that
∑∞

n= tn diverges and
lim supn→∞ tn < . Then {xn} �-converges to a fixed point of T .

Further, in a CAT() space, Kimura et al. [] proved the �-convergence theorem for a
family of nonexpansive mappings including the following scheme:

xn+ = ( – αn)xn ⊕ αn
(
( – βn)Sxn ⊕ βnTxn

)
.

In a Hilbert space H , the following equality holds for any x, y, z ∈H :

αx + ( – α)
(
βy + ( – β)z

)
= γ

(
δx + ( – δ)y

)
+ ( – γ )z,
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where α,β ,γ , δ ∈ ], [ such that α = γ δ and β = γ ( – δ)/( – γ δ). However, in CAT(κ)
spaces with κ > , it does not hold in general, that is, the value of the convex combination
taken twice depends on their order. Thus, the following formulas are different in gen-
eral:

xn+ = ( – αn)xn ⊕ αn
(
( – βn)Sxn ⊕ βnTxn

)
,

xn+ = ( – αn)
(
βnxn ⊕ ( – βn)Sxn

) ⊕ αn
(
( – βn)xn ⊕ βnTxn

)
.

()

In this paper, we show an analogous result to Theorem . using the iterative scheme
() in a complete CAT() space with two quasinonexpansive and �-demiclosed mappings.
We also deal with the image recovery problem for two closed convex sets.

2 Preliminaries
Let X be a metric space. For x, y ∈ X, a mapping c : [, l] → X is said to be a geodesic if c
satisfies c() = x, c(l) = y and d(c(s), c(t)) = |s – t| for all s, t ∈ [, l]. An image [x, y] of c is
called a geodesic segment joining x and y. For r > , X is said to be an r-geodesic metric
space if, for any x, y ∈ X with d(x, y) < r, there exists a geodesic segment [x, y]. In particular,
if a segment [x, y] is unique for any x, y ∈ X with d(x, y) < r, then X is said to be a uniquely
r-geodesic metric space. In what follows, we always assume d(x, y) < π/ for any x, y ∈ X.
Thus, we say X is a geodesic metric space instead of a π/-geodesic metric space. For the
more general case, see [].
Let X be a uniquely geodesic metric space. A geodesic triangle is defined by �(x, y, z) =

[x, y] ∪ [y, z] ∪ [z,x]. Let M be the two-dimensional unit sphere in R
. For x̄, ȳ, z̄ ∈ M,

a triangle �(x̄, ȳ, z̄) ⊂ M is called a comparison triangle of �(x, y, z) if d(x, y) = dM(x̄, ȳ),
d(y, z) = dM(ȳ, z̄), d(z,x) = dM(z̄, x̄). Further, for any x, y ∈ X and t ∈ ], [, if z ∈ [x, y] satis-
fies d(x, z) = (– t)d(x, y) and d(z, y) = td(x, y), then z is denoted by z = tx⊕ ( – t)y. A point
z̄ ∈ [x̄, ȳ] is called a comparison point of z ∈ [x, y] if d(x, z) = dM(x̄, z̄).X is said to be aCAT()
space if, for any p,q ∈ �(x, y, z) ⊂ X and its comparison points p̄, q̄ ∈ �(x̄, ȳ, z̄) ⊂M, the in-
equality d(p,q) ≤ dM(p̄, q̄) holds.
Let X be a geodesic metric space and {xn} a bounded sequence of X. For x ∈ X, we

put r(x, {xn}) = lim supn→∞ d(x,xn). The asymptotic radius of {xn} is defined by r({xn}) =
infx∈X r(x, {xn}). Further, the asymptotic center of {xn} is defined by AC({xn}) = {x ∈ X :
r(x, {xn}) = r({xn})}. If, for any subsequences {xnk } of {xn}, AC({xnk }) = {x}, i.e., their
asymptotic center consists of the unique element x, then we say {xn} �-converges to x
and we denote it by xn –

�
⇀ x.

Let X be a metric space. A mapping T : X → X is said to be a nonexpansive if T
satisfies d(Tx,Ty) ≤ d(x, y) for any x, y ∈ X. The set of fixed points of T is denoted by
F(T) = {z ∈ X : Tz = z}. Further, a mapping T : X → X with F(T) 
= ∅ is said to be a quasi-
nonexpansive if T satisfies d(Tx, z) ≤ d(x, z) for any x ∈ X and z ∈ F(T). Moreover, T is
said to be �-demiclosed if, for any bounded sequence {xn} ⊂ X and x ∈ X satisfying
d(xn,Txn) →  and xn –

�
⇀ x, we have x ∈ F(T).

3 Tools for themain results
In this section, we introduce some tools for using the main theorem.
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Theorem . (Kimura and Satô []) Let �(x, y, z) be a geodesic triangle in a CAT() space
such that d(x, y) + d(y, z) + d(z,x) < π . Let u = tx⊕ ( – t)y for some t ∈ [, ]. Then

cosd(u, z) sind(x, y) ≥ cosd(x, z) sin td(x, y) + cosd(y, z) sin( – t)d(x, y).

Corollary . (Kimura and Satô []) Let �(x, y, z) be a geodesic triangle in a CAT() space
such that d(x, y) + d(y, z) + d(z,x) < π . Let u = tx⊕ ( – t)y for some t ∈ [, ]. Then

cosd(u, z) ≥ t cosd(x, z) + ( – t) cosd(y, z).

Theorem . (Espínola and Fernández-León []) Let X be a complete CAT() space and
{xn} a sequence in X. If r({xn}) < π/, then the following hold.

(i) AC({xn}) consists of exactly one point;
(ii) {xn} has a �-convergent subsequence.

Theorem. (Kimura and Satô []) Let X be ametric space and T amapping from X into
itself. If T is a nonexpansivewith F(T) 
= ∅, then T is quasinonexpansive and�-demiclosed.

The following lemmas are important properties of real numbers and they are easy to
show. Thus, we omit the proofs.

Lemma . Let δ be a real number such that – < δ <  and {bn}, {cn} real sequences
satisfying δ ≤ bn ≤ , δ ≤ cn ≤  and lim infn→∞ bncn ≥ .Then limn→∞ bn = limn→∞ cn = .

Lemma . Let s ∈ ],∞[ and {bn}, {cn} bounded real sequences satisfying bn ≤ , s < cn
and limn→∞ bn/cn = . Then limn→∞ bn = .

Lemma . Let {bn} and {cn} be bounded real sequences satisfying limn→∞(bn – cn) = .
Then lim infn→∞ bn = lim infn→∞ cn.

4 Themain result
In this section, we show the main result.

Theorem . Let X be a complete CAT() space such that for any u, v ∈ X, d(u, v) < π/.
Let S and T be quasinonexpansive and �-demiclosed mappings from X into itself with
F(S) ∩ F(T) 
= ∅. Let {αn}, {βn} and {γn} be sequences of [a,b] ⊂ ], [. Define a sequence
{xn} ⊂ X by the following recurrence formula: x ∈ X and

⎧⎪⎨
⎪⎩
un = ( – βn)xn ⊕ βnSxn,
vn = ( – γn)xn ⊕ γnTxn,
xn+ = ( – αn)un ⊕ αnvn

for n ∈N. Then {xn} �-converges to a common fixed point of S and T .
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Proof Let z ∈ F(S)∩ F(T). By Corollary ., we have

cosd(un, z) ≥ ( – βn) cosd(xn, z) + βn cosd(Sxn, z)

≥ ( – βn) cosd(xn, z) + βn cosd(xn, z)

= cosd(xn, z),

cosd(vn, z) ≥ ( – γn) cosd(xn, z) + γn cosd(Txn, z)

≥ ( – γn) cosd(xn, z) + γn cosd(xn, z)

= cosd(xn, z).

Then, by Corollary . again, we have

cosd(xn+, z) ≥ ( – αn) cosd(un, z) + αn cosd(vn, z)

≥ ( – αn) cosd(xn, z) + αn cosd(xn, z)

≥ cosd(xn, z).

So, we get d(xn+, z) ≤ d(xn, z) for all n ∈N and there exists d = limn→∞ d(xn, z) ≤ d(x, z) <
π/.
Furthermore, by Theorem ., we have

cosd(un, z) sind(xn,Sxn)

≥ cosd(xn, z) sin( – βn)d(xn,Sxn) + cosd(Sxn, z) sinβnd(xn,Sxn)

≥  cosd(xn, z) sin
d(xn,Sxn)


cos

( – βn)d(xn,Sxn)


()

and

cosd(vn, z) sind(xn,Txn)

≥ cosd(xn, z) sin( – γn)d(xn,Txn) + cosd(Txn, z) sinγnd(xn,Txn)

≥  cosd(xn, z) sin
d(xn,Txn)


cos

( – γn)d(xn,Txn)


. ()

Let dn = d(xn, z), sn = d(xn,Sxn)/ and tn = d(xn,Txn)/ for n ∈ N. If there exists n ∈ N

such that sn = tn = , then we have xn ∈ F(S)∩ F(T) and since

xn+ = ( – αn )
(
( – βn )xn ⊕ βnSxn

) ⊕ αn
(
( – γn )xn ⊕ γnTxn

)
= ( – αn )xn ⊕ αnxn

= xn ,

and the proof is finished. So, we may assume sn 
=  or tn 
=  for all n ∈N.
If sn =  and tn 
= , then we have un = xn. From (), (), and Corollary ., we get

 cosdn+ sin tn cos tn

= cosdn+ sintn

http://www.journalofinequalitiesandapplications.com/content/2014/1/72


Kimura and Nakagawa Journal of Inequalities and Applications 2014, 2014:72 Page 5 of 9
http://www.journalofinequalitiesandapplications.com/content/2014/1/72

≥ ( – αn) cosd(un, z) sintn + αn cosd(vn, z) sintn

≥ ( – αn) cosdn sin tn cos tn + αn cosdn sin tn cos( – γn)tn.

Dividing by  sin tn > , we get

cosdn+ cos tn ≥ ( – αn) cosdn cos tn + αn cosdn cos( – γn)tn. ()

If tn =  and sn 
= , then we have vn = xn. In a similar way as above, we get

cosdn+ cos sn ≥ ( – αn) cosdn cos( – βn)sn + αn cosdn cos sn. ()

If sn 
=  and tn 
= , then from (), (), and Corollary ., we get

cosdn+ sinsn sintn

≥ ( – αn) cosd(un, z) sinsn sintn + αn cosd(vn, z) sinsn sintn

≥  cosdn sin sn sin tn
(
( – αn) cos tn cos( – βn)sn + αn cos sn cos( – γn)tn

)
.

Dividing by  sin sn sin tn > , we get

cosdn+ cos sn cos tn

≥ ( – αn) cosdn cos tn cos( – βn)sn + αn cosdn cos sn cos( – γn)tn. ()

Therefore, () and () can be reduced to the inequality () and it is equivalent to

(
εn cos sn

αn cos( – βn)sn
–
 – αn

αn

)(
εn cos tn

( – αn) cos( – γn)tn
–

αn

 – αn

)
≥ ,

where εn = cosdn+/ cosdn for n ∈ N. It follows that limn→∞ εn = cosd/ cosd = . Since
{αn} ⊂ [a,b]⊂ ], [ for n ∈N, we get

lim inf
n→∞

(
cos sn

αn cos( – βn)sn
–
 – αn

αn

)(
cos tn

( – αn) cos( – γn)tn
–

αn

 – αn

)
≥ . ()

Then we show that there exists n ∈N such that for all n≥ n, the following hold:

–



≤ cos sn
αn cos( – βn)sn

–
 – αn

αn
≤  ()

and

–



≤ cos tn
( – αn) cos( – γn)tn

–
αn

 – αn
≤ . ()

First, we show the right inequality of (). Since {βn} ⊂ [a,b] ⊂ ], [ for n ∈ N, we get
cos sn ≤ cos | – βn|sn = cos( – βn)sn. Hence we get

cos sn
αn cos( – βn)sn

–
 – αn

αn
≤ 

αn
–
 – αn

αn
= .

http://www.journalofinequalitiesandapplications.com/content/2014/1/72
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By the same method as above, the right inequality of () also holds. Next, let us show the
left inequality of (). If it does not hold, then letting

σn =
cos sn

αn cos( – βn)sn
–
 – αn

αn
and τn =

cos tn
( – αn) cos( – γn)tn

–
αn

 – αn
,

we can find a subsequence {σni} ⊂ {σn} such that σni < –/ for i ∈ N and limi→∞ σni =
σ ≤ –/. Since {αn}, {γn} ⊂ [a,b] ⊂ ], [ and {tn} ⊂ [,π/[⊂ [,π/[, we have {τn} is
bounded. Therefore, by taking a subsequence again if necessary, we may assume that {τni}
converges to τ ∈R. Then, by (), we get στ = limi→∞ σniτni ≥ lim infn→∞ σnτn ≥ . Hence
we may assume that τni <  for all i ∈ N. Since

√
/ < cos sn,

√
/ < cos tn,  < cos( –

βn)sn ≤ ,  < cos( – γn)tn ≤  and {αn} ⊂ [a,b]⊂ ], [, we also have

 <
√


b
≤ cos sn

αn cos( – βn)sn
and  <

√


( – a)
≤ cos tn

( – αn) cos( – γn)tn
. ()

Let ρ be a real number such that

 < ρ <min

{√


b
,

√


( – a)
,
 – b
b

+
a

 – a

}
. ()

Then, by (), we get

ρ –
 – αni

αni
≤ σni <  and ρ –

αni
 – αni

≤ τni < . ()

Then, by () and (), we have

σniτni ≤
(

ρ –
 – αni

αni

)(
ρ –

αni
 – αni

)

= ρ –
(
 – αni

αni
+

αni
 – αni

)
ρ + 

≤ ρ –
(
 – b
b

+
a

 – a

)
ρ + 

= ρ

(
ρ –

(
 – b
b

+
a

 – a

))
+ .

Thus, as i → ∞, we have

≤ στ ≤ ρ

(
ρ –

(
 – b
b

+
a

 – a

))
+  < . ()

This is a contradiction. We also obtain the left inequality of () in a similar way. Hence we
get

lim
n→∞

(
cos sn

αn cos( – βn)sn
–
 – αn

αn

)
= lim

n→∞

(
cos tn

( – αn) cos( – γn)tn
–

αn

 – αn

)
=  ()

by Lemma ., (), and (). Furthermore, from (), we get

lim
n→∞

cos sn – cos( – βn)sn
αn cos( – βn)sn

= . ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/72
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By Lemma . and (), we get

lim
n→∞

(
cos sn – cos( – βn)sn

)
= . ()

Moreover, by Lemma . and (), we get

lim inf
n→∞ cos sn = lim inf

n→∞ cos( – βn)sn = lim inf
n→∞ cos | – βn|sn.

Hence we get

lim sup
n→∞

sn = lim sup
n→∞

(| – βn|sn
) ≤ lim sup

n→∞
| – βn| lim sup

n→∞
sn,

and we have

 ≥
(
 – lim sup

n→∞
| – βn|

)
lim sup
n→∞

sn = lim inf
n→∞

(
 – | – βn|

)
lim sup
n→∞

sn.

Since {βn} ⊂ [a,b] ⊂ ], [ for n ∈ N, we have lim infn→∞( – | – βn|) >  and thus,
lim supn→∞ sn ≤ . Therefore, we get lim supn→∞ sn =  and we also get lim supn→∞ tn = .
It implies d(xn,Sxn)→  and d(xn,Txn) → .
Next, let {yk} be a subsequence of {xn}. Since r({xn}) ≤ d < π/, by Theorem .(i),

there exists a unique asymptotic center x of {yk}. Moreover, since r({yk}) < π/, by The-
orem .(ii), there exists a subsequence {zl} of {yk} such that zl –

�
⇀ z ∈ X. Further, since

d(zl,Szl) → , d(zl,Tzl) →  and S, T are �-demiclosed, we have z ∈ F(S) ∩ F(T). Then
we can show that x = z, i.e., x ∈ F(S)∩ F(T). If not, from the uniqueness of the asymp-
totic centers x, z of {yk}, {zl}, respectively, due to Theorem .(i), we have

lim sup
k→∞

d(yk ,x) < lim sup
k→∞

d(yk , z)

= lim
n→∞d(xn, z)

= lim sup
l→∞

d(zl, z)

< lim sup
l→∞

d(zl,x)

≤ lim sup
k→∞

d(yk ,x).

This is a contradiction. Hence we get x ∈ F(S) ∩ F(T). Next, we show that for any sub-
sequences of {xn}, their asymptotic center consists of the unique element. Let {uk}, {vk}
be subsequences of {xn}, x ∈ AC({uk}) and x′

 ∈ AC({vk}). We show x = x′
 by using con-

tradiction. Assume x 
= x′
. Then x′

 /∈ AC({uk}) and x /∈ AC({vk}) by Theorem .(i). It
follows that

lim sup
k→∞

d(uk ,x) < lim sup
k→∞

d
(
uk ,x′


)

= lim
n→∞d

(
xn,x′


)

= lim sup
k→∞

d
(
vk ,x′


)

http://www.journalofinequalitiesandapplications.com/content/2014/1/72
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< lim sup
k→∞

d(vk ,x)

= lim
n→∞d(xn,x)

= lim sup
k→∞

d(uk ,x).

This is a contradiction. Hence we get x = x′
. Therefore, we have {xn} �-converges to a

common fixed point of S and T . �

By Theorem ., we know that a nonexpansive mapping having a fixed point satisfies
the assumptions in Theorem .. Thus, we get the following result.

Corollary . Let X be a complete CAT() space such that for any u, v ∈ X, d(u, v) < π/.
Let S and T be nonexpansive mappings of X into itself such that F(S)∩ F(T) 
= ∅. Let {αn},
{βn} and {γn} be sequences in [a,b] ⊂ ], [. Define a sequence {xn} ⊂ X as the following
recurrence formula: x ∈ X and

⎧⎪⎨
⎪⎩
un = ( – βn)xn ⊕ βnSxn,
vn = ( – γn)xn ⊕ γnTxn,
xn+ = ( – αn)un ⊕ αnvn

for n ∈N. Then {xn} �-converges to a common fixed point of S and T .

5 An application to the image recovery
The image recovery problem is formulated as to find the nearest point in the intersec-
tion of family of closed convex subsets from a given point by using corresponding metric
projection of each subset. In this section, we consider this problem for two subsets of a
complete CAT() space.

Theorem . Let X be a complete CAT() space such that for any u, v ∈ X, d(u, v) < π/.
Let C and C be nonempty closed convex subsets of X such that C ∩C 
= ∅. Let P and P

be metric projections onto C and C, respectively. Let {αn}, {βn} and {γn} be real sequences
in [a,b] ⊂ ], [. Define a sequence {xn} ⊂ X by the following recurrence formula: x ∈ X
and

⎧⎪⎨
⎪⎩
un = ( – βn)xn ⊕ βnPxn,
vn = ( – γn)xn ⊕ γnPxn,
xn+ = ( – αn)un ⊕ αnvn

for n ∈N. Then {xn} �-converges to a fixed point of the intersection of C and C.

Proof We see that P and P are quasinonexpansive [] and �-demiclosed []. Further,
we also get F(P) = C and F(P) = C. Thus, letting S = P and T = P in Theorem ., we
obtain the desired result. �
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