RESEARCH

Open Access

A new approach to (α, ψ) -contractive nonself multivalued mappings

Muhammad Usman Ali¹, Tayyab Kamran² and Erdal Karapınar^{3,4*}

*Correspondence: erdalkarapinar@yahoo.com ³Department of Mathematics, Atilim University, Incek, Ankara 06836, Turkey ⁴Nonlinear Analysis and Applied Mathematics Research Group (NAAM), King Abdulaziz University, Jeddah, Saudi Arabia Full list of author information is available at the end of the article

Abstract

In this paper, we introduce the notions of α -admissible and α - ψ -contractive type condition for nonself multivalued mappings. We establish fixed point theorems using these new notions along with a new condition. Moreover, we have constructed examples to show that our new condition is different from the corresponding existing conditions in the literature.

MSC: 47H10; 54H25

Keywords: α -admissible maps; α - ψ -contractive type condition; nonself α -admissible maps; nonself (α , ψ)-contractive type condition

1 Introduction and preliminaries

In the last decades, metric fixed point theory has been appreciated by a number of authors who have extended the celebrated Banach fixed point theorem for various contractive mapping in the context of different abstract spaces; see, for example, [1-32]. Among them, we mention the interesting fixed point theorems of Samet *et al.* [20]. In this paper [20], the authors introduced the notions of $\alpha - \psi$ -contractive mappings and investigated the existence and uniqueness of a fixed point for such mappings. Further, they showed that several well-known fixed point theorems can be derived from the fixed point theorem of $\alpha - \psi$ -contractive mappings. Following this paper, Karapınar and Samet [21] generalized the notion $\alpha \cdot \psi$ -contractive mappings and obtained a fixed point for this generalized version. On the other hand, Asl *et al.* [22] characterized the notions of $\alpha \cdot \psi$ -contractive mapping and α -admissible mappings with the notions of α_* - ψ -contractive and α_* -admissible mappings to investigate the existence of a fixed point for a multivalued function. Afterward, Ali and Kamran [23] generalized the notion of $\alpha_* \cdot \psi$ -contractive mappings and obtained further fixed point results for multivalued mappings. Some results in this direction in the context of various abstract spaces were also given by the authors [24-28, 33-36]. The purpose of this paper is to prove fixed point theorems for nonself multivalued (α, ψ) contractive type mappings using a new condition.

Let Ψ be the family of functions $\psi : [0, \infty) \to [0, \infty)$, known in the literature as Bianchini-Grandolfi gauge functions (see, *e.g.*, [30–32]), satisfying the following conditions:

- $(\psi_1) \psi$ is nondecreasing;
- $(\psi_2) \sum_{n=1}^{+\infty} \psi^n(t) < \infty$ for all t > 0, where ψ^n is the *n*th iterate of ψ .

©2014 Ali et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notice that such functions are also known as (*c*)-comparison functions in some sources (see, *e.g.*, [29]).

It is easily proved that if $\psi \in \Psi$, then $\psi(t) < t$ for any t > 0 and $\psi(0) = 0$ for t = 0 (see, *e.g.*, [20, 29]). Let (X, d) be a metric space. A mapping $G : X \to X$ is called $\alpha - \psi$ -contractive type if there exist two functions $\alpha : X \times X \to [0, \infty)$ and $\psi \in \Psi$ such that

$$\alpha(x, y)d(Gx, Gy) \le \psi(d(x, y))$$

for each $x, y \in X$. A mapping $G: X \to X$ is called α -admissible [20] if

$$\alpha(x, y) \ge 1 \implies \alpha(Gx, Gy) \ge 1.$$

.

We denote by N(X) the space of all nonempty subsets of X and by CL(X) the space of all nonempty closed subsets of X. For $A \in N(X)$ and $x \in X$, $d(x,A) = \inf\{d(x,a) : a \in A\}$. For every $A, B \in CL(X)$, let

$$H(A,B) = \begin{cases} \max\{\sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A)\} & \text{if the maximum exists;} \\ \infty & \text{otherwise.} \end{cases}$$

Such a map H is called a generalized Hausdorff metric induced by d. We use the following lemma in our results.

Lemma 1.1 [23] Let (X,d) be a metric space and $B \in CL(X)$. Then, for each $x \in X$ with d(x,B) > 0 and q > 1, there exists an element $b \in B$ such that

$$d(x,b) < qd(x,B). \tag{1.1}$$

Let (X, \leq, d) be an ordered metric space and $A, B \subseteq X$. We say that $A \prec_r B$ if for each $a \in A$ and $b \in B$, we have $a \leq b$.

2 Main results

We begin this section with the following definition which is a modification of the notion of α -admissible.

Definition 2.1 Let (X, d) be a metric space and let D be a nonempty subset of X. A mapping $G: D \to CL(X)$ is called α -admissible if there exists a mapping $\alpha: D \times D \to [0, \infty)$ such that

$$\alpha(x, y) \ge 1 \quad \Rightarrow \quad \alpha(u, v) \ge 1$$

for each $u \in Gx \cap D$ and $v \in Gy \cap D$.

Definition 2.2 Let (X, d) be a metric space and let *D* be a nonempty subset of *X*. We say that $G: D \to CL(X)$ is an (α, ψ) -contractive type mapping on *D* if there exist $\alpha: D \times D \to [0, \infty)$ and $\psi \in \Psi$ satisfying the following conditions:

(i) $Gx \cap D \neq \emptyset$ for all $x \in D$,

$$\alpha(x,y)H(Gx\cap D,Gy\cap D) \le \psi(M(x,y)), \tag{2.1}$$

where
$$M(x, y) = \max\{d(x, y), \frac{d(x, Gx) + d(y, Gy)}{2}, \frac{d(x, Gy) + d(y, Gx)}{2}\}$$
.

Note that if $\psi \in \Psi$ in the above definition is a strictly increasing function, then $G: D \to CL(X)$ is said to be a strictly (α, ψ) -contractive type mapping on D.

Theorem 2.3 Let (X, d) be a metric space, let D be a nonempty subset of X which is complete with respect to the metric induced by d, and let G be a strictly (α, ψ) -contractive type mapping on D. Assume that the following conditions hold:

- (i) *G* is an α -admissible map;
- (ii) there exist $x_0 \in D$ and $x_1 \in Gx_0 \cap D$ such that $\alpha(x_0, x_1) \ge 1$;
- (iii) *G* is continuous.

Then G has a fixed point.

Proof By hypothesis, there exist $x_0 \in D$ and $x_1 \in Gx_0 \cap D$ such that $\alpha(x_0, x_1) \ge 1$. If $x_0 = x_1$, then we have nothing to prove. Let $x_0 \neq x_1$. If $x_1 \in Gx_1 \cap D$, then x_1 is a fixed point. Let $x_1 \notin Gx_1 \cap D$. From (2.1) we have

$$0 < \alpha(x_0, x_1) H(Gx_0 \cap D, Gx_1 \cap D)$$

$$\leq \psi \left(\max \left\{ d(x_0, x_1), \frac{d(x_0, Gx_0) + d(x_1, Gx_1)}{2}, \frac{d(x_0, Gx_1) + d(x_1, Gx_0)}{2} \right\} \right)$$

$$\leq \psi \left(\max \left\{ d(x_0, x_1), d(x_1, Gx_1) \right\} \right)$$
(2.2)

since $\frac{d(x_0, Gx_1)}{2} \le \max\{d(x_0, x_1), d(x_1, Gx_1)\}$ and $\frac{d(x_0, Gx_0) + d(x_1, Gx_1)}{2} \le \max\{d(x_0, x_1), d(x_1, Gx_1)\}$. Assume that $\max\{d(x_0, x_1), d(x_1, Gx_1)\} = d(x_1, Gx_1)$. Then from (2.2) we have

$$0 < d(x_1, Gx_1 \cap D) \le \alpha(x_0, x_1) H(Gx_0 \cap D, Gx_1 \cap D)$$

$$\le \psi (d(x_1, Gx_1))$$

$$< d(x_1, Gx_1),$$
(2.3)

a contradiction to our assumption. Thus $\max\{d(x_0, x_1), d(x_1, Gx_1)\} = d(x_0, x_1)$. Then from (2.2) we have

$$0 < d(x_1, Gx_1 \cap D) \le \psi(d(x_0, x_1)).$$
(2.4)

For q > 1 by Lemma 1.1, there exists $x_2 \in Gx_1 \cap D$ such that

$$0 < d(x_1, x_2) < qd(x_1, Gx_1 \cap D) \le q\psi(d(x_0, x_1)).$$
(2.5)

Applying ψ in (2.5), we have

$$0 < \psi(d(x_1, x_2)) < \psi(q\psi(d(x_0, x_1))).$$
(2.6)

$$0 < \alpha(x_{1}, x_{2})H(Gx_{1} \cap D, Gx_{2} \cap D)$$

$$\leq \psi \left(\max \left\{ d(x_{1}, x_{2}), \frac{d(x_{1}, Gx_{1}) + d(x_{2}, Gx_{2})}{2}, \frac{d(x_{1}, Gx_{2}) + d(x_{2}, Gx_{1})}{2} \right\} \right)$$

$$\leq \psi \left(\max \left\{ d(x_{1}, x_{2}), d(x_{2}, Gx_{2}) \right\} \right)$$
(2.7)

since $\frac{d(x_1,Gx_2)}{2} \le \max\{d(x_1,x_2), d(x_2,Gx_2)\}$ and $\frac{d(x_1,Gx_1)+d(x_2,Gx_2)}{2} \le \max\{d(x_1,x_2), d(x_2,Gx_2)\}$. Assume that $\max\{d(x_1,x_2), d(x_2,Gx_2)\} = d(x_2,Gx_2)$. Then from (2.7) we have

$$0 < d(x_2, Gx_2 \cap D) \le \alpha(x_1, x_2) H(Gx_1 \cap D, Gx_2 \cap D)$$

$$\le \psi(d(x_2, Gx_2))$$

$$< d(x_2, Gx_2),$$
(2.8)

a contradiction to our assumption. Thus $\max\{d(x_1, x_2), d(x_2, Gx_2)\} = d(x_1, x_2)$. Then from (2.7) we have

$$0 < d(x_2, Gx_2 \cap D) \le \psi(d(x_1, x_2)).$$
(2.9)

For $q_1 > 1$ by Lemma 1.1, there exists $x_3 \in Gx_2 \cap D$ such that

$$0 < d(x_2, x_3) < q_1 d(x_2, Gx_2 \cap D) \le q_1 \psi \left(d(x_1, x_2) \right) = \psi \left(q \psi \left(d(x_0, x_1) \right) \right).$$
(2.10)

Applying ψ in (2.10), we have

$$0 < \psi(d(x_2, x_3)) < \psi^2(q\psi(d(x_0, x_1))).$$
(2.11)

Put $q_2 = \frac{\psi^2(q\psi(d(x_0,x_1)))}{\psi(d(x_2,x_3))}$. Then $q_2 > 1$. Since *G* is an α -admissible mapping, $\alpha(x_2,x_3) \ge 1$. If $x_3 \in Gx_3 \cap D$, then x_3 is a fixed point. Let $x_3 \notin Gx_3 \cap D$. From (2.1) we have

$$0 < \alpha(x_{2}, x_{3})H(Gx_{2} \cap D, Gx_{3} \cap D)$$

$$\leq \psi \left(\max \left\{ d(x_{2}, x_{3}), \frac{d(x_{2}, Gx_{2}) + d(x_{3}, Gx_{3})}{2}, \frac{d(x_{2}, Gx_{3}) + d(x_{3}, Gx_{2})}{2} \right\} \right)$$

$$\leq \psi \left(\max \left\{ d(x_{2}, x_{3}), d(x_{3}, Gx_{3}) \right\} \right)$$
(2.12)

since $\frac{d(x_2,Gx_3)}{2} \le \max\{d(x_2,x_3), d(x_3,Gx_3)\}$ and $\frac{d(x_2,Gx_2)+d(x_3,Gx_3)}{2} \le \max\{d(x_2,x_3), d(x_3,Gx_3)\}$. Assume that $\max\{d(x_2,x_3), d(x_3,Gx_3)\} = d(x_3,Gx_3)$. Then from (2.12) we have

$$0 < d(x_3, Gx_3 \cap D) \le \alpha(x_2, x_3) H(Gx_2 \cap D, Gx_3 \cap D)$$

$$\le \psi (d(x_3, Gx_3))$$

$$< d(x_3, Gx_3),$$
(2.13)

a contradiction to our assumption. Thus $\max\{d(x_2, x_3), d(x_3, Gx_3)\} = d(x_2, x_3)$. Then from (2.12) we have

$$0 < d(x_3, Gx_3 \cap D) \le \psi(d(x_2, x_3)).$$
(2.14)

For $q_2 > 1$ by Lemma 1.1, there exists $x_4 \in Gx_3 \cap D$ such that

$$0 < d(x_3, x_4) < q_2 d(x_3, Gx_3 \cap D) \le q_2 \psi \left(d(x_2, x_3) \right) = \psi^2 \left(q \psi \left(d(x_0, x_1) \right) \right).$$
(2.15)

Applying ψ in (2.15), we have

$$0 < \psi(d(x_3, x_4)) < \psi^3(q\psi(d(x_0, x_1))).$$
(2.16)

Continuing the same process, we get a sequence $\{x_n\}$ in D such that $x_{n+1} \in Gx_n \cap D$, $x_{n+1} \neq x_n$, $\alpha(x_n, x_{n+1}) \ge 1$, and

$$d(x_{n+1}, x_{n+2}) < \psi^n \left(q \psi \left(d(x_0, x_1) \right) \right) \quad \text{for each } n \in \mathbb{N} \cup \{0\}.$$

$$(2.17)$$

For $m, n \in \mathbb{N}$, we have

$$d(x_n, x_{n+m}) \leq \sum_{i=n}^{n+m-1} d(x_i, x_{i+1}) < \sum_{i=n}^{n+m-1} \psi^{i-1} (d(x_0, x_1)).$$

Since $\psi \in \Psi$, it follows that $\{x_n\}$ is a Cauchy sequence in *D*. Since *D* is complete, there exists $x^* \in D$ such that $x_n \to x^*$ as $n \to \infty$. By the continuity of *G*, we have

$$d(x^*, Gx^*) \leq \lim_{n \to \infty} H(Gx_n, Gx^*) = 0.$$

Theorem 2.4 Let (X, d) be a metric space, D be a nonempty subset of X which is complete with respect to the metric induced by d, and let G be a strictly (α, ψ) -contractive type mapping on D. Assume that the following conditions hold:

- (i) *G* is an α -admissible map;
- (ii) there exist $x_0 \in D$ and $x_1 \in Gx_0 \cap D$ such that $\alpha(x_0, x_1) \ge 1$;
- (iii) either

(a) for any sequence $\{x_n\}$ in D such that $x_n \to x$ as $n \to \infty$ and $\alpha(x_n, x_{n+1}) \ge 1$ for each $n \in \mathbb{N} \cup \{0\}$, $\lim_{n \to \infty} \alpha(x_n, x) \ge 1$,

or

(b) for any sequence $\{x_n\}$ in D such that $x_n \to x$ as $n \to \infty$ and $\alpha(x_n, x_{n+1}) \ge 1$ for each $n \in \mathbb{N} \cup \{0\}$, $\alpha(x_n, x) \ge 1$ for each $n \in \mathbb{N} \cup \{0\}$.

Then G has a fixed point.

Proof Following the proof of Theorem 2.3, there exists a Cauchy sequence $\{x_n\}$ in D with $x_n \to x^*$ as $n \to \infty$ and $\alpha(x_n, x_{n+1}) \ge 1$ for each $n \in \mathbb{N} \cup \{0\}$. Suppose that $d(x^*, Gx^*) \ne 0$. From (2.1) we have

$$\begin{aligned} \alpha(x_n, x^*)d(x_{n+1}, Gx^* \cap D) &\leq \alpha(x_n, x^*)H(Gx_n \cap D, Gx^* \cap D) \\ &\leq \psi\left(\max\left\{d(x_n, x^*), \frac{d(x_n, Gx_n) + d(x^*, Gx^*)}{2}, \right.\right. \end{aligned}$$

$$\frac{d(x_n, Gx^*) + d(x^*, Gx_n)}{2} \bigg\} \bigg) < \max \bigg\{ d(x_n, x^*), \frac{d(x_n, Gx_n) + d(x^*, Gx^*)}{2}, \\ \frac{d(x_n, Gx^*) + d(x^*, Gx_n)}{2} \bigg\}.$$
(2.18)

Letting $n \to \infty$ in (2.18), we have

$$\lim_{n \to \infty} \alpha(x_n, x^*) d(x^*, Gx^* \cap D) \le \frac{d(x^*, Gx^*)}{2}.$$
(2.19)

Since $\lim_{n\to\infty} \alpha(x_n, x^*) \ge 1$, by condition (iii)(a), we have

$$d(x^*, Gx^* \cap D) \leq \lim_{n \to \infty} \alpha(x_n, x^*) d(x^*, Gx^* \cap D) \leq \frac{d(x^*, Gx^*)}{2}.$$
(2.20)

Further, it is clear that $d(x^*, Gx^*) \le d(x^*, Gx^* \cap D)$. Then from (2.20) we have

$$d(x^*,Gx^*)\leq \frac{d(x^*,Gx^*)}{2},$$

which is impossible. Thus $d(x^*, Gx^*) = 0$. If we use (iii)(b), then from (2.1) we have

$$d(x_{n+1}, Gx^* \cap D) \leq \alpha(x_n, x^*) H(Gx_n \cap D, Gx^* \cap D)$$

$$\leq \psi \left(\max\left\{ d(x_n, x^*), \frac{d(x_n, Gx_n) + d(x^*, Gx^*)}{2}, \frac{d(x_n, Gx^*) + d(x^*, Gx_n)}{2} \right\} \right)$$

$$< \max \left\{ d(x_n, x^*), \frac{d(x_n, Gx_n) + d(x^*, Gx^*)}{2}, \frac{d(x_n, Gx^*) + d(x^*, Gx_n)}{2} \right\}.$$
(2.21)

Letting $n \to \infty$ in (2.21), we have

$$d(x^*,Gx^*) \leq d(x^*,Gx^*\cap D) \leq \frac{d(x^*,Gx^*)}{2},$$

which is impossible. Thus $d(x^*, Gx^*) = 0$.

Example 2.5 Let $X = (-\infty, -8) \cup [0, \infty)$ be endowed with the usual metric *d*, and let $D = [0, \infty)$. Define $G : D \to CL(X)$ by

$$Gx = \begin{cases} [0, \frac{x}{4}] & \text{if } 0 \le x < 4, \\ \{0\} & \text{if } x = 4, \\ (-\infty, -3x] \cup [x, x^2] & \text{if } x > 4 \end{cases}$$

and $\alpha: D \times D \rightarrow [0, \infty)$ by

$$\alpha(x, y) = \begin{cases} 1 & \text{if } x, y \in [0, 4], \\ 0 & \text{otherwise.} \end{cases}$$

Case (i) When $x, y \in [0, 4)$, we have

$$\alpha(x,y)H(Gx\cap D,Gy\cap D) = \left|\frac{x}{4} - \frac{y}{4}\right| \leq \frac{|x-y|}{2} = \psi(d(x,y)) \leq \psi(M(x,y)).$$

Case (ii) When $x \in [0, 4)$ and y = 4, we have

$$\alpha(x,y)H(Gx\cap D,Gy\cap D) = \left|\frac{x}{4}\right| \leq \psi\left(\frac{d(x,Gx)+d(y,Gy)}{2}\right) \leq \psi(M(x,y)).$$

Case (iii) Otherwise, we have

$$\alpha(x,y)H(Gx\cap D,Gy\cap D)=0\leq\psi(M(x,y)),$$

where $M(x, y) = \max\{d(x, y), \frac{d(x, Gx) + d(y, Gy)}{2}, \frac{d(x, Gy) + d(y, Gx)}{2}\}$.

Thus, *G* is a strictly (α, ψ) -contractive type mapping on *D*. For $\alpha(x, y) \ge 1$, we have $x, y \in [0, 4]$, then $Gx \cap D, Gy \cap D \subseteq [0, 1]$, thus $\alpha(u, v) = 1$ for each $u \in Gx \cap D$ and $v \in Gy \cap D$. Further, for any sequence $\{x_n\}$ in *D* such that $x_n \to x$ as $n \to \infty$ and $\alpha(x_n, x_{n+1}) = 1$ for each $n \in \mathbb{N} \cup \{0\}$, $\lim_{n\to\infty} \alpha(x_n, x) = 1$. Therefore, all the conditions of Theorem 2.4 hold and *G* has a fixed point.

Corollary 2.6 Let (X, \leq, d) be an ordered metric space, let (D, \leq) be a nonempty subset of X which is complete with respect to the metric induced by d. Let $G : D \to CL(X)$ be a mapping such that $Gx \cap D \neq \emptyset$ for each $x \in D$ and for each $x, y \in D$ with $x \leq y$, we have

 $H(Gx \cap D, Gy \cap D) \le \psi(M(x, y)),$

where $M(x, y) = \max\{d(x, y), \frac{d(x, Gx)+d(y, Gy)}{2}, \frac{d(x, Gy)+d(y, Gx)}{2}\}$ and ψ is an increasing function in Ψ . Also, assume that the following conditions hold:

- (i) there exist $x_0 \in D$ and $x_1 \in Gx_0 \cap D$ such that $x_0 \preceq x_1$;
- (ii) if $x \leq y$ then $Gx \cap D \prec_r Gy \cap D$;
- (iii) either
 - (a) G is continuous,
 - or
 - (b) for any sequence {x_n} in D such that x_n → x as n → ∞ and x_n ≤ x_{n+1} for each n ∈ N ∪ {0}, x_n ≤ x as n → ∞,
 - or

(c) for any sequence $\{x_n\}$ in D such that $x_n \to x$ as $n \to \infty$ and $x_n \preceq x_{n+1}$ for each $n \in \mathbb{N} \cup \{0\}$, $x_n \preceq x$ for each $n \in \mathbb{N} \cup \{0\}$.

Then G has a fixed point.

Proof Define $\alpha : D \times D \rightarrow [0, \infty)$ by

$$\alpha(x,y) = \begin{cases} 1 & \text{if } x \leq y, \\ 0 & \text{otherwise.} \end{cases}$$

By using condition (i) and the definition of α , we have $\alpha(x_0, x_1) = 1$. Also, from condition (ii), we have that $x \leq y$ implies $Gx \cap D \prec_r Gy \cap D$; by using the definitions of α and \prec_r , we have that $\alpha(x, y) = 1$ implies $\alpha(u, v) = 1$ for each $u \in Gx \cap D$ and $v \in Gy \cap D$. Moreover, it is easy to check that *G* is a strictly (α, ψ) -contractive type mapping on *D*. Therefore, all the conditions of Theorem 2.3 (or Theorem 2.4 for (iii)(b), (iii)(c)) hold, hence *G* has a fixed point.

Remark 2.7 Condition (a), in the statement of Theorem 2.4, was introduced by Samet *et al.* [20]. In Theorem 2.4 we introduce a new condition (b). The following examples show that (a) and (b) are independent conditions.

Example 2.8 Let $X = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$. Consider $x_n = \frac{1}{n+1}$ for each $n \in \mathbb{N} \cup \{0\}$, then $x_n \to 0 = x^*$ as $n \to \infty$. Define $\alpha : X \times X \to [0, \infty)$ by

$$\alpha(x, y) = \begin{cases} \max\{\frac{1}{x}, \frac{1}{y}\} & \text{if } x \neq 0 \text{ and } y \neq 0, \\ \frac{1}{x+y} & \text{if either } x = 0 \text{ or } y = 0, \\ 1 & \text{if } x = y = 0. \end{cases}$$

Now, we have $\alpha(x_n, x_{n+1}) = \alpha(\frac{1}{n+1}, \frac{1}{n+2}) = n+2 > 1$ for each $n \in \mathbb{N} \cup \{0\}$ and $\alpha(x_n, x^*) = \alpha(\frac{1}{n+1}, 0) = n+1 \ge 1$ for each $n \in \mathbb{N} \cup \{0\}$. Thus condition (a) holds but $\lim_{n\to\infty} \alpha(x_n, x^*) = \lim_{n\to\infty} (n+1) = \infty$. Thus condition (b) does not hold.

Example 2.9 Let $X = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$. Consider $x_n = \frac{1}{n+1}$ for each $n \in \mathbb{N} \cup \{0\}$, then $x_n \to 0 = x^*$ as $n \to \infty$. Define $\alpha : X \times X \to [0, \infty)$ by

$$\alpha(x, y) = \begin{cases} \max\{\frac{1}{x}, \frac{1}{y}\} & \text{if } x \neq 0 \text{ and } y \neq 0, \\ \frac{1}{1 + (x + y)/2} & \text{if either } x = 0 \text{ or } y = 0, \\ 1 & \text{if } x = y = 0. \end{cases}$$

Now, we have $\alpha(x_n, x_{n+1}) = \alpha(\frac{1}{n+1}, \frac{1}{n+2}) = n+2 > 1$ for each $n \in \mathbb{N} \cup \{0\}$ and $\alpha(x_n, x^*) = \alpha(\frac{1}{n+1}, 0) = \frac{2n+2}{2n+3}$. Then $\lim_{n\to\infty} \alpha(x_n, x^*) = \lim_{n\to\infty} \frac{2n+2}{2n+3} = 1$. Thus condition (b) holds but for n = 0, we have $\alpha(x_n, x^*) = \frac{2}{3}$; for n = 1, we have $\alpha(x_n, x^*) = \frac{4}{5}$; for n = 2, we have $\alpha(x_n, x^*) = \frac{6}{7}$, which implies that $\alpha(x_n, x) \not\geq 1$ for each $n \in \mathbb{N} \cup \{0\}$. Thus condition (a) does not hold.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Author details

¹Department of Mathematics, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, Pakistan. ²Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan. ³Department of Mathematics, Atilim University, Incek, Ankara 06836, Turkey. ⁴Nonlinear Analysis and Applied Mathematics Research Group (NAAM), King Abdulaziz University, Jeddah, Saudi Arabia.

Acknowledgements

The authors are grateful to the reviewers for their careful reviews and useful comments.

Received: 18 December 2013 Accepted: 31 January 2014 Published: 13 Feb 2014

References

- 1. Azam, A, Mehmood, N, Ahmad, J, Radenovic, S: Multivalued fixed point theorems in cone b-metric spaces. J. Inequal. Appl 2013 Article ID 582 (2013)
- 2. Shukla, S, Radojevic, S, Veljkovic, Z, Radenovic, S: Some coincidence and common fixed point theorems for ordered Presic-Reich type contractions. J. Inequal. Appl. 2013, Article ID 520 (2013)
- 3. Shukla, S, Sen, R, Radenovic, S: Set-valued Presic type contraction in metric spaces. An. Stiint, Univ. 'Al.I. Cuza' lasi, Mat. (2012, in press)
- 4. Long, W, Shukla, S, Radenovic, S, Radojevic, S: Some coupled coincidence and common fixed point results for hybrid pair of mappings in 0-complete partial metric spaces. Fixed Point Theory Appl. 2013, Article ID 145 (2013)
- 5. Kadelburg, Z, Radenovic, S: Some results on set-valued contractions in abstract metric spaces. Comput. Math. Appl. 62, 342-350 (2012)
- 6. Khojasteh, F, Karapınar, E, Radenovic, S: *θ*-Metric spaces: a generalization. Math. Probl. Eng. 2013, Article ID 504609 (2013)
- 7. Shatanawi, W, Rajic, VC, Radenovic, S, Rawashdeh, AA: Mizoquchi-Takahashi-type theorems in tvs-cone metric spaces. Fixed Point Theory Appl. 2012, Article ID 106 (2012)
- 8. Ali, MU: Mizoguchi-Takahashi's type common fixed point theorem. J. Egypt. Math. Soc. (in press)
- Ali, MU, Kamran, T: Hybrid generalized contractions. Math. Sci. 7, Article ID 29 (2013)
- 10. Chandok, S, Postolache, M. Fixed point theorem for weakly Chatterjea-type cyclic contractions. Fixed Point Theory Appl. 2013. Article ID 28 (2013).
- 11. Shatanawi, W, Postolache, M: Common fixed point results of mappings for nonlinear contractions of cyclic form in ordered metric spaces. Fixed Point Theory Appl. 2013, Article ID 60 (2013)
- 12. Shatanawi, W, Postolache, M: Some fixed point results for a G-weak contraction in G-metric spaces. Abstr. Appl. Anal. 2012. Article ID 815870 (2012)
- 13. Choudhury, BS, Metiya, N, Postolache, M: A generalized weak contraction principle with applications to coupled coincidence point problems. Fixed Point Theory Appl. **2013**, Article ID 152 (2013) 14. Aydi, H, Shatanawi, W, Postolache, M, Mustafa, Z, Tahat, N: Theorems for Boyd-Wong-type contractions in ordered
- metric spaces. Abstr. Appl. Anal. 2012, Article ID 359054 (2012)
- 15. Shatanawi, W, Postolache, M: Common fixed point theorems for dominating and weak annihilator mappings in ordered metric spaces. Fixed Point Theory Appl. 2013, Article ID 271 (2013)
- 16. Shatanawi, W, Pitea, A: Fixed and coupled fixed point theorems of omega-distance for nonlinear contraction. Fixed Point Theory Appl. 2013, Article ID 275 (2013)
- 17. Miandaragh, MA, Postolache, M, Rezapour, S: Some approximate fixed point results for generalized α -contractive mappings. Sci. Bull. 'Politeh.' Univ. Buchar., Ser. A, Appl. Math. Phys. 75(2), 3-10 (2013)
- 18. Haghi, RH, Postolache, M, Rezapour, S: On T-stability of the Picard iteration for generalized ϕ -contraction mappings. Abstr. Appl. Anal. 2012, Article ID 658971 (2012)
- 19. Shatanawi, W, Postolache, M: Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces. Fixed Point Theory Appl. 2013, Article ID 54 (2013)
- 20. Samet, B, Vetro, C, Vetro, P: Fixed point theorems for $\alpha \psi$ -contractive type mappings. Nonlinear Anal. 75, 2154-2165 (2012)
- 21. Karapinar, E, Samet, B: Generalized α - ψ -contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012, Article ID 793486 (2012)
- 22. Asl, JH, Rezapour, S, Shahzad, N: On fixed points of $\alpha \psi$ -contractive multifunctions. Fixed Point Theory Appl. 2012, Article ID 212 (2012)
- 23. Ali, MU, Kamran, T: On (α^*, ψ)-contractive multi-valued mappings. Fixed Point Theory Appl. 2013, Article ID 137 (2013)
- 24. Mohammadi, B, Rezapour, S, Shahzad, N: Some results on fixed points of α - ψ -Ciric generalized multifunctions. Fixed Point Theory Appl. 2013, Article ID 24 (2013)
- 25. Amiri, P, Rezapour, S, Shahzad, N: Fixed points of generalized α - ψ -contractions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. (2013). doi:10.1007/s13398-013-0123-9
- 26. Minak, G, Altun, I: Some new generalizations of Mizoguchi-Takahashi type fixed point theorem. J. Inequal. Appl. 2013, Article ID 493 (2013)
- 27. Ali, MU, Kamran, T, Karapınar, E: (α, ψ, ξ)-Contractive multi-valued mappings. Fixed Point Theory Appl. 2014, Article ID 7 (2014)
- 28. Ali, MU, Kamran, T, Sintunavarat, W, Katchang, P: Mizoguchi-Takahashi's fixed point theorem with α , η functions. Abstr. Appl. Anal. 2013, Article ID 418798 (2013)
- 29. Rus, IA: Generalized Contractions and Applications. Cluj University Press, Cluj-Napoca (2001)
- 30. Bianchini, RM, Grandolfi, M: Transformazioni di tipo contracttivo generalizzato in uno spazio metrico. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat. 45, 212-216 (1968)
- 31. Proinov, PD: A generalization of the Banach contraction principle with high order of convergence of successive approximations. Nonlinear Anal. TMA 67, 2361-2369 (2007)
- 32. Proinov, PD: New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems, J. Complex, 26, 3-42 (2010)
- 33. Karapınar, E: Discussion on α - ψ -contractions in generalized metric spaces. Abstr. Appl. Anal. 2014, Article ID 962784 (2014)
- 34. Berzig, M, Karapınar, E: On modified $\alpha \cdot \psi$ -contractive mappings with application. Thai J. Math. 12 (2014)
- 35. Jleli, M, Karapınar, E, Samet, B: Best proximity points for generalized $\alpha \psi$ -proximal contractive type mappings. J. Appl. Math. 2013, Article ID 534127 (2013)
- 36. Jleli, M, Karapınar, E, Samet, B: Fixed point results for $\alpha \psi_{\lambda}$ -contractions on gauge spaces and applications. Abstr. Appl. Anal. 2013, Article ID 730825 (2013)

10.1186/1029-242X-2014-71

Cite this article as: All et al.: A new approach to (α, ψ) -contractive nonself multivalued mappings. Journal of Inequalities and Applications 2014, 2014:71