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Abstract
In this paper, we introduce the notions of α-admissible and α-ψ -contractive type
condition for nonself multivalued mappings. We establish fixed point theorems using
these new notions along with a new condition. Moreover, we have constructed
examples to show that our new condition is different from the corresponding existing
conditions in the literature.
MSC: 47H10; 54H25

Keywords: α-admissible maps; α-ψ -contractive type condition; nonself
α-admissible maps; nonself (α,ψ )-contractive type condition

1 Introduction and preliminaries
In the last decades, metric fixed point theory has been appreciated by a number of au-
thors who have extended the celebrated Banach fixed point theorem for various contrac-
tive mapping in the context of different abstract spaces; see, for example, [–]. Among
them, we mention the interesting fixed point theorems of Samet et al. []. In this paper
[], the authors introduced the notions of α-ψ-contractive mappings and investigated
the existence and uniqueness of a fixed point for such mappings. Further, they showed
that several well-known fixed point theorems can be derived from the fixed point theorem
of α-ψ-contractive mappings. Following this paper, Karapınar and Samet [] generalized
the notion α-ψ-contractive mappings and obtained a fixed point for this generalized ver-
sion. On the other hand, Asl et al. [] characterized the notions of α-ψ-contractive map-
ping and α-admissible mappings with the notions of α∗-ψ-contractive and α∗-admissible
mappings to investigate the existence of a fixed point for a multivalued function. After-
ward, Ali and Kamran [] generalized the notion of α∗-ψ-contractive mappings and ob-
tained further fixed point results for multivalued mappings. Some results in this direction
in the context of various abstract spaces were also given by the authors [–, –].
The purpose of this paper is to prove fixed point theorems for nonself multivalued (α,ψ)-
contractive type mappings using a new condition.
Let � be the family of functions ψ : [,∞) → [,∞), known in the literature as

Bianchini-Grandolfi gauge functions (see, e.g., [–]), satisfying the following condi-
tions:

(ψ) ψ is nondecreasing;
(ψ)

∑+∞
n= ψn(t) < ∞ for all t > , where ψn is the nth iterate of ψ .

©2014 Ali et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2014/1/71
mailto:erdalkarapinar@yahoo.com
http://creativecommons.org/licenses/by/2.0


Ali et al. Journal of Inequalities and Applications 2014, 2014:71 Page 2 of 9
http://www.journalofinequalitiesandapplications.com/content/2014/1/71

Notice that such functions are also known as (c)-comparison functions in some sources
(see, e.g., []).
It is easily proved that if ψ ∈ � , then ψ(t) < t for any t >  and ψ() =  for t =  (see,

e.g., [, ]). Let (X,d) be ametric space. AmappingG : X → X is called α-ψ-contractive
type if there exist two functions α : X ×X → [,∞) and ψ ∈ � such that

α(x, y)d(Gx,Gy)≤ ψ
(
d(x, y)

)

for each x, y ∈ X. A mapping G : X → X is called α-admissible [] if

α(x, y)≥  ⇒ α(Gx,Gy)≥ .

We denote byN(X) the space of all nonempty subsets of X and by CL(X) the space of all
nonempty closed subsets of X. For A ∈ N(X) and x ∈ X, d(x,A) = inf{d(x,a) : a ∈ A}. For
every A,B ∈ CL(X), let

H(A,B) =

⎧⎨
⎩
max{supx∈A d(x,B), supy∈B d(y,A)} if the maximum exists;

∞ otherwise.

Such a mapH is called a generalized Hausdorffmetric induced by d. We use the following
lemma in our results.

Lemma . [] Let (X,d) be a metric space and B ∈ CL(X). Then, for each x ∈ X with
d(x,B) >  and q > , there exists an element b ∈ B such that

d(x,b) < qd(x,B). (.)

Let (X,	,d) be an ordered metric space and A,B ⊆ X. We say that A ≺r B if for each
a ∈ A and b ∈ B, we have a 	 b.

2 Main results
We begin this section with the following definition which is a modification of the notion
of α-admissible.

Definition . Let (X,d) be a metric space and let D be a nonempty subset of X. A map-
ping G : D → CL(X) is called α-admissible if there exists a mapping α : D × D → [,∞)
such that

α(x, y)≥  ⇒ α(u, v)≥ 

for each u ∈Gx∩D and v ∈ Gy∩D.

Definition . Let (X,d) be a metric space and let D be a nonempty subset of X. We say
that G :D→ CL(X) is an (α,ψ)-contractive type mapping on D if there exist α :D×D →
[,∞) and ψ ∈ � satisfying the following conditions:

(i) Gx∩D = ∅ for all x ∈D,
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(ii) for each x, y ∈D, we have

α(x, y)H(Gx∩D,Gy∩D) ≤ ψ
(
M(x, y)

)
, (.)

whereM(x, y) =max{d(x, y), d(x,Gx)+d(y,Gy) , d(x,Gy)+d(y,Gx) }.

Note that if ψ ∈ � in the above definition is a strictly increasing function, then G :D →
CL(X) is said to be a strictly (α,ψ)-contractive type mapping on D.

Theorem . Let (X,d) be a metric space, let D be a nonempty subset of X which is com-
plete with respect to the metric induced by d, and let G be a strictly (α,ψ)-contractive type
mapping on D. Assume that the following conditions hold:

(i) G is an α-admissible map;
(ii) there exist x ∈D and x ∈Gx ∩D such that α(x,x) ≥ ;
(iii) G is continuous.

Then G has a fixed point.

Proof By hypothesis, there exist x ∈ D and x ∈Gx ∩D such that α(x,x) ≥ . If x = x,
then we have nothing to prove. Let x = x. If x ∈ Gx ∩ D, then x is a fixed point. Let
x /∈Gx ∩D. From (.) we have

 < α(x,x)H(Gx ∩D,Gx ∩D)

≤ ψ

(
max

{
d(x,x),

d(x,Gx) + d(x,Gx)


,
d(x,Gx) + d(x,Gx)



})

≤ ψ
(
max

{
d(x,x),d(x,Gx)

})
(.)

since d(x,Gx)
 ≤max{d(x,x),d(x,Gx)} and d(x,Gx)+d(x,Gx)

 ≤max{d(x,x),d(x,Gx)}.
Assume that max{d(x,x),d(x,Gx)} = d(x,Gx). Then from (.) we have

 < d(x,Gx ∩D) ≤ α(x,x)H(Gx ∩D,Gx ∩D)

≤ ψ
(
d(x,Gx)

)
< d(x,Gx), (.)

a contradiction to our assumption. Thus max{d(x,x),d(x,Gx)} = d(x,x). Then from
(.) we have

 < d(x,Gx ∩D)≤ ψ
(
d(x,x)

)
. (.)

For q >  by Lemma ., there exists x ∈ Gx ∩D such that

 < d(x,x) < qd(x,Gx ∩D) ≤ qψ
(
d(x,x)

)
. (.)

Applying ψ in (.), we have

 < ψ
(
d(x,x)

)
< ψ

(
qψ

(
d(x,x)

))
. (.)
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Put q = ψ(qψ(d(x,x)))
ψ(d(x,x))

. Then q > . Since G is an α-admissible mapping, α(x,x) ≥ . If
x ∈Gx ∩D, then x is a fixed point. Let x /∈Gx ∩D. From (.) we have

 < α(x,x)H(Gx ∩D,Gx ∩D)

≤ ψ

(
max

{
d(x,x),

d(x,Gx) + d(x,Gx)


,
d(x,Gx) + d(x,Gx)



})

≤ ψ
(
max

{
d(x,x),d(x,Gx)

})
(.)

since d(x,Gx)
 ≤max{d(x,x),d(x,Gx)} and d(x,Gx)+d(x,Gx)

 ≤max{d(x,x),d(x,Gx)}.
Assume that max{d(x,x),d(x,Gx)} = d(x,Gx). Then from (.) we have

 < d(x,Gx ∩D) ≤ α(x,x)H(Gx ∩D,Gx ∩D)

≤ ψ
(
d(x,Gx)

)
< d(x,Gx), (.)

a contradiction to our assumption. Thus max{d(x,x),d(x,Gx)} = d(x,x). Then from
(.) we have

 < d(x,Gx ∩D) ≤ ψ
(
d(x,x)

)
. (.)

For q >  by Lemma ., there exists x ∈Gx ∩D such that

 < d(x,x) < qd(x,Gx ∩D)≤ qψ
(
d(x,x)

)
= ψ

(
qψ

(
d(x,x)

))
. (.)

Applying ψ in (.), we have

 < ψ
(
d(x,x)

)
< ψ(qψ(

d(x,x)
))
. (.)

Put q = ψ(qψ(d(x,x)))
ψ(d(x,x))

. Then q > . Since G is an α-admissible mapping, α(x,x) ≥ . If
x ∈Gx ∩D, then x is a fixed point. Let x /∈Gx ∩D. From (.) we have

 < α(x,x)H(Gx ∩D,Gx ∩D)

≤ ψ

(
max

{
d(x,x),

d(x,Gx) + d(x,Gx)


,
d(x,Gx) + d(x,Gx)



})

≤ ψ
(
max

{
d(x,x),d(x,Gx)

})
(.)

since d(x,Gx)
 ≤ max{d(x,x),d(x,Gx)} and d(x,Gx)+d(x,Gx)

 ≤ max{d(x,x),d(x,
Gx)}. Assume that max{d(x,x),d(x,Gx)} = d(x,Gx). Then from (.) we have

 < d(x,Gx ∩D)≤ α(x,x)H(Gx ∩D,Gx ∩D)

≤ ψ
(
d(x,Gx)

)
< d(x,Gx), (.)
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a contradiction to our assumption. Thus max{d(x,x),d(x,Gx)} = d(x,x). Then from
(.) we have

 < d(x,Gx ∩D)≤ ψ
(
d(x,x)

)
. (.)

For q >  by Lemma ., there exists x ∈ Gx ∩D such that

 < d(x,x) < qd(x,Gx ∩D)≤ qψ
(
d(x,x)

)
=ψ(qψ(

d(x,x)
))
. (.)

Applying ψ in (.), we have

 < ψ
(
d(x,x)

)
<ψ(qψ(

d(x,x)
))
. (.)

Continuing the same process, we get a sequence {xn} in D such that xn+ ∈ Gxn ∩D, xn+ =
xn, α(xn,xn+) ≥ , and

d(xn+,xn+) < ψn(qψ(
d(x,x)

))
for each n ∈N∪ {}. (.)

Form,n ∈N, we have

d(xn,xn+m) ≤
n+m–∑
i=n

d(xi,xi+) <
n+m–∑
i=n

ψ i–(d(x,x)).

Since ψ ∈ � , it follows that {xn} is a Cauchy sequence in D. Since D is complete, there
exists x∗ ∈ D such that xn → x∗ as n→ ∞. By the continuity of G, we have

d
(
x∗,Gx∗) ≤ lim

n→∞H
(
Gxn,Gx∗) = . �

Theorem . Let (X,d) be a metric space, D be a nonempty subset of X which is com-
plete with respect to the metric induced by d, and let G be a strictly (α,ψ)-contractive type
mapping on D. Assume that the following conditions hold:

(i) G is an α-admissible map;
(ii) there exist x ∈D and x ∈Gx ∩D such that α(x,x) ≥ ;
(iii) either

(a) for any sequence {xn} in D such that xn → x as n→ ∞ and α(xn,xn+) ≥  for
each n ∈N∪ {}, limn→∞ α(xn,x)≥ ,

or
(b) for any sequence {xn} in D such that xn → x as n→ ∞ and α(xn,xn+) ≥  for

each n ∈N∪ {}, α(xn,x)≥  for each n ∈N∪ {}.
Then G has a fixed point.

Proof Following the proof of Theorem ., there exists a Cauchy sequence {xn} in D with
xn → x∗ as n → ∞ and α(xn,xn+) ≥  for each n ∈ N ∪ {}. Suppose that d(x∗,Gx∗) = .
From (.) we have

α
(
xn,x∗)d(

xn+,Gx∗ ∩D
) ≤ α

(
xn,x∗)H(

Gxn ∩D,Gx∗ ∩D
)

≤ ψ

(
max

{
d
(
xn,x∗), d(xn,Gxn) + d(x∗,Gx∗)


,
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d(xn,Gx∗) + d(x∗,Gxn)


})

< max

{
d
(
xn,x∗), d(xn,Gxn) + d(x∗,Gx∗)


,

d(xn,Gx∗) + d(x∗,Gxn)


}
. (.)

Letting n → ∞ in (.), we have

lim
n→∞α

(
xn,x∗)d(

x∗,Gx∗ ∩D
) ≤ d(x∗,Gx∗)


. (.)

Since limn→∞ α(xn,x∗) ≥ , by condition (iii)(a), we have

d
(
x∗,Gx∗ ∩D

) ≤ lim
n→∞α

(
xn,x∗)d(

x∗,Gx∗ ∩D
) ≤ d(x∗,Gx∗)


. (.)

Further, it is clear that d(x∗,Gx∗) ≤ d(x∗,Gx∗ ∩D). Then from (.) we have

d
(
x∗,Gx∗) ≤ d(x∗,Gx∗)


,

which is impossible. Thus d(x∗,Gx∗) = . If we use (iii)(b), then from (.) we have

d
(
xn+,Gx∗ ∩D

) ≤ α
(
xn,x∗)H(

Gxn ∩D,Gx∗ ∩D
)

≤ ψ

(
max

{
d
(
xn,x∗), d(xn,Gxn) + d(x∗,Gx∗)


,

d(xn,Gx∗) + d(x∗,Gxn)


})

< max

{
d
(
xn,x∗), d(xn,Gxn) + d(x∗,Gx∗)


,

d(xn,Gx∗) + d(x∗,Gxn)


}
. (.)

Letting n → ∞ in (.), we have

d
(
x∗,Gx∗) ≤ d

(
x∗,Gx∗ ∩D

) ≤ d(x∗,Gx∗)


,

which is impossible. Thus d(x∗,Gx∗) = . �

Example . Let X = (–∞, –)∪ [,∞) be endowed with the usual metric d, and let D =
[,∞). Define G :D → CL(X) by

Gx =

⎧⎪⎪⎨
⎪⎪⎩
[, x ] if  ≤ x < ,

{} if x = ,

(–∞, –x]∪ [x,x] if x > 

and α :D×D→ [,∞) by

α(x, y) =

⎧⎨
⎩
 if x, y ∈ [, ],

 otherwise.

http://www.journalofinequalitiesandapplications.com/content/2014/1/71
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Clearly, Gx ∩ D = ∅ for each x ∈ D. Let ψ(t) = t
 for each t ≥ . To see that G is a strictly

(α,ψ)-contractive type mapping on D, we consider the following cases.
Case (i) When x, y ∈ [, ), we have

α(x, y)H(Gx∩D,Gy∩D) =
∣∣∣∣ x –

y


∣∣∣∣ ≤ |x – y|


=ψ
(
d(x, y)

) ≤ ψ
(
M(x, y)

)
.

Case (ii) When x ∈ [, ) and y = , we have

α(x, y)H(Gx∩D,Gy∩D) =
∣∣∣∣ x

∣∣∣∣ ≤ ψ

(
d(x,Gx) + d(y,Gy)



)
≤ ψ

(
M(x, y)

)
.

Case (iii) Otherwise, we have

α(x, y)H(Gx∩D,Gy∩D) =  ≤ ψ
(
M(x, y)

)
,

whereM(x, y) =max{d(x, y), d(x,Gx)+d(y,Gy) , d(x,Gy)+d(y,Gx) }.
Thus,G is a strictly (α,ψ)-contractive type mapping onD. For α(x, y)≥ , we have x, y ∈

[, ], then Gx ∩ D,Gy ∩ D ⊆ [, ], thus α(u, v) =  for each u ∈ Gx ∩ D and v ∈ Gy ∩ D.
Further, for any sequence {xn} inD such that xn → x as n→ ∞ and α(xn,xn+) =  for each
n ∈N∪ {}, limn→∞ α(xn,x) = . Therefore, all the conditions of Theorem . hold and G
has a fixed point.

Corollary . Let (X,	,d) be an ordered metric space, let (D,	) be a nonempty subset
of X which is complete with respect to the metric induced by d. Let G : D → CL(X) be a
mapping such that Gx∩D = ∅ for each x ∈D and for each x, y ∈D with x 	 y, we have

H(Gx∩D,Gy∩D)≤ ψ
(
M(x, y)

)
,

where M(x, y) = max{d(x, y), d(x,Gx)+d(y,Gy) , d(x,Gy)+d(y,Gx) } and ψ is an increasing function
in � . Also, assume that the following conditions hold:

(i) there exist x ∈D and x ∈Gx ∩D such that x 	 x;
(ii) if x	 y then Gx∩D ≺r Gy∩D;
(iii) either

(a) G is continuous,
or
(b) for any sequence {xn} in D such that xn → x as n→ ∞ and xn 	 xn+ for each

n ∈N∪ {}, xn 	 x as n→ ∞,
or
(c) for any sequence {xn} in D such that xn → x as n→ ∞ and xn 	 xn+ for each

n ∈N∪ {}, xn 	 x for each n ∈ N∪ {}.
Then G has a fixed point.

Proof Define α :D×D → [,∞) by

α(x, y) =

⎧⎨
⎩
 if x 	 y,

 otherwise.

http://www.journalofinequalitiesandapplications.com/content/2014/1/71
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By using condition (i) and the definition of α, we have α(x,x) = . Also, from condition
(ii), we have that x	 y implies Gx∩D ≺r Gy∩D; by using the definitions of α and ≺r , we
have that α(x, y) =  implies α(u, v) =  for each u ∈Gx∩D and v ∈ Gy∩D. Moreover, it is
easy to check that G is a strictly (α,ψ)-contractive type mapping on D. Therefore, all the
conditions of Theorem . (or Theorem . for (iii)(b), (iii)(c)) hold, hence G has a fixed
point. �

Remark . Condition (a), in the statement of Theorem ., was introduced by Samet et
al. []. In Theorem . we introduce a new condition (b). The following examples show
that (a) and (b) are independent conditions.

Example . Let X = { 
n : n ∈N} ∪ {}. Consider xn = 

n+ for each n ∈N∪ {}, then xn →
 = x∗ as n→ ∞. Define α : X ×X → [,∞) by

α(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
max{ x , y } if x =  and y = ,


x+y if either x =  or y = ,

 if x = y = .

Now, we have α(xn,xn+) = α( 
n+ ,


n+ ) = n +  >  for each n ∈ N ∪ {} and α(xn,x∗) =

α( 
n+ , ) = n +  ≥  for each n ∈ N∪ {}. Thus condition (a) holds but limn→∞ α(xn,x∗) =

limn→∞(n + ) = ∞. Thus condition (b) does not hold.

Example . Let X = { 
n : n ∈N} ∪ {}. Consider xn = 

n+ for each n ∈ N∪ {}, then xn →
 = x∗ as n→ ∞. Define α : X ×X → [,∞) by

α(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
max{ x , y } if x =  and y = ,


+(x+y)/ if either x =  or y = ,

 if x = y = .

Now, we have α(xn,xn+) = α( 
n+ ,


n+ ) = n +  >  for each n ∈ N ∪ {} and α(xn,x∗) =

α( 
n+ , ) =

n+
n+ . Then limn→∞ α(xn,x∗) = limn→∞ n+

n+ = . Thus condition (b) holds but
for n = , we have α(xn,x∗) = 

 ; for n = , we have α(xn,x∗) = 
 ; for n = , we have

α(xn,x∗) = 
 , which implies that α(xn,x)�  for each n ∈N∪ {}. Thus condition (a) does

not hold.
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