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Abstract
The aim of this paper is to introduce a new type of multivalued operators similar to
those of Ciric-Suzuki type. A common fixed point theorem for multivalued maps on
metric spaces satisfying Ciric-Suzuki-type inequality is proved. Applications to certain
functional equations arising in dynamic programming are also discussed.
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1 Introduction and preliminaries
In , Von Neumann [] initiated fixed point theory for multivalued mappings in the
study of game theory. Indeed, the fixed point theorems for multivalued mappings are
quite useful in control theory and have been frequently used in solving many problems of
economics and game theory. Successively, Nadler [] initiated the development of the geo-
metric fixed point theory formultivaluedmappings. He used the concept of the Hausdorff
metric to establish the multivalued contraction principle containing the Banach contrac-
tion principle as a special case.
Consistent with Nadler ([], p.), (X,d) and Cl(X) will denote a metric space and the

collection of all nonempty closed subsets of X, respectively. For A,B ∈ Cl(X) and ε > ,

N(ε,A) =
{
x ∈ X : d(x,a) < ε for some a ∈ A

}
,

EA,B =
{
ε >  : A⊆N(ε,B),B⊆N(ε,A)

}
,

H(A,B) =

{
infEA,B if EA,B �= ∅,
+∞ if EA,B = ∅.

The hyperspace (Cl(X),H) is called the generalizedHausdorffmetric space induced by the
metric d on X.
Later, Doric and Lazovic [] have extended and generalized fixed point theorems of Ciric

[], Kikkawa and Suzuki [], Nadler [], and others as follows.

Theorem . [] Define a nonincreasing function ϕ from [, ) into (, ] by

ϕ(r) =

{
 if  ≤ r < 

 ,
 – r if 

 ≤ r < .
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Let (X,d) be a completemetric space and T : X → CB(X).Assume that there exists r ∈ [, )
such that for every x, y ∈ X,

ϕ(r)d(x,Tx)≤ d(x, y) implies H(Tx,Ty) ≤ rM(x, y),

where

M(x, y) =max

{
d(x, y),d(x,Tx),d(y,Ty),



(
d(x,Ty) + d(y,Tx)

)}
.

Then there exists v ∈ X such that v ∈ Tv.

On the other hand, Suzuki [] introduced the following theorem. This result involves
a new type of contractive mapping and hence generalizes the well-known Edelstein fixed
point theorem in [].

Theorem. [] Let (X,d) be a compactmetric space,and let f be amapping onX.Assume
that



d(x, fx) < d(x, y) implies d(fx, fy) < d(x, y)

for x, y ∈ X. Then f has a unique fixed point.

Many authors have proved numerous fixed point theorems as generalization of Nadler’s
theorem (see [–]).
In , Haghi et al. [] gave a very useful lemma which we need in our work.

Lemma . [] Let X be a nonempty set and f : X → X be a function. Then there exists a
subset E ⊆ X such that f (E) = f (X) and f : E → X is one-to-one.

In this manuscript, the well-known results of Suzuki [], Edelstein [] and Doric and
Lazovic [] have been merged to complement a multitude of related results from the liter-
ature. Moreover, we use Lemma . to obtain a common fixed point theorem for multival-
ued maps on a metric space. Finally, as an application, the existence of common solutions
of certain functional equations arising in dynamic programming is proved.

2 Fixed point results
Theorem . Let (X,d) be a compact metric space, and let T : X → Cl(X). Assume that
there exists α ∈ [,  ) such that



d(x,Tx) < d(x, y) implies H(Tx,Ty) < αM(x, y),

where

M(x, y) =max

{
d(x, y),d(x,Tx),d(y,Ty),



(
d(x,Ty) + d(y,Tx)

)}

for all x, y ∈ X. Then T has a fixed point.
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Proof Let {xn} be a sequence in X. We have that Txn is a closed set, so we can find a
sequence {zn} in X such that zn ∈ Txn and d(xn, zn) = d(xn,Txn). Now, put β = inf{d(x,Tx) :
x ∈ X} = inf{infz∈Tx d(x, z) : x ∈ X}.X is compact, without loss of generality, wemay assume
that the sequences {xn} and {zn} converge to v and w in X, respectively. Let

limd(xn, zn) = limd(xn,Txn) = limd(xn,w) = d(v,w) = β .

We want to show that β = . Suppose not, that is, β > . Thus, we can choose n ∈N such
that

d(xn,Txn) <


β and




β < d(xn,w)

for n ∈N with n≥ n. Thus 
d(xn,Txn) < d(xn,w) for n≥ n. This implies

H(Txn,Tw) < αM(xn,w),

where

M(xn,w) =max

{
d(xn,w),d(xn,Txn),d(w,Tw),



(
d(xn,Tw) + d(w,Txn)

)}
.

Since zn ∈ Txn, d(zn,Tw) ≤H(Txn,Tw). Thus

d(zn,Tw) < αM(xn,w).

Moreover, d(w,Txn)≤ d(w, zn). So

M(xn,w) ≤max

{
d(xn,w),d(xn,Txn),d(w,Tw),



(
d(xn, zn) + d(zn,Tw) + d(w, zn)

)}
.

Let n attend to ∞, then we have

d(w,Tw) ≤ αM(v,w), (.)

where

M(v,w) ≤ max

{
d(v,w),d(v,w),d(w,Tw),



(
d(v,w) + d(w,Tw) + d(w,w)

)}

= max

{
d(v,w),d(w,Tw),



(
d(v,w) + d(w,Tw)

)}

but 
 (d(v,w) +d(w,Tw)) ≤max{d(v,w),d(w,Tw)}. Thus,M(v,w) ≤max{d(v,w),d(w,Tw)}.

From (.), we have

d(w,Tw) ≤ αmax
{
d(v,w),d(w,Tw)

} ≤ αd(v,w) = αβ < β ,

which is a contradiction to the definition of β . Hence, β = .

http://www.journalofinequalitiesandapplications.com/content/2014/1/7
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We want to prove that T has a fixed point. Assume, on the contrary, that xn /∈ Txn for
any n ∈N. We have zn → w and w = v thus zn → v, then v ∈ Txn.
First, we want to show that

d(v,Tu) ≤ αmax
{
d(v,u),d(u,Tu)

}
for every u ∈ X\{v}. (.)

We have xn → v and zn → v, that is, there exist n,n ∈N such that

d(v,xn) ≤ 

d(v,u) and d(v, zn) ≤ 


d(v,u) for every n >N =max{n,n}

so we have, for any n >N ,

d(xn,Txn) ≤ d(xn, zn)

≤ d(xn, v) + d(v, zn)

≤ 

d(v,u)

= d(v,u) –


d(v,u)

≤ d(v,u) – d(v,xn)

≤ d(xn,u).

Thus 
d(xn,Txn) < d(xn,u), which implies H(Txn,Tu) < αM(xn,u), where

M(xn,u) =max

{
d(xn,u),d(xn,Txn),d(u,Tu),



(
d(u,Txn) + d(xn,Tu)

)}

but v ∈ Txn, thus

d(v,Tu) < αmax

{
d(xn,u),d(xn,Txn),d(u,Tu),



(
d(u,Txn) + d(xn,Tu)

)}
. (.)

We have d(u,Txn) + d(xn,Tu) ≤ d(u, v) + d(xn,Tu). Then (.) becomes

d(v,Tu) < αmax

{
d(xn,u),d(xn,Txn),d(u,Tu),



(
d(u, v) + d(xn,Tu)

)}
.

By taking n → ∞, we obtain

d(v,Tu) ≤ αmax

{
d(v,u),d(u,Tu),



(
d(u, v) + d(v,Tu)

)}
.

If d(u, v) ≤ d(v,Tu), then

d(v,Tu) ≤ αmax
{
d(v,u),d(u,Tu),d(v,Tu)

}
≤ αmax

{
d(v,u),d(u,Tu)

}
and if d(v,Tu) ≤ d(u, v), then d(v,Tu) ≤ αmax{d(v,u),d(u,Tu)}. Thus, for any u ∈ X\{v},

d(v,Tu) ≤ αmax
{
d(v,u),d(u,Tu)

}
.
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Second, we want to prove that for every x ∈ X,

H(Tx,Tv) < αmax

{
d(x, v),d(v,Tv),d(x,Tx),



(
d(x,Tv) + d(v,Tx)

)}
. (.)

If x = v, it is trivial. Let x �= v. Then, for every n ∈ N, there exists a sequence yn ∈ Tx such
that d(v, yn) ≤ d(v,Tx) + 

nd(v,x). For all n ∈ N, by using (.) we have

d(x,Tx) ≤ d(x, yn)

≤ d(x, v) + d(v, yn)

≤ d(x, v) + d(v,Tx) +

n
d(v,x)

< d(x, v) + αmax
{
d(v,x),d(x,Tx)

}
+

n
d(v,x).

If d(x,Tx)≤ d(v,x), then d(x,Tx)≤ ( + α + 
n )d(v,x). When n → ∞, we have

d(x,Tx)≤ ( + α)d(v,x) < d(v,x).

Hence, we find that 
d(x,Tx) < d(v,x).

If d(v,x)≤ d(x,Tx), then d(x,Tx)≤ d(x, v) + αd(x,Tx) + 
nd(v,x). Thus,

( – α)d(x,Tx) <
(
 +


n

)
d(v,x)

gives when n→ ∞

( – α)d(x,Tx)≤ d(v,x).

Since 
 <  – α, therefore 

d(x,Tx) < d(v,x). Now, for every x ∈ X\{v}, we have



d(x,Tx) < d(v,x),

which implies (.).
Finally, from (.) for any n >N , we get

H(Txn,Tv) < αmax

{
d(xn, v),d(v,Tv),d(xn,Txn),



(
d(xn,Tv) + d(v,Txn)

)}
.

We have zn ∈ Txn, thus d(zn,Tv)≤H(Txn,Tv). If n → ∞, then we obtain

d(v,Tv)≤ αd(v,Tv).

As α < 
 , we obtain that d(v,Tv) = . Since Tv is closed, thus we reach the conclusion

v ∈ Tv. This contradicts the assumption that T has no fixed point. Hence, T has a fixed
point. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/7
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Example . Let X = [, ] be endowed with the usual metric and T : X → Cl(X) be de-
fined by

Tx =

{
{ x } if x ∈ [, ),
{,  } if x = ,

with α = 
 . Then T satisfies the assumptions in Theorem ..

Proof If x = y, it is trivial. For x �= y we have the following:
() x, y ∈ [, ) then

H(Tx,Ty) =
∣∣∣∣x – y



∣∣∣∣ < 


|x – y| = αd(x, y)≤ αM(x, y);

() x ∈ [, ) and y =  or (x =  and y ∈ [, ))

H(Tx,Ty) ≤ 

<



(



)
= αd(,T) = αd(y,Ty) ≤ αM(x, y).

Hence, the assumptions of Theorem . are satisfied and {} is a fixed point. �

3 Common fixed point results
Theorem . Let (X,d) be a metric space, Y be a nonempty set, g : Y → X and T : Y →
Cl(X) such that T(Y ) ⊆ g(Y ) and g(Y ) is a compact subspace of X. Assume that for x, y ∈ Y
there exists α ∈ [,  ) such that



d(gx,Tx) < d(gx, gy) implies H(Tx,Ty) < αM(gx, gy),

where

M(gx, gy) =max

{
d(gx, gy),d(gx,Tx),d(gy,Ty),



(
d(gx,Ty) + d(gy,Tx)

)}

and gx = gy implies Tx = Ty. Then T and g have a coincidence point, that is, there exists
v ∈ Y such that gv ∈ Tv. If Y = X, then g , T have a common fixed point provided that
gTv ⊂ Tgv at v.

Proof By Lemma ., there exists E ⊆ Y such that g(E) = g(Y ) and g : E → X is one-to-one.
We define a map G : g(E)→ Cl(g(E)) by G(gx) = Tx.
For x, y ∈ E, Tx = Ty whenever gx = gy, i.e., G(gx) = G(gy). Also, we have Tx ⊂ T(E) ⊆

g(E). Thus, G is a mapping. Now, for gx, gy ∈ g(E) we have



d
(
gx,G(gx)

)
< d(gx, gy) implies H

(
G(gx),G(gy)

)
< αM(gx, gy),

where

M(gx, gy) =max

{
d(gx, gy),d

(
gx,G(gx)

)
,d

(
gy,G(gy)

)
,


(
d
(
gx,G(gy)

)
+ d

(
gy,G(gx)

))}
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/7
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By Theorem ., G has a fixed point in g(E), that is, there exists gv ∈ g(E) such that gv ∈
G(gv) = Tv. Further, if Y = X, we have gv ∈ Tv. Thus, ggv ∈ gTv ⊂ Tgv ⊂ TTv. Now, we want
to show that gv = ggv. Suppose gv �= ggv, then we have



d(gv,Tv) =  < d(gv, ggv), which implies H(Tv,Tgv) < αM(gv, ggv),

where

M(gv, ggv) =max

{
d(gv, ggv),d(gv,Tv),d(ggv,Tgv),



(
d(gv,Tgv) + d(ggv,Tv)

)}
.

Since gv ∈ Tv, ggv ∈ Tgv and 
 (d(gv,Tgv) + d(ggv,Tv))≤H(Tv,Tgv), we obtain

M(gv, ggv) ≤max
{
d(gv, ggv),H(Tv,Tgv)

}
.

Hence,

H(Tv,Tgv) < αmax
{
d(gv, ggv),H(Tv,Tgv)

} ≤ αd(gv, ggv).

We have d(gv, ggv)≤ d(gv,w) + d(w, ggv) for each w ∈ Tgv. Since Tgv is a closed set, then

d(gv, ggv)≤ d(gv,Tgv) + d(ggv,Tgv)

but ggv ∈ Tgv. Thus, d(gv, ggv)≤ d(gv,Tgv). Since gv ∈ Tv, we have

d(gv,Tgv) <H(Tv,Tgv) < αd(gv,Tgv),

which is a contradiction. Therefore, gv = ggv ∈ Tgv. �

Corollary . Let (X,d) be a metric space, Y be a nonempty set, f , g : Y → X such that
f (Y ) ⊆ g(Y ) and g(Y ) is a compact subspace of X. Assume that for x, y ∈ Y there exists
α ∈ [,  ) such that



d(gx, fx) < d(gx, gy) implies d(fx, fy) < αM(gx, gy),

where

M(gx, gy) =max

{
d(gx, gy),d(gx, fx),d(gy, fy),



(
d(gx, fy) + d(gy, fx)

)}

and gx = gy implies fx = fy. Then f and g have a unique coincidence point. If Y = X, then f ,
g have a unique common fixed point provided that f and g commute at v.

Proof The proof of this corollary follows from Theorem . by taking T : Y → X. We
need to prove that v is a unique coincidence point of f and g . Suppose, to the contrary,
that there exists z ∈ X such that z �= v and fz = gz. Then the inequalities d(gv, gz) >  and
 = 

d(gv, fv) < d(gv, gz) are satisfied. Thus, we have d(fv, fz) < αM(gv, gz), where

M(gv, gz) =max

{
d(gv, gz),d(gv, fv),d(gz, fz),



(
d(gv, fz) + d(gz, fv)

)}
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/7
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i.e.,

M(gv, gz) =max
{
d(gv, gz), 

}
.

Therefore, d(fv, fz) < αd(gv, gz), that is, d(gv, gz) < αd(gv, gz), this is impossible due to α < 
 .

Hence, v is the unique coincidence point. Moreover, if Y = X, we have fgv = gfv but fv = gv.
Thus, fgv = ggv, i.e., gv is a coincidence point. Because of the uniqueness of the coincidence
point, we obtain that gv = v. Then v = gv = fv. �

4 An application
Many authors have studied the existence and uniqueness of solutions of functional equa-
tions and system of functional equations in dynamic programming by using diverse fixed
point theorems (cf. [–]).
Throughout this section, we suppose that U and V are Banach spaces, W ⊆ U is the

state space, D ⊆ V is the decision space and R is the field of real numbers. Let B(W )
denote the set of all the bounded real-valued functions on W . For an arbitrary h ∈ W ,
define ‖h‖ = supx∈W |h(x)|. Then (B(W ),‖ · ‖) is a Banach space.
The return functions S,T :W → R of the continuous decision process are defined by

the functional equations

S = sup
y∈D

{
q(x, y) +G

(
x, y,S

(
τ (x, y)

))}
, x ∈W (.)

and

T = sup
y∈D

{
q′(x, y) + F

(
x, y,T

(
τ (x, y)

))}
, x ∈W , (.)

where x and y represent the state and decision vectors, respectively, τ : W × D → W
represents the transformation of the process. Moreover, q,q′ : W × D → R and G,F :
W ×D×R →R are bounded functions.
In this article, we prove the existence and uniqueness of the common solution of func-

tional equations (.) and (.) arising in dynamic programming, using Corollary ..
Let the maps f and g be defined by

fh(x) = sup
y∈D

{
q(x, y) +G

(
x, y,h

(
τ (x, y)

))}
, x ∈W ,h ∈ B(W ),

gh(x) = sup
y∈D

{
q′(x, y) + F

(
x, y,h

(
τ (x, y)

))}
, x ∈W ,h ∈ B(W ).

Suppose that the following conditions hold.
(Q) For any h ∈ B(W ), there exists k ∈ B(W ) such that

fh(x) = gk(x), x ∈W .

(Q) There exists h ∈ B(W ) such that

fh(x) = gh(x) implies gfh(x) = fgh(x).

http://www.journalofinequalitiesandapplications.com/content/2014/1/7
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Theorem . Suppose that conditions (Q) and (Q) are satisfied and g(B(W )) is a closed
and bounded subspace of B(W ). Assume that there exists α ∈ [,  ) such that for every
(x, y) ∈W ×D, h,k ∈ B(W ) and t ∈W , the inequality



∣∣fh(t) – gh(t)

∣∣ < ∣∣gh(t) – gk(t)
∣∣

implies

∣∣G(
x, y,h(t)

)
–G

(
x, y,k(t)

)∣∣ < αM(gh, gk),

where

M(gh, gk) = max

{∣∣gh(t) – gk(t)
∣∣, ∣∣gh(t) – fh(t)

∣∣, ∣∣gk(t) – fk(t)
∣∣,

|gh(t) – fk(t)| + |gk(t) – fh(t)|


}
,

then functional equations (.) and (.) have a unique common bounded solution in W .

Proof Note that, due to q, q′, G and F are bounded, f and g are self-maps of B(W ).
(B(W ),d) is a complete metric space, where d is the metric defined by the supremum
norm on B(W ). Since g(B(W )) is a closed and bounded subspace of B(W ), then g(B(W ))
is complete and bounded. That is, g(B(W )) is compact. Conditions (Q) and (Q) imply
that f (B(W ))⊆ g(B(W )) and f and g commute at their coincidence points.
Let ε be an arbitrary positive real number, and h,h ∈ B(W ). For x ∈ W , choose y, y ∈

D such that

fh(x) < q(x, y) +G
(
x, y,h(τ)

)
+ ε (.)

and

fh(x) < q(x, y) +G
(
x, y,h(τ)

)
+ ε, (.)

where τ = τ (x, y) and τ = τ (x, y).
Furthermore, from the definition of f , we have

fh(x)≥ q(x, y) +G
(
x, y,h(τ)

)
(.)

and

fh(x)≥ q(x, y) +G
(
x, y,h(τ)

)
. (.)

If we suppose that the following inequality holds



∣∣fh(x) – gh(x)

∣∣ < ∣∣gh(x) – gh(x)
∣∣,

then

∣∣G(
x, y,h(τ)

)
–G

(
x, y,h(τ)

)∣∣ < αM(gh, gh), (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/7
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where

M(gh, gh) = max

{∣∣gh(x) – gh(x)
∣∣, ∣∣gh(x) – fh(x)

∣∣, ∣∣gh(x) – fh(x)
∣∣,

|gh(x) – fh(x)| + |gh(x) – fh(x)|


}
.

From (.), (.) and (.), we obtain that

fh(x) – fh(x) < G
(
x, y,h(τ)

)
–G

(
x, y,h(τ)

)
+ ε

≤ ∣∣G(
x, y,h(τ)

)
–G

(
x, y,h(τ)

)∣∣ + ε

< αM(gh, gh) + ε. (.)

Similarly, (.), (.) and (.) imply

fh(x) – fh(x) < G
(
x, y,h(τ)

)
–G

(
x, y,h(τ)

)
+ ε

≤ ∣∣G(
x, y,h(τ)

)
–G

(
x, y,h(τ)

)∣∣ + ε

< αM(gh, gh) + ε. (.)

Thus, from (.) and (.) we have

∣∣fh(x) – fh(x)
∣∣ < αM(gh, gh) + ε.

Since ε is arbitrary, therefore for any x ∈W , we have



∣∣fh(x) – gh(x)

∣∣ < ∣∣gh(x) – gh(x)
∣∣ implies

∣∣fh(x) – fh(x)
∣∣ < αM(gh, gh),

where

M(gh, gh) = max

{∣∣gh(x) – gh(x)
∣∣, ∣∣gh(x) – fh(x)

∣∣, ∣∣gh(x) – fh(x)
∣∣,

|gh(x) – fh(x)| + |gh(x) – fh(x)|


}
.

Therefore, by Corollary ., f and g have a unique common fixed point, and hence func-
tional equations (.) and (.) have a unique bounded common solution. �

Remark . Fukhar-ud-din et al. [] have established fixed point results on a non-
compact domain in uniformly convex metric spaces for a single-valued map satisfying
a contractive condition closely related to the Suzuki condition employed in Theorem ..
It will be interesting to extend the results of this paper in this general setup (cf. Open
problem  on p. in []).
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