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Abstract
In this paper, we introduce a new type of a generalized-(α,ψ )-Meir-Keeler contractive
mapping and establish some interesting theorems on the existence of fixed points for
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1 Introduction
Fixed points and fixed point theorems have countless applications and have become ama-
jor theoretical tool in many fields such as differential equations, mathematical economics,
game theory, dynamics, optimal control, functional analysis, and operator theory. In par-
ticular, the well-known Banach contraction principle is one of the forceful tools in non-
linear analysis, which states that every contraction self-mapping T on complete metric
spaces (X,d) (i.e., d(Tx,Ty) ≤ kd(x, y) for all x, y ∈ X, where k ∈ [, )) has a unique fixed
point. Due to its simplicity and importance, this classical principle has been generalized
by several authors in different directions.
In  Meir and Keeler [] established a fixed point theorem in a metric space (X,d)

for mappings satisfying the condition that for each ε >  there exists δ(ε) >  such that

ε ≤ d(x, y) < ε + δ(ε) implies d(Tx,Ty) < ε (.)

for all x, y ∈ X. This condition is called the Meir-Keeler contractive type condition. After-
ward, many authors extended and improved this condition and established fixed point
results for new generalized conditions, see Maiti and Pal [], Park and Rhoades [],
Mongkolkeha and Kumam [] and others.
On the other hand, Samet et al. [] introduced the notions of α, ψ contractive and

α-admissible mapping in metric spaces. They also proved a fixed point theorem for α, ψ
contractive mappings in complete metric spaces using the concept of α-admissible map-
ping.
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Theorem ([]) Let (X,d) be a completemetric space and T : X → X be (α,ψ)-contractive
mapping. Suppose that

(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x,Tx) ≥ ;
(iii) T is continuous.

Then there exists u ∈ X such that Tu = u.

Theorem ([]) Let (X,d) be a completemetric space and T : X → X be (α,ψ)-contractive
mapping. Suppose that

(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x,Tx) ≥ ;
(iii) if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n and xn → x ∈ X as

n→ ∞ then α(xn,x)≥  for all n.
Then, there exists u ∈ X such that Tu = u.

These results can be used as an efficient tool to study various fixed point results such as
fixed point results in partially ordered spaces, fixed point results for cyclic mappings, mul-
tidimensional fixed point results (coupled fixed point results, tripled fixed point results,
quadrupled fixed point etc.). Moreover, such type of fixed point results are helpful to solve
several problems and equations like the boundary value problem, differential equations,
nonlinear integral equations etc. In the recent literature, a wide-ranging discussion of fixed
point theorems for admissible mappings had the interest of several mathematicians, for
example, see [–].
In this paper, we introduce new type of contractive mapping based onMeir-Keeler type

contractive condition. For suchmappings, we study and establish fixed point theorems via
admissible mappings. Moreover, we present some applications of our new results.

2 Preliminaries
In the sequel, N denote the set of positive integers. Let � stands for the family of nonde-
creasing functions ψ : [,∞)→ [,∞) such that

∑∞
n= ψ

n(t) < ∞ for each t > , where ψn

is the nth iterate of ψ .

Remark  For every function ψ : [,∞)→ [,∞) the following holds:
if ψ is nondecreasing, then for each t > ,

lim
n→∞ψn(t) =  �⇒ ψ(t) < t �⇒ ψ() = .

Therefore, if ψ ∈ � , then for each t > , ψ(t) < t and ψ() = .

Example  Let ψ,ψ : [,∞)→ [,∞) be defined in the following way:

ψ =


t and ψ(t) =

{
t
 if  ≤ t < ,
t
 if t ≥ .

It is clear thatψ,ψ ∈ � . Notice thatψ,ψ are examples of continuous and discontinuous
functions in � .
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Definition  ([]) Let (X,d) be a metric space and T : X → X be a given mapping. We say
that T is an (α,ψ)-contractive mapping if there exist two functions α : X × X → [,∞)
and ψ ∈ � such that

α(x, y)d(Tx,Ty)≤ ψ
(
d(x, y)

)
, (.)

for all x, y ∈ X.

Remark  If T : X → X satisfies the Banach contraction principle in ametric space (X,d),
then T is an (α,ψ)-contractive mapping, where α(x, y) =  for all x, y ∈ X and ψ(t) = kt for
all t > , where k ∈ [, ).

Definition  ([]) Let T : X → X and α : X × X → [,∞). We say that T is α-admissible
when if x, y ∈ X such that α(x, y)≥  then we have α(Tx,Ty)≥ .

Example  Let X = (,∞). Define T : X → X and α : X ×X → [,∞) by Tx = ln(x+ ) for
all x ∈ X and

α(x, y) =

{
e if x ≥ y,
 if x < y.

Then, T is α-admissible.

Example  Let X = [,∞). Define T : X → X and α : X × X → [,∞) by Tx = x for all
x ∈ X and

α(x, y) =

{
x + y if x ≥ y,
 if x < y.

Then T is α-admissible.

Remark  ([]) Every nondecreasing self-mapping T is α-admissible.

3 Main results
In this section, introducing the class of (α,ψ)-Meir-Keeler contractive mappings and the
class of generalized-(α,ψ)-Meir-Keeler contractive mappings, we study the existence of
fixed points for mappings via admissible mappings.

Definition  Let (X,d) be a metric space and T : X → X. The mapping T is called an
(α,ψ)-Meir-Keeler contractive mapping if there exist two functions ψ ∈ � and α : X ×
X → [,∞) satisfying the following condition:

for each ε >  there exists δ(ε) >  such that

ε ≤ ψ
(
d(x, y)

)
< ε + δ(ε) implies α(x, y)d(Tx,Ty) < ε. (.)

Remark  It is easily shown that if T : X → X is an (α,ψ)-Meir-Keeler type contraction,
then

α(x, y)d(Tx,Ty) <ψ
(
d(x, y)

)
(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/68
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for all x, y ∈ X when x 	= y. Also, if x = y then d(Tx,Ty) =  and thus α(x, y)d(Tx,Ty) ≤
ψ(d(x, y)). Therefore, if T : X → X is a (α,ψ)-Meir-Keeler type contraction, then

α(x, y)d(Tx,Ty)≤ ψ
(
d(x, y)

)
(.)

for all x, y ∈ X.

Definition  Let (X,d) be a metric space and T : X → X. The mapping T is called a
generalized-(α,ψ)-Meir-Keeler contractive mapping if there exist two functions ψ ∈ �

and α : X ×X → [,∞) satisfying the following condition:
for each ε >  there exists δ(ε) >  such that

ε ≤ ψ
(
M(x, y)

)
< ε + δ(ε) implies α(x, y)d(Tx,Ty) < ε, (.)

where

M(x, y) =max

{
d(x, y),d(Tx,x),d(Ty, y),



[
d(Tx, y) + d(x,Ty)

]}
.

Remark  If T : X → X is a generalized-(α,ψ)-Meir-Keeler type contraction, then

α(x, y)d(Tx,Ty) <ψ
(
M(x, y)

)
(.)

for all x, y ∈ X when x 	= y. Also, if x = y then d(Tx,Ty) =  and thus α(x, y)d(Tx,Ty) ≤
ψ(M(x, y)). Therefore, if T : X → X is a generalized-(α,ψ)-Meir-Keeler type contraction,
then

α(x, y)d(Tx,Ty)≤ ψ
(
M(x, y)

)
(.)

for all x, y ∈ X.

Theorem  Let (X,d) be a complete metric space and T : X → X be a generalized-(α,ψ)-
Meir-Keeler contractive mapping. Suppose that

(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x,Tx) ≥ ;
(iii) T is continuous.

Then there exists u ∈ X such that Tu = u.

Proof Let x ∈ X be such that α(x,Tx) ≥ . Note that such a point x exists due to con-
dition (ii). We define the sequence {xn} in X by xn+ = Txn for all n ≥ . If xn = xn+ for
some n, then clearly xn is a fixed point of T . Hence, throughout the proof, we suppose
that xn 	= xn+ for all n ∈N. Since T is α-admissible, we have

α(x,x) = α(x,Tx) ≥  ⇒ α(Tx,Tx) = α(x,x) ≥ .

By induction, we obtain

α(xn,xn+) ≥ , for all n = , , . . . . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/68
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From (.) and Remark (), it follows that for all n ∈N, we have

d(xn+,xn) = d(Txn,Txn–)

≤ α(xn,xn–)d(Txn,Txn–)

< ψ
(
M(xn,xn–)

)
= ψ

(
max

{
d(xn,xn–),d(Txn,xn),d(Txn–,xn–),



(
d(Txn,xn–) + d(Txn–,xn)

)})

= ψ

(
max

{
d(xn,xn–),d(xn+,xn),d(xn,xn–),



d(xn+,xn–)

})

≤ ψ

(
max

{
d(xn,xn–),d(xn+,xn),d(xn,xn–),



(
d(xn+,xn) + d(xn,xn–)

)})

≤ ψ
(
max

{
d(xn,xn–),d(xn+,xn)

})
. (.)

If max{d(xn,xn–),d(xn+,xn)} = d(xn+,xn), from (.) and Remark , we have

d(xn+,xn) <ψ
(
d(xn+,xn)

)
< d(xn+,xn),

which is a contradiction. So we have max{d(xn,xn–),d(xn+,xn)} = d(xn,xn–). From (.),
we get

d(xn+,xn) <ψ
(
d(xn,xn–)

)
for all n ∈N. Inductively, for each n ∈ N, we obtain

d(xn+,xn) <ψn(d(x,x)). (.)

Now we show that {xn} is a Cauchy sequence. Take ε >  and N(ε) ∈ N in such a way that∑
n≥N(ε) ψ

n(d(x,x)) ≤ ε. Let n,m ∈ N with m > n > N(ε). Due to the triangle inequality,
we have

d(xn,xm) ≤
m–∑
k=n

d(xk ,xk+)≤
m–∑
k=n

ψk(d(x,x))

≤
∑

n≥N(ε)

ψn(d(x,x)) < ε. (.)

Hence, we conclude that {xn} is a Cauchy sequence in the complete metric space (X,d).
Thus, there exists u ∈ X such that limn→∞ xn = u. Since T is continuous,

u = lim
n→∞xn+ = lim

n→∞Txn = T
(
lim
n→∞xn

)
= Tu,

that is, u is a fixed point of T . This completes the proof. �
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Corollary  Let (X,d) be a complete metric space and T : X → X be an (α,ψ)-Meir-
Keeler contractive mapping. Suppose that

(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x,Tx)≥ ;
(iii) T is continuous.

Then there exists u ∈ X such that Tu = u.

We obtain the following fixed point result without any continuity assumption for the
mapping T .

Theorem  Let (X,d) be a complete metric space and T : X → X be a generalized-(α,ψ)-
Meir-Keeler contractive mapping such that ψ is continuous. Suppose that

(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x,Tx)≥ ;
(iii′) if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n and xn → x ∈ X as n → ∞

then α(xn,x)≥  for all n.

Then there exists u ∈ X such that Tu = u.

Proof Following the proof of Theorem , we obtain the sequence {xn} in X defined by
xn+ = Txn for all n≥  and which converges for some u ∈ X. From (.) and condition (iii),
we have α(xn,u) ≥  for all n ∈N. Next, we suppose that d(u,Tu) 	= . Applying Remark ,
for each n ∈ N, we have

d(u,Tu) ≤ d(Txn,u) + d(Txn,Tu)

≤ d(xn+,u) + α(xn,u)d(Txn,Tu)

< d(xn+,u) +ψ
(
M(xn,u)

)
= d(xn+,u) +ψ

(
max

{
d(xn,u),d(Txn,xn),d(Tu,u),



[
d(Txn,u) + d(xn,Tu)

]})

= d(xn+,u) +ψ

(
max

{
d(xn,u),d(xn+,xn),d(Tu,u),



[
d(xn+,u) + d(xn,Tu)

]})
.

Letting n → ∞ in the above equality and keeping the continuity of ψ in mind, we get

d(u,Tu) ≤ ψ
(
d(u,Tu)

)
< d(u,Tu),

which is a contradiction. Thus, we have d(u,Tu) = , that is, u = Tu. Therefore, u is a fixed
point of T . This completes the proof. �

In the next corollary, we can omit the continuity hypothesis at every point of ψ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/68
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Corollary  Let (X,d) be a complete metric space and T : X → X be an (α,ψ)-Meir-
Keeler contractive mapping. Suppose that

(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x,Tx) ≥ ;
(iii) if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n and xn → x ∈ X as

n→ ∞ then α(xn,x)≥  for all n.
Then there exists u ∈ X such that Tu = u.

Proof Since the proof of the existence of a fixed point is straightforward by following the
same lines as in the proof of Theorem , in order to avoid repetition, the details are omit-
ted. �

Now, we present the following example in support of our main result.

Example  Let X = R with the usual metric d(x, y) = |x – y|. Then d((x, y)(u, v)) =
d(x,u) + d(y, v) becomes a metric on X. Define TF : X → X as follows: TF (x, y) =
(F(x, y),F(y,x)) where F : X → X is defined by

F(x, y) =

{
x–y
 if x, y ∈ [,∞),

 otherwise,

for all (x, y) ∈ X. Let us take

α
(
(x, y), (u, v)

)
=

{
 if (x, y), (u, v) ∈ [,∞)× [,∞),
 otherwise.

It is clear that TF is an (α,ψ)-Meir-Keeler contractive mapping with ψ(t) = t
 . Indeed, for

all (x, y), (u, v) ∈ X, we have

ε ≤ ψ
(
d

(
(x, y), (u, v)

))
=


|x – u| + 


|y – v| < ε + δ(ε).

On the other hand, by elementary calculations and taking into account that TF is α-
admissible, we get

d
(
TF

(
(x, y)

)
,TF

(
(u, v)

))
= α

(
(x, y), (u, v)

)
d

(
TF

(
(x, y)

)
,TF

(
(u, v)

))
=


|x – u| + 


|y – v|

≤ 


(
ε + δ(ε)

)
< ε,

with 
δ(ε) < ε.

Remark  Note that the main theorem of [] is not applicable to this example. Hence,
our result is stronger than the main result of []. Indeed, we take x = u in the statement
of the mentioned theorem, we get

ε ≤ ψ
(
d

(
(x, y), (u, v)

))
=


|y – v| < ε + δ(ε).

http://www.journalofinequalitiesandapplications.com/content/2014/1/68
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On the other hand, by elementary calculations, we get

d
(
F
(
(x, y),F(u, v)

))
=


|y – v|.

Thus, we get

ε ≤ |y – v| < 

ε < ε,

which is a contradiction.

4 Applications
4.1 Fixed point results on an ordinary metric space
We have the following fixed point results in ordinary metric space.

Theorem  Let (X,d) be a complete metric space and T : X → X be continuous mapping
and there exists ψ ∈ � satisfying the following condition:

for each ε >  there exists δ(ε) >  such that

ε ≤ ψ
(
M(x, y)

)
< ε + δ(ε) implies d(Tx,Ty) < ε, (.)

where

M(x, y) =max

{
d(x, y),d(Tx,x),d(Ty, y),



[
d(Tx, y) + d(x,Ty)

]}
.

Then there exists u ∈ X such that Tu = u.

Proof Consider the mapping α : X ×X → [,∞) defined by

α(x, y) =  for all x, y ∈ X.

From the definition of α, it easy to see that T is α-admissible and also it is a generalized-
(α,ψ)-Meir-Keeler contractive mapping. Moreover, all the hypotheses of Theorem  (or
Theorem ) are satisfied and so the existence of the fixed point of T follows from Theo-
rem  (or Theorem ). �

Taking ψ(t) = kt, where k ∈ (, ), we get the following result.

Corollary  Let (X,d) be a complete metric space and T : X → X be continuousmapping
satisfying the following condition:

for each ε >  there exists δ(ε) >  such that

ε ≤ kM(x, y) < ε + δ(ε) implies d(Tx,Ty) < ε (.)

for all x, y ∈ X , where k ∈ (, ) and

M(x, y) =max

{
d(x, y),d(Tx,x),d(Ty, y),



[
d(Tx, y) + d(x,Ty)

]}
.

Then there exists u ∈ X such that Tu = u.

http://www.journalofinequalitiesandapplications.com/content/2014/1/68
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4.2 Fixed point results on a metric space endowed with an arbitrary binary
relation

In this section, we present fixed point theorems on a metric space endowed with an arbi-
trary binary relation. The following notions and definition are needed.
Let (X,d) be a metric space andR be a binary relation over X. Denote

S :=R∪R–;

this is the symmetric relation attached toR. Clearly,

x, y ∈ X, xSy ⇐⇒ xRy or yRx.

Definition  We say that T : X → X is a comparative mapping if T maps comparable
elements into comparable elements, that is,

xSy �⇒ (Tx)S(Ty)

for all x, y ∈ X.

Definition  Let (X,d) be a metric space, S be a symmetric relation attached to binary
relation R over X and T : X → X. The mapping T is called a generalized-ψ-Meir-Keeler
contractive mapping with respect to S if there exists a function ψ ∈ � satisfying the fol-
lowing condition:

for each ε >  there exists δ(ε) >  such that for x, y ∈ X for which xSy,

ε ≤ ψ
(
M(x, y)

)
< ε + δ(ε) implies d(Tx,Ty) < ε, (.)

where

M(x, y) =max

{
d(x, y),d(Tx,x),d(Ty, y),



[
d(Tx, y) + d(x,Ty)

]}
.

Theorem  Let (X,d) be a complete metric space, R be a binary relation over X and
T : X → X be a comparative generalized-(α,ψ)-Meir-Keeler contractive mapping. Suppose
that

(i) T is comparative mapping;
(ii) there exists x ∈ X such that xS(Tx);
(iii) T is continuous.

Then there exists u ∈ X such that Tu = u.

Proof Consider the mapping α : X ×X → [,∞) defined by

α(x, y) =

{
 if xSy,
 otherwise.

(.)

From condition (ii), we get α(x,Tx) ≥ . It follows fromT is comparativemapping thatT
is an α-admissible mapping. Since T is a generalized-ψ-Meir-Keeler contractive mapping

http://www.journalofinequalitiesandapplications.com/content/2014/1/68
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with respect to S , we have, for all x, y ∈ X,

ε ≤ ψ
(
M(x, y)

)
< ε + δ(ε) implies α(x, y)d(Tx,Ty) < ε. (.)

This implies that T is a generalized-(α,ψ)-Meir-Keeler contractive mapping. Now all the
hypotheses of Theorem  are satisfied and so the existence of the fixed point of T follows
from Theorem . �

In order to remove the continuity of T , we need the following condition:

(W) if {xn} is the sequence in X such that xnRxn+ for all n ∈ N and it converges to the
point x ∈ X , then xnSu.

Theorem  Let (X,d) be a complete metric space, S be a symmetric relation attached to
binary relation R over X and T : X → X be a generalized-(α,ψ)-Meir-Keeler contractive
mapping with respect to S such that ψ is continuous. Suppose that

(i) T is comparative mapping;
(ii) there exists x ∈ X such that xS(Tx);
(iii) the condition (W) holds.

Then there exists u ∈ X such that Tu = u.

Proof The result follows from Theorem  by considering the mapping α given by (.)
and by observing that condition (W) implies condition (iii′). �
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