RESEARCH

Open Access

Inequalities for an *n*-simplex in spherical space $S_n(1)$

Yang Shi-guo^{1,2,3*}, Wang Wen^{1*} and Bian Ge³

*Correspondence: yangsg@hftc.edu.cn; wangwen0811@163.com *Department of Mathematics and Teachers Educational Research, Hefei Normal University, Hefei, 230601, P.R. China *Anhui Xinhua University, Hefei, 230088, P.R. China Full list of author information is available at the end of the article

Abstract

For an *n*-dimensional simplex Ω_n and any point *D* in spherical space $S_n(1)$, we establish an inequality for edge lengths of Ω_n and distances from point *D* to faces of Ω_n , and from this we obtain some inequalities for the edge lengths and the in-radius of the simplex Ω_n . Besides, we establish some inequalities for the edge lengths and altitudes of a spherical simplex, and we establish inequalities for the edge lengths and circumradius of Ω_n .

MSC: 51M10; 52A20; 51M20

Keywords: spherical simplex; edge lengths; in-radius; circumradius; altitudes

1 Introduction

The *n*-dimensional spherical space of curvature 1 is defined as follows (see [1–4]).

Let $S_n(1) = \{x(x_1, x_2, ..., x_{n+1}) \mid \sum_{i=1}^{n+1} x_i^2 = 1\}$ be the *n*-dimensional unit sphere in the (n+1)-dimensional Euclidean E^{n+1} . For any two points $x(x_1, x_2, ..., x_{n+1}), y(y_1, y_2, ..., y_{n+1}) \in S_n(1)$, the spherical distance between points *x* and *y* is defined as the smallest non-negative number \widehat{xy} such that

 $\cos \widehat{xy} = x_1y_1 + x_2y_2 + \dots + x_{n+1}y_{n+1}.$

The *n*-dimensional unit sphere $S_n(1)$ with the above spherical distance is called the *n*-dimensional spherical space of curvature 1. Actually, the spherical space $S_n(1)$ is the boundary of an *n*-dimensional sphere of radius 1 in the (n + 1)-dimensional Euclidean space E^{n+1} with geodesic metric (that is, shorter arc).

Let Ω_n be an *n*-dimensional simplex with vertices P_i (i = 1, 2, ..., n + 1) in the *n*dimensional spherical space $S_n(1)$, *r* and *R* the in-radius and the circumradius of Ω_n , respectively. Let $\rho_{ij} = \widehat{P_iP_j}$ $(i \neq j, i, j = 1, 2, ..., n + 1)$ be the edge lengths of the spherical simplex Ω_n , h_i the altitude of Ω_n from vertex P_i , *i.e.* the spherical distance from point P_i to the face $f_i = \{P_1 \cdots P_{i-1}P_{i+1} \cdots P_{n+1}\}$ ((n-1)-dimensional spherical simplex) of Ω_n . Let *D* be any point inside the simplex Ω_n and r_i be the spherical distance from point *D* to the face f_i of Ω_n for i = 1, 2, ..., n + 1.

For an *n*-simplex Δ_n in the *n*-dimensional Euclidean space E^n , some important inequalities for the edge lengths of Δ_n and r_i (i = 1, 2, ..., n + 1), inequalities for edge lengths and in-radius, circumradius, and altitudes of Δ_n were established (see [5–10]). But similar inequalities for an *n*-simplex in the spherical space $S_n(1)$ have not been established. In this

©2014 Shi-guo et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. paper, we discuss the problems of inequalities for a spherical simplex and obtain some related inequalities for an *n*-simplex in the spherical space $S_n(1)$.

2 Inequalities for an *n*-simplex in the spherical space $S_n(1)$

In this section, we give some inequalities for the distances from an interior point to the faces of spherical simplex Ω_n and inequalities for edge lengths and in-radius, circumradius, and altitudes of Ω_n . Our main results are the following theorems.

Let φ_{ij} ($i \neq j, i, j = 1, 2, ..., n + 1$) be the dihedral angle formed by two faces f_i and f_j of an n-simplex Ω_n in the spherical space $S_n(1)$.

Theorem 1 Let Ω_n be an n-simplex in the n-dimensional spherical space $S_n(1)$ with dihedral angles φ_{ij} $(i \neq j, i, j = 1, 2, ..., n + 1)$, D be any interior point of simplex Ω_n and r_i the distance from the point D to the face f_i of Ω_n for i = 1, 2, ..., n + 1. For any real numbers $\lambda_i \neq 0$ (i = 1, 2, ..., n + 1), we have

$$\sum_{i=1}^{n+1} \lambda_i^2 \cos^2 r_i \le \left[\frac{n}{2(n+1)} \left(\sum_{i=1}^{n+1} \lambda_i^2 + 1 \right)^2 - \sum_{1 \le i < j \le n+1} \lambda_i^2 \lambda_j^2 \right] + \sum_{1 \le i < j \le n+1} \lambda_i^2 \lambda_j^2 \cos^2 \varphi_{ij},$$
(1)

with equality if and only if the nonzero eigenvalues of matrix G are all equal. Here

$$G = \begin{bmatrix} \lambda_{1} \sin r_{1} \\ -\lambda_{i} \lambda_{j} \cos \varphi_{ij} \end{bmatrix} & \lambda_{2} \sin r_{2} \\ \vdots \\ \lambda_{n+1} \sin r_{n+1} \\ \lambda_{1} \sin r_{1} & \lambda_{2} \sin r_{2} & \cdots & \lambda_{n+1} \sin r_{n+1} \end{bmatrix}, \qquad (2)$$

and $\varphi_{ii} = \pi$ (*i* = 1, 2, ..., *n* + 1).

Let $M = (\cos \rho_{ij})_{i,j=1}^{n+1}$ be the edge matrix of an *n*-simplex Ω_n in $S_n(1)$, then M is a positive definite symmetric matrix with diagonal entries equal to 1 (see [3, 11]); by the cosine theorem of a simplex Ω_n in $S_n(1)$ (see [13]), we have

$$\cos \varphi_{ij} = -\frac{M_{ij}}{\sqrt{M_{ii}}\sqrt{M_{jj}}}$$
 $(i, j = 1, 2, ..., n + 1).$ (3)

Here M_{ij} denotes the cofactor of matrix M corresponding to the (i, j)-entry. From Theorem 1 and (3) we get an inequality for r_i (i = 1, 2, ..., n + 1) and the edge lengths of spherical simplex Ω_n as follows.

Theorem 1' For any interior point D of an n-simplex Ω_n in $S_n(1)$ and any real numbers $\lambda_i \neq 0$ (i = 1, 2, ..., n + 1), we have

$$\sum_{i=1}^{n+1} \lambda_i^2 \cos^2 r_i \le \left[\frac{n}{2(n+1)} \left(\sum_{i=1}^{n+1} \lambda_i^2 + 1 \right)^2 - \sum_{1 \le i < j \le n+1} \lambda_i^2 \lambda_j^2 \right] + \sum_{1 \le i < j \le n+1} \lambda_i^2 \lambda_j^2 \frac{M_{ij}^2}{M_{ii} M_{jj}}, \quad (4)$$

with equality if and only if the nonzero eigenvalues of matrix G are all equal.

If we take $\lambda_i^2 = M_{ii}$ (*i* = 1, 2, ..., *n* + 1) in (4), we get the following corollary.

Corollary 1 For any interior point D of an n-simplex Ω_n in $S_n(1)$, we have

$$\sum_{i=1}^{n+1} M_{ii} \cos^2 r_i \le \left[\frac{n}{2(n+1)} \left(\sum_{i=1}^{n+1} M_{ii} + 1 \right)^2 - \sum_{1 \le i < j \le n+1} M_{ii} M_{jj} \right] + \sum_{1 \le i < j \le n+1} M_{ij}^2.$$
(5)

Equality holds if and only if the nonzero eigenvalues of matrix G with $\lambda_i = \sqrt{M_{ii}}$ (*i* = 1,2,...,*n* + 1) are all equal.

If we take the point *D* to be the in-center of Ω_n , then $r_i = r$ (i = 1, 2, ..., n + 1) and from Theorem 1 and Theorem 1', we get an inequality for the simplex Ω_n as follows.

Corollary 2 For an n-simplex Ω_n in $S_n(1)$ and real numbers $\lambda_i \neq 0$ (i = 1, 2, ..., n + 1), we have

$$\left(\sum_{i=1}^{n+1} \lambda_i^2\right) \cos^2 r \le \left[\frac{n}{2(n+1)} \left(\sum_{i=1}^{n+1} \lambda_i^2 + 1\right)^2 - \sum_{1 \le i < j \le n+1} \lambda_i^2 \lambda_j^2\right] + \sum_{1 \le i < j \le n+1} \lambda_i^2 \lambda_j^2 \cos^2 \varphi_{ij},$$
(6)

or

$$\left(\sum_{i=1}^{n+1}\lambda_i^2\right)\cos^2 r \le \left[\frac{n}{2(n+1)}\left(\sum_{i=1}^{n+1}\lambda_i^2+1\right)^2 - \sum_{1\le i< j\le n+1}\lambda_i^2\lambda_j^2\right] + \sum_{1\le i< j\le n+1}\lambda_i^2\lambda_j^2\frac{M_{ij}^2}{M_{ii}M_{jj}}.$$
(7)

Equality holds if and only if the nonzero eigenvalues of matrix G with $r_i = r$ (i = 1, 2, ..., n+1) are all equal.

If we take $\lambda_i^2 = M_{ii}$ (i = 1, 2, ..., n + 1) in (7), we get an inequality for the in-radius and the edge lengths of a simplex as follows.

Corollary 3 For an n-simplex Ω_n in $S_n(1)$, we have

$$\cos^{2} r \leq \frac{1}{\sum_{i=1}^{n+1} M_{ii}} \left[\frac{n}{2(n+1)} \left(\sum_{i=1}^{n+1} M_{ii} + 1 \right)^{2} - \sum_{1 \leq i < j \leq n+1} M_{ii} M_{jj} + \sum_{1 \leq i < j \leq n+1} M_{ij}^{2} \right].$$
(8)

Equality holds if and only if the nonzero eigenvalues of matrix G with $r_i = r$ and $\lambda_i = \sqrt{M_{ii}}$ (*i* = 1, 2, ..., *n* + 1) are all equal.

Put $\lambda_i = 1$ (i = 1, 2, ..., n + 1) in (6) and (7), and we get the following corollary.

Corollary 4 For an n-simplex Ω_n in $S_n(1)$, we have

$$\cos^2 r \le \frac{2n^2 + 3n}{2(n+1)^2} + \frac{1}{n+1} \sum_{1 \le i < j \le n+1} \frac{M_{ij}^2}{M_{ii}M_{jj}},\tag{9}$$

or

$$\cos^2 r \le \frac{2n^2 + 3n}{2(n+1)^2} + \frac{1}{n+1} \sum_{1 \le i < j \le n+1} \cos^2 \varphi_{ij}.$$
(10)

Equality holds if and only if the nonzero eigenvalues of matrix G with $r_i = r$ and $\lambda_i = 1$ (*i* = 1, 2, ..., *n* + 1) are all equal.

Besides, we obtain an inequality for the edge lengths and circumradius of an *n*-simplex Ω_n in $S_n(1)$ as follows.

Theorem 2 Let ρ_{ij} (i, j = 1, 2, ..., n + 1) and R be the edge lengths and the circumradius of an *n*-simplex Ω_n in $S_n(1)$, respectively; let $x_i > 0$ (i = 1, 2, ..., n + 1) be real numbers, then we have

$$\sum_{1 \le i < j \le n+1} x_i x_j \sin^2 \rho_{ij} \le \left[\frac{n}{2(n+1)} \left(\sum_{i=1}^{n+1} x_i + 1 \right)^2 - \sum_{i=1}^{n+1} x_i \right] + \left(\sum_{i=1}^{n+1} x_i \right) \cos^2 R.$$
(11)

Equality holds if and only if the nonzero eigenvalues of matrix B are all equal. Here

$$B = \begin{bmatrix} \sqrt{x_1} \cos R \\ \sqrt{x_i x_j} \cos \rho_{ij} & \vdots \\ \sqrt{x_n x_1} \cos R & \cdots & \sqrt{x_{n+1}} \cos R \\ \sqrt{x_1} \cos R & \cdots & \sqrt{x_{n+1}} \cos R & 1 \end{bmatrix}.$$
 (12)

If take $x_1 = x_2 = \cdots = x_{n+1} = 1$ in Theorem 2, we get an inequality as follows.

Corollary 5 For an n-simplex Ω_n in $S_n(1)$, we have

$$\sum_{1 \le i < j \le n+1} \sin^2 \rho_{ij} \le \frac{n^3 + 2n^2 - 2}{2(n+1)} + (n+1)\cos^2 R,$$
(13)

with equality holding if and only if the nonzero eigenvalues of matrix B with $x_1 = x_2 = \cdots = x_{n+1} = 1$ are all equal.

Finally, we give an inequality for edge lengths and altitudes of an *n*-simplex in $S_n(1)$ as follows.

Theorem 3 Let h_i (i = 1, 2, ..., n + 1) and M be the altitudes and the edge matrix of an *n*-simplex Ω_n in $S_n(1)$, respectively; let $x_i > 0$ (i = 1, 2, ..., n + 1) be real numbers, then we have

$$\sum_{i=1}^{n+1} \left(\prod_{\substack{j=1\\j\neq i}}^{n+1} x_j\right) \csc^2 h_i \ge (n+1) \left(\prod_{i=1}^{n+1} x_i\right)^{\frac{n}{n+1}} \cdot |M|^{\frac{-1}{n+1}},\tag{14}$$

with equality holding if and only if the eigenvalues of matrix Q are all equal. Here

$$Q = (\sqrt{x_i x_j} \cos \rho_{ij})_{i,j=1}^{n+1}, \qquad M = (\cos \rho_{ij})_{i,j=1}^{n+1}.$$
(15)

If we take $x_i = \csc^2 h_i$ (i = 1, 2, ..., n + 1) in (14), we get the following corollary.

Corollary 6 For an n-simplex Ω_n in $S_n(1)$, we have

$$\prod_{i=1}^{n+1} \sin h_i \le |M|^{\frac{1}{2}} \le \left[\frac{2}{n(n+1)} \sum_{1 \le i < j \le n+1} \sin^2 \rho_{ij}\right]^{\frac{n+1}{4}},\tag{16}$$

with equality holding if Ω_n is regular.

We will prove $|M|^{\frac{1}{2}} \leq \left[\frac{2}{n(n+1)} \sum_{1 \leq i < j \leq n+1} \sin^2 \rho_{ij}\right]^{\frac{n+1}{4}}$ and we have equality if Ω_n is regular in the next section.

3 Proof of theorems

To prove the theorems in the above section, we need some lemmas.

Lemma 1 Let $M = (\cos \rho_{ij})_{i,j=1}^{n+1}$ be the edge matrix of an n-simplex Ω_n in $S_n(1)$, then M is a positive definite symmetric matrix with diagonal entries equal to 1.

For the proof of Lemma 1 one is referred to [3, 11].

Lemma 2 Let φ_{ij} be the dihedral angle formed by two faces f_i and f_j of an n-simplex Ω_n in $S_n(1)$ for $i \neq j$, i, j = 1, 2, ..., n + 1, and $\varphi_{ii} = \pi$ (i = 1, 2, ..., n + 1), then the Gram matrix $A = (-\cos \varphi_{ij})_{i,i=1}^{n+1}$ is positive definite symmetric matrix with diagonal entries equal to 1.

For the proof of Lemma 2 one is referred to [1].

Lemma 3 (see [12]) Let μ be the set of all points and oriented (n - 1)-dimensional hyperplanes in the spherical space $S_n(1)$. For arbitrary m elements e_1, e_2, \ldots, e_m of μ , define g_{ij} as follows:

- (i) if e_i and e_j are two points, then g_{ij} = cos e_ie_j (where e_ie_j be spherical distance between e_i and e_j);
- (ii) if e_i and e_j are unit outer normals of two unit outer normal of oriented, then $g_{ii} = \cos \widehat{e_i e_i}$ (where $\widehat{e_i e_j}$ is dihedral angle formed by e_i and e_j);
- (iii) if either of e_i and e_j is a point, and another is an outer normal, then $g_{ij} = \sin h_{ij}$ (where h_{ij} is the spherical distance with sign based on the direction from the point to the hyperplane).
- If m > n + 1, then

 $\det(g_{ij})_{i,j=1}^m = 0.$

Lemma 4 Let h_i be the altitude from vertex P_i of an n-simplex Ω_n in $S_n(1)$ for i = 1, 2, ..., n + 1, and $M = (\cos \rho_{ij})_{i,j=1}^{n+1}$ the edge matrix, then we have

$$\sin^2 h_i = \frac{|M|}{M_{ii}} \quad (i = 1, 2, \dots, n+1).$$
(17)

For the proof of Lemma 4 one is referred to [13].

Proof of Theorem 1 Let e_i is the unit outer normal of the oriented f_i (i = 1, 2, ..., n + 1) and the point $e_{n+2} = D$, such that $\widehat{e_ie_j} = \pi - \varphi_{ij}$ (i, j = 1, 2, ..., n + 1) and the spherical distance with sign based on the direction from the point e_{n+2} to the hyperplane e_i is r_i for i = 1, 2, ..., n + 1.

By Lemma 2 we know that the $(n + 1) \times (n + 1)$ -order matrix $(\cos \widehat{e_i e_j})_{i,j=1}^{n+1} = (-\cos \varphi_{ij})_{i,j=1}^{n+1} = A$ is a positive definite symmetric matrix. Because $\lambda_i \neq 0$ (i = 1, 2, ..., n + 1), the matrix $T = (-\lambda_i \lambda_j \cos \varphi_{ij})_{i,j=1}^{n+1}$ is also a positive definite symmetric matrix.

By Lemma 3 we have

$$B = \begin{vmatrix} \sin r_{1} \\ -\cos \varphi_{ij} \\ \vdots \\ \sin r_{n+1} \\ \sin r_{1} \\ \cdots \\ \sin r_{n+1} \\ 1 \end{vmatrix} = 0.$$
(18)

From (18) and $\lambda_i \neq 0$ (*i* = 1, 2, ..., *n* + 1), we get

$$\det G = \begin{vmatrix} \lambda_{1} \sin r_{1} \\ \hline -\lambda_{i}\lambda_{j}\cos\varphi_{ij} \\ \hline \lambda_{n+1}\sin r_{n+1} \\ \lambda_{1}\sin r_{1} \cdots \lambda_{n+1}\sin r_{n+1} \\ 1 \end{vmatrix} = 0.$$
(19)

Because the matrix $T = (-\lambda_i \lambda_j \cos \varphi_{ij})_{i,j=1}^{n+1}$ is also a positive definite symmetric matrix and det G = 0, the matrix G is a semi-positive definite symmetric matrix and the rank of matrix G is n + 1. Let $u_i > 0$ (i = 1, 2, ..., n + 1) and $u_{n+2} = 0$ be the eigenvalues of the matrix G, and

$$\sigma_1 = \sum_{i=1}^{n+2} u_i = \sum_{i=1}^{n+1} u_i, \qquad \sigma_2 = \sum_{1 \le i < j \le n+2} u_i u_j = \sum_{1 \le i < j \le n+1} u_i u_j.$$

Using Maclaurin's inequality [5], we have

$$\left(\frac{1}{n+1}\sigma_1\right)^2 \ge \frac{2}{n(n+1)}\sigma_2. \tag{20}$$

Equality holds if and only if $u_1 = u_2 = \cdots = u_{n+1}$.

By the relation between the eigenvalues and the principal minors of the matrix G, we have

$$\sigma_1 = \sum_{i=1}^{n+1} \lambda_i^2 + 1, \qquad \sigma_2 = \sum_{1 \le i < j \le n+1} \lambda_i^2 \lambda_j^2 \sin^2 \varphi_{ij} + \sum_{i=1}^{n+1} \lambda_i^2 \cos^2 r_i.$$
(21)

Substituting (21) into (20), we get inequality (1). It is easy to see that equality holds in (1) if and only if the nonzero eigenvalues of matrix G are all equal.

Proof of Theorem 2 Let *C* be the circumcenter of Ω_n , then $\widehat{CP_i} = R$ (i = 1, 2, ..., n + 1). For real numbers $x_i > 0$ (i = 1, 2, ..., n + 1), by Lemma 1 we know that the matrix *Q* in (15) is a positive definite symmetric matrix. We take points $e_i = P_i$ (i = 1, 2, ..., n + 1) and $e_{n+2} = C$,

and by Lemma 3 we have

From this and $x_i > 0$ (*i* = 1, 2, ..., *n* + 1), we get

$$\det B = \begin{vmatrix} \sqrt{x_1} \cos R \\ \sqrt{x_i x_j} \cos \rho_{ij} \\ \frac{\sqrt{x_i x_j} \cos \rho_{ij}}{\sqrt{x_{n+1}} \cos R} \\ \frac{\sqrt{x_{n+1}} \cos R}{\sqrt{x_{n+1}} \cos R} \end{vmatrix} = 0.$$
(22)

Because the matrix $Q = (\sqrt{x_i x_j} \cos \rho_{ij})_{i,j=1}^{n+1}$ is positive definite symmetric and det B = 0, the matrix B is a semi-positive definite symmetric matrix and its rank is n + 1. Let $v_i > 0$ (i = 1, 2, ..., n + 1), $v_{n+2} = 0$ be the eigenvalues of matrix B, and

$$\sigma_1 = \sum_{i=1}^{n+2} v_i = \sum_{i=1}^{n+1} v_i, \qquad \sigma_2 = \sum_{1 \le i < j \le n+2} v_i v_j = \sum_{1 \le i < j \le n+1} v_i v_j.$$

Using Maclaurin's inequality [5], we have

$$\left(\frac{1}{n+1}\sigma_1\right)^2 \ge \frac{2}{n(n+1)}\sigma_2. \tag{23}$$

Equality holds if and only if $v_1 = v_2 = \cdots = v_{n+1}$.

By the relation between the eigenvalues and the principal minors of the matrix B, we have

$$\sigma_1 = \sum_{i=1}^{n+1} x_i + 1, \qquad \sigma_2 = \sum_{1 \le i < j \le n+1} x_i x_j \sin^2 \rho_{ij} + \sum_{i=1}^{n+1} x_i (1 - \cos^2 R).$$
(24)

Substituting (24) into (23), we get inequality (11). It is easy to see that equality holds in (11) if and only if the nonzero eigenvalues of matrix *B* are all equal. \Box

Proof of Theorem 3 From $x_i > 0$ (i = 1, 2, ..., n + 1) and the edge matrix $M = (\cos \rho_{ij})_{i,j=1}^{n+1}$ of Ω_n being a positive definite symmetric matrix, we know that the matrix Q in (15) is also a positive definite symmetric matrix. Let $a_i > 0$ (i = 1, 2, ..., n + 1) be the eigenvalues of the matrix Q, and

$$\sigma_n = \sum_{i=1}^{n+1} \prod_{j=1 \ j \neq i}^{n+1} a_j, \qquad \sigma_{n+1} = \prod_{i=1}^{n+1} a_i.$$

Page 8 of 9

By Maclaurin's inequality [5], we have

$$\left(\frac{1}{n+1}\sigma_{n}\right)^{\frac{1}{n}} \ge (\sigma_{n+1})^{\frac{1}{n+1}}.$$
(25)

Equality holds if and only if $a_1 = a_2 = \cdots = a_{n+1}$.

By the relation between the eigenvalues and the principal minors of the matrix Q, we have

$$\sigma_n = \sum_{i=1}^{n+1} Q_{ii} = \sum_{i=1}^{n+1} \left(\prod_{\substack{j=1\\ j \neq i}}^{n+1} x_j \right) M_{ii} \quad (i = 1, 2, \dots, n+1),$$
(26)

$$\sigma_{n+1} = |Q| = \left(\prod_{i=1}^{n+1} x_i\right) \cdot |M|.$$

$$(27)$$

From (25), (26), and (27), we get

$$\sum_{i=1}^{n+1} \left(\prod_{\substack{j=1\\j\neq i}}^{n+1} x_j\right) M_{ii} \ge (n+1) \left(\prod_{i=1}^{n+1} x_i\right)^{\frac{n}{n+1}} \cdot |M|^{\frac{n}{n+1}}.$$
(28)

By Lemma 4 we have

$$M_{ii} = |M| \csc^2 h_i \quad (i = 1, 2, \dots, n+1).$$
⁽²⁹⁾

Substituting (29) into (28), we get inequality (14). It is easy to see that equality holds in (14) if and only if the eigenvalues of matrix Q are all equal.

Finally, we prove that inequality (30) is valid:

$$|M|^{\frac{1}{2}} \le \left[\frac{2}{n(n+1)} \sum_{1 \le i < j \le n+1} \sin^2 \rho_{ij}\right]^{\frac{n+1}{4}}.$$
(30)

Let b_i (i = 1, 2, ..., n + 1) be the eigenvalues of the edge matrix $M = (\cos \rho_{ij})_{i,j=1}^{n+1}$. Since the matrix M is a positive definite symmetric matrix, $b_i > 0$. Let

$$\sigma_2 = \sum_{1 \leq i < j \leq n+1} b_i b_j, \qquad \sigma_{n+1} = \prod_{i=1}^{n+1} b_i.$$

By Maclaurin's inequality [5], we have

$$\left(\frac{2}{n(n+1)}\sigma_2\right)^{\frac{1}{2}} \ge (\sigma_{n+1})^{\frac{1}{n+1}}.$$
(31)

Equality holds if and only if $b_1 = b_2 = \cdots = b_{n+1}$.

By the relation between the eigenvalues and the principal minors of the matrix M, we have

$$\sigma_2 = \sum_{1 \le i < j \le n+1} \sin^2 \rho_{ij}, \qquad \sigma_{n+1} = |M|.$$
(32)

From (31) and (32), we get inequality (30). If Ω_n is a regular simplex in $S_n(1)$, then ρ_{ij}	$=\frac{\pi}{2}$
$(i \neq j, i, j = 1, 2,, n + 1), M = 1 \text{ and } M_{ii} = 1 \ (i = 1, 2,, n + 1).$ By (17) we have sin h_i	= 1
$(i = 1, 2,, n + 1)$; thus equality holds in (16) if Ω_n is a regular simplex.	

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors co-authored this paper. All authors read and approved the final manuscript.

Author details

¹ Department of Mathematics and Teachers Educational Research, Hefei Normal University, Hefei, 230601, P.R. China. ² Anhui Xinhua University, Hefei, 230088, P.R. China. ³ School of mathematical Since, Anhui University, Hefei, 230039, P.R. China.

Acknowledgements

The work was supported by the Doctoral Programs Foundation of Education Ministry of China (20113401110009) and the Foundation of Anhui higher school (KJ2013A220). We are grateful for the help.

Received: 26 August 2013 Accepted: 20 January 2014 Published: 10 Feb 2014

References

- 1. Feng, L: On a problem of Fenchel. Geom. Dedic. 64, 277-282 (1997)
- 2. Vinbergh, EB: Geometry II. Encyclopaedia of Mathematical Sciences, vol. 29. Springer, Berlin (1993)
- 3. Blumenthal, LM: Theory and Applications of Distance Geometry. Chelsea, New York (1970)
- 4. Karhga, B, Yakut, AT: Vertex angles of a simplex in hyperbolic space Hⁿ. Geom. Dedic. 120, 49-58 (2006)
- 5. Mitrinović, DS, Pečarić, JE, Volenec, V: Recent Advances in Geometric Inequalities. Kluwer Academic, Dordrecht (1989)
- 6. Leng, GS, Ma, TY, Xianzheng, A: Inequalities for a simplex and an interior point. Geom. Dedic. 85, 1-10 (2001)
- 7. Yang, SG: Three geometric inequalities for a simplex. Geom. Dedic. 57, 105-110 (1995)
- 8. Gerber, L: The orthocentric simplex as an extreme simplex. Pac. J. Math. 56, 97-111 (1975)
- 9. Li, XY, Leng, GS, Tang, LH: Inequalities for a simplex and any point. Math. Inequal. Appl. 8, 547-557 (2005)
- 10. Yang, SG: Geometric inequalities for a simplex. Math. Inequal. Appl. 8, 727-733 (2006)
- 11. Karliga, B: Edge matrix of hyperbolic simplices. Geom. Dedic. 109, 1-6 (2004)
- 12. Yang, L, Zhang, JZ: The concept of the rank of an abstract distance space. J. Univ. Sci. Technol. China **10**, 52-65 (1980) (in Chinese)
- 13. Yang, SG: Two results on metric addition in spherical space. Northeast. Math. J. 13(3), 357-360 (1997)

10.1186/1029-242X-2014-59

Cite this article as: Shi-guo et al.: **Inequalities for an** *n*-**simplex in spherical space** *S*_n(1). *Journal of Inequalities and Applications* **2014**, **2014**:59

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com