Inequalities for an n-simplex in spherical space $S_{n}(1)$

Yang Shi-guo ${ }^{1,23^{*}}$, Wang Wen ${ }^{1 *}$ and Bian Ge^{3}

"Correspondence:
yangsg@hftc.edu.cn;
wangwen0811@163.com
'Department of Mathematics and Teachers Educational Research Hefei Normal University, Hefei, 230601, P.R. China
${ }^{2}$ Anhui Xinhua University, Hefei, 230088, P.R. China
Full list of author information is available at the end of the article

Abstract

For an n-dimensional simplex Ω_{n} and any point D in spherical space $S_{n}(1)$, we establish an inequality for edge lengths of Ω_{n} and distances from point D to faces of Ω_{n}, and from this we obtain some inequalities for the edge lengths and the in-radius of the simplex Ω_{n}. Besides, we establish some inequalities for the edge lengths and altitudes of a spherical simplex, and we establish inequalities for the edge lengths and circumradius of Ω_{n}.

MSC: 51M10; 52A20; 51M20
Keywords: spherical simplex; edge lengths; in-radius; circumradius; altitudes

1 Introduction

The n-dimensional spherical space of curvature 1 is defined as follows (see [1-4]).
Let $S_{n}(1)=\left\{x\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \mid \sum_{i=1}^{n+1} x_{i}^{2}=1\right\}$ be the n-dimensional unit sphere in the $(n+1)$-dimensional Euclidean E^{n+1}. For any two points $x\left(x_{1}, x_{2}, \ldots, x_{n+1}\right), y\left(y_{1}, y_{2}, \ldots, y_{n+1}\right) \in$ $S_{n}(1)$, the spherical distance between points x and y is defined as the smallest non-negative number $\widehat{x y}$ such that

$$
\cos \widehat{x y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n+1} y_{n+1} .
$$

The n-dimensional unit sphere $S_{n}(1)$ with the above spherical distance is called the n dimensional spherical space of curvature 1. Actually, the spherical space $S_{n}(1)$ is the boundary of an n-dimensional sphere of radius 1 in the $(n+1)$-dimensional Euclidean space E^{n+1} with geodesic metric (that is, shorter arc).
Let Ω_{n} be an n-dimensional simplex with vertices $P_{i}(i=1,2, \ldots, n+1)$ in the n dimensional spherical space $S_{n}(1), r$ and R the in-radius and the circumradius of Ω_{n}, respectively. Let $\rho_{i j}=\widehat{P_{i} P_{j}}(i \neq j, i, j=1,2, \ldots, n+1)$ be the edge lengths of the spherical simplex Ω_{n}, h_{i} the altitude of Ω_{n} from vertex P_{i}, i.e. the spherical distance from point P_{i} to the face $f_{i}=\left\{P_{1} \cdots P_{i-1} P_{i+1} \cdots P_{n+1}\right\}\left((n-1)\right.$-dimensional spherical simplex) of Ω_{n}. Let D be any point inside the simplex Ω_{n} and r_{i} be the spherical distance from point D to the face f_{i} of Ω_{n} for $i=1,2, \ldots, n+1$.

For an n-simplex Δ_{n} in the n-dimensional Euclidean space E^{n}, some important inequalities for the edge lengths of Δ_{n} and $r_{i}(i=1,2, \ldots, n+1)$, inequalities for edge lengths and in-radius, circumradius, and altitudes of Δ_{n} were established (see [5-10]). But similar inequalities for an n-simplex in the spherical space $S_{n}(1)$ have not been established. In this

[^0]paper, we discuss the problems of inequalities for a spherical simplex and obtain some related inequalities for an n-simplex in the spherical space $S_{n}(1)$.

2 Inequalities for an \boldsymbol{n}-simplex in the spherical space $\boldsymbol{S}_{\boldsymbol{n}}(\mathbf{1})$

In this section, we give some inequalities for the distances from an interior point to the faces of spherical simplex Ω_{n} and inequalities for edge lengths and in-radius, circumradius, and altitudes of Ω_{n}. Our main results are the following theorems.
Let $\varphi_{i j}(i \neq j, i, j=1,2, \ldots, n+1)$ be the dihedral angle formed by two faces f_{i} and f_{j} of an n-simplex Ω_{n} in the spherical space $S_{n}(1)$.

Theorem 1 Let Ω_{n} be an n-simplex in the n-dimensional spherical space $S_{n}(1)$ with dihedral angles $\varphi_{i j}(i \neq j, i, j=1,2, \ldots, n+1), D$ be any interior point of simplex Ω_{n} and r_{i} the distance from the point D to the face f_{i} of Ω_{n} for $i=1,2, \ldots, n+1$. For any real numbers $\lambda_{i} \neq 0(i=1,2, \ldots, n+1)$, we have

$$
\begin{align*}
\sum_{i=1}^{n+1} \lambda_{i}^{2} \cos ^{2} r_{i} \leq & {\left[\frac{n}{2(n+1)}\left(\sum_{i=1}^{n+1} \lambda_{i}^{2}+1\right)^{2}-\sum_{1 \leq i<j \leq n+1} \lambda_{i}^{2} \lambda_{j}^{2}\right] } \\
& +\sum_{1 \leq i<j \leq n+1} \lambda_{i}^{2} \lambda_{j}^{2} \cos ^{2} \varphi_{i j} \tag{1}
\end{align*}
$$

with equality if and only if the nonzero eigenvalues of matrix G are all equal. Here

$$
G=\left[\begin{array}{cccc}
& & & \lambda_{1} \sin r_{1} \tag{2}\\
& \boxed{-\lambda_{i} \lambda_{j} \cos \varphi_{i j}} & & \lambda_{2} \sin r_{2} \\
& & & \\
& & & \\
\lambda_{1} \sin r_{1} & \lambda_{2} \sin r_{2} & \cdots & \lambda_{n+1} \sin r_{n+1}
\end{array}\right]
$$

and $\varphi_{i i}=\pi(i=1,2, \ldots, n+1)$.
Let $M=\left(\cos \rho_{i j}\right)_{i, j=1}^{n+1}$ be the edge matrix of an n-simplex Ω_{n} in $S_{n}(1)$, then M is a positive definite symmetric matrix with diagonal entries equal to 1 (see $[3,11]$); by the cosine theorem of a simplex Ω_{n} in $S_{n}(1)$ (see [13]), we have

$$
\begin{equation*}
\cos \varphi_{i j}=-\frac{M_{i j}}{\sqrt{M_{i i}} \sqrt{M_{i j}}} \quad(i, j=1,2, \ldots, n+1) . \tag{3}
\end{equation*}
$$

Here $M_{i j}$ denotes the cofactor of matrix M corresponding to the (i, j)-entry. From Theorem 1 and (3) we get an inequality for $r_{i}(i=1,2, \ldots, n+1)$ and the edge lengths of spherical simplex Ω_{n} as follows.

Theorem 1' For any interior point D of an n-simplex Ω_{n} in $S_{n}(1)$ and any real numbers $\lambda_{i} \neq 0(i=1,2, \ldots, n+1)$, we have

$$
\begin{equation*}
\sum_{i=1}^{n+1} \lambda_{i}^{2} \cos ^{2} r_{i} \leq\left[\frac{n}{2(n+1)}\left(\sum_{i=1}^{n+1} \lambda_{i}^{2}+1\right)^{2}-\sum_{1 \leq i<j \leq n+1} \lambda_{i}^{2} \lambda_{j}^{2}\right]+\sum_{1 \leq i<j \leq n+1} \lambda_{i}^{2} \lambda_{j}^{2} \frac{M_{i j}^{2}}{M_{i i} M_{j j}} \tag{4}
\end{equation*}
$$

with equality if and only if the nonzero eigenvalues of matrix G are all equal.

If we take $\lambda_{i}^{2}=M_{i i}(i=1,2, \ldots, n+1)$ in (4), we get the following corollary.

Corollary 1 For any interior point D of an n-simplex Ω_{n} in $S_{n}(1)$, we have

$$
\begin{equation*}
\sum_{i=1}^{n+1} M_{i i} \cos ^{2} r_{i} \leq\left[\frac{n}{2(n+1)}\left(\sum_{i=1}^{n+1} M_{i i}+1\right)^{2}-\sum_{1 \leq i<j \leq n+1} M_{i i} M_{j j}\right]+\sum_{1 \leq i<j \leq n+1} M_{i j}^{2} \tag{5}
\end{equation*}
$$

Equality holds if and only if the nonzero eigenvalues of matrix G with $\lambda_{i}=\sqrt{M_{i i}}(i=$ $1,2, \ldots, n+1)$ are all equal.

If we take the point D to be the in-center of Ω_{n}, then $r_{i}=r(i=1,2, \ldots, n+1)$ and from Theorem 1 and Theorem 1^{\prime}, we get an inequality for the simplex Ω_{n} as follows.

Corollary 2 For an n-simplex Ω_{n} in $S_{n}(1)$ and real numbers $\lambda_{i} \neq 0(i=1,2, \ldots, n+1)$, we have

$$
\begin{align*}
\left(\sum_{i=1}^{n+1} \lambda_{i}^{2}\right) \cos ^{2} r \leq & {\left[\frac{n}{2(n+1)}\left(\sum_{i=1}^{n+1} \lambda_{i}^{2}+1\right)^{2}-\sum_{1 \leq i<j \leq n+1} \lambda_{i}^{2} \lambda_{j}^{2}\right] } \\
& +\sum_{1 \leq i<j \leq n+1} \lambda_{i}^{2} \lambda_{j}^{2} \cos ^{2} \varphi_{i j}, \tag{6}
\end{align*}
$$

or

$$
\begin{align*}
\left(\sum_{i=1}^{n+1} \lambda_{i}^{2}\right) \cos ^{2} r \leq & {\left[\frac{n}{2(n+1)}\left(\sum_{i=1}^{n+1} \lambda_{i}^{2}+1\right)^{2}-\sum_{1 \leq i<j \leq n+1} \lambda_{i}^{2} \lambda_{j}^{2}\right] } \\
& +\sum_{1 \leq i<j \leq n+1} \lambda_{i}^{2} \lambda_{j}^{2} \frac{M_{i j}^{2}}{M_{i i} M_{j j}} . \tag{7}
\end{align*}
$$

Equality holds if and only if the nonzero eigenvalues of matrix G with $r_{i}=r(i=1,2, \ldots, n+1)$ are all equal.

If we take $\lambda_{i}^{2}=M_{i i}(i=1,2, \ldots, n+1)$ in (7), we get an inequality for the in-radius and the edge lengths of a simplex as follows.

Corollary 3 For an n-simplex Ω_{n} in $S_{n}(1)$, we have

$$
\begin{equation*}
\cos ^{2} r \leq \frac{1}{\sum_{i=1}^{n+1} M_{i i}}\left[\frac{n}{2(n+1)}\left(\sum_{i=1}^{n+1} M_{i i}+1\right)^{2}-\sum_{1 \leq i<j \leq n+1} M_{i i} M_{j j}+\sum_{1 \leq i<j \leq n+1} M_{i j}^{2}\right] . \tag{8}
\end{equation*}
$$

Equality holds if and only if the nonzero eigenvalues of matrix G with $r_{i}=r$ and $\lambda_{i}=\sqrt{M_{i i}}$ $(i=1,2, \ldots, n+1)$ are all equal.

Put $\lambda_{i}=1(i=1,2, \ldots, n+1)$ in (6) and (7), and we get the following corollary.

Corollary 4 For an n-simplex Ω_{n} in $S_{n}(1)$, we have

$$
\begin{equation*}
\cos ^{2} r \leq \frac{2 n^{2}+3 n}{2(n+1)^{2}}+\frac{1}{n+1} \sum_{1 \leq i<j \leq n+1} \frac{M_{i j}^{2}}{M_{i i} M_{i j}}, \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
\cos ^{2} r \leq \frac{2 n^{2}+3 n}{2(n+1)^{2}}+\frac{1}{n+1} \sum_{1 \leq i<j \leq n+1} \cos ^{2} \varphi_{i j} \tag{10}
\end{equation*}
$$

Equality holds if and only if the nonzero eigenvalues of matrix G with $r_{i}=r$ and $\lambda_{i}=1$ $(i=1,2, \ldots, n+1)$ are all equal.

Besides, we obtain an inequality for the edge lengths and circumradius of an n-simplex Ω_{n} in $S_{n}(1)$ as follows.

Theorem 2 Let $\rho_{i j}(i, j=1,2, \ldots, n+1)$ and R be the edge lengths and the circumradius of an n-simplex Ω_{n} in $S_{n}(1)$,respectively; let $x_{i}>0(i=1,2, \ldots, n+1)$ be real numbers, then we have

$$
\begin{equation*}
\sum_{1 \leq i<j \leq n+1} x_{i} x_{j} \sin ^{2} \rho_{i j} \leq\left[\frac{n}{2(n+1)}\left(\sum_{i=1}^{n+1} x_{i}+1\right)^{2}-\sum_{i=1}^{n+1} x_{i}\right]+\left(\sum_{i=1}^{n+1} x_{i}\right) \cos ^{2} R . \tag{11}
\end{equation*}
$$

Equality holds if and only if the nonzero eigenvalues of matrix B are all equal. Here

$$
B=\left[\begin{array}{ccc}
& & \sqrt{x_{1}} \cos R \tag{12}\\
& \begin{array}{c}
\sqrt{x_{i} x_{j}} \cos \rho_{i j} \\
\\
\sqrt{x_{1}} \cos R
\end{array} \cdots \quad \sqrt{x_{n+1}} \cos R & 1
\end{array}\right]
$$

If take $x_{1}=x_{2}=\cdots=x_{n+1}=1$ in Theorem 2, we get an inequality as follows.

Corollary 5 For an n-simplex Ω_{n} in $S_{n}(1)$, we have

$$
\begin{equation*}
\sum_{1 \leq i<j \leq n+1} \sin ^{2} \rho_{i j} \leq \frac{n^{3}+2 n^{2}-2}{2(n+1)}+(n+1) \cos ^{2} R, \tag{13}
\end{equation*}
$$

with equality holding if and only if the nonzero eigenvalues of matrix B with $x_{1}=x_{2}=\cdots=$ $x_{n+1}=1$ are all equal.

Finally, we give an inequality for edge lengths and altitudes of an n-simplex in $S_{n}(1)$ as follows.

Theorem 3 Let $h_{i}(i=1,2, \ldots, n+1)$ and M be the altitudes and the edge matrix of an n-simplex Ω_{n} in $S_{n}(1)$, respectively; let $x_{i}>0(i=1,2, \ldots, n+1)$ be real numbers, then we have

$$
\begin{equation*}
\sum_{i=1}^{n+1}\left(\prod_{\substack{j=1 \\ j \neq i}}^{n+1} x_{j}\right) \csc ^{2} h_{i} \geq(n+1)\left(\prod_{i=1}^{n+1} x_{i}\right)^{\frac{n}{n+1}} \cdot|M|^{\frac{-1}{n+1}} \tag{14}
\end{equation*}
$$

with equality holding if and only if the eigenvalues of matrix Q are all equal. Here

$$
\begin{equation*}
Q=\left(\sqrt{x_{i} x_{j}} \cos \rho_{i j}\right)_{i, j=1}^{n+1}, \quad M=\left(\cos \rho_{i j}\right)_{i, j=1}^{n+1} . \tag{15}
\end{equation*}
$$

If we take $x_{i}=\csc ^{2} h_{i}(i=1,2, \ldots, n+1)$ in (14), we get the following corollary.

Corollary 6 For an n-simplex Ω_{n} in $S_{n}(1)$, we have

$$
\begin{equation*}
\prod_{i=1}^{n+1} \sin h_{i} \leq|M|^{\frac{1}{2}} \leq\left[\frac{2}{n(n+1)} \sum_{1 \leq i<j \leq n+1} \sin ^{2} \rho_{i j}\right]^{\frac{n+1}{4}}, \tag{16}
\end{equation*}
$$

with equality holding if Ω_{n} is regular.

We will prove $|M|^{\frac{1}{2}} \leq\left[\frac{2}{n(n+1)} \sum_{1 \leq i<j \leq n+1} \sin ^{2} \rho_{i j}\right]^{\frac{n+1}{4}}$ and we have equality if Ω_{n} is regular in the next section.

3 Proof of theorems

To prove the theorems in the above section, we need some lemmas.

Lemma 1 Let $M=\left(\cos \rho_{i j}\right)_{i, j=1}^{n+1}$ be the edge matrix of an n-simplex Ω_{n} in $S_{n}(1)$, then M is a positive definite symmetric matrix with diagonal entries equal to 1 .

For the proof of Lemma 1 one is referred to $[3,11]$.

Lemma 2 Let $\varphi_{i j}$ be the dihedral angle formed by two faces f_{i} and f_{j} of an n-simplex Ω_{n} in $S_{n}(1)$ for $i \neq j, i, j=1,2, \ldots, n+1$, and $\varphi_{i i}=\pi(i=1,2, \ldots, n+1)$, then the Gram matrix $A=\left(-\cos \varphi_{i j}\right)_{i, j=1}^{n+1}$ is positive definite symmetric matrix with diagonal entries equal to 1.

For the proof of Lemma 2 one is referred to [1].

Lemma 3 (see [12]) Let μ be the set of all points and oriented ($n-1$)-dimensional hyperplanes in the spherical space $S_{n}(1)$. For arbitrary m elements $e_{1}, e_{2}, \ldots, e_{m}$ of μ, define $g_{i j}$ as follows:
(i) if e_{i} and e_{j} are two points, then $g_{i j}=\cos \overparen{e_{i} e_{j}}$ (where $\overparen{e_{i} e_{j}}$ be spherical distance between e_{i} and e_{j});
(ii) if e_{i} and e_{j} are unit outer normals of two unit outer normal of oriented, then $g_{i j}=\cos \widehat{e_{i} e_{j}}$ (where $\widehat{e_{i} e_{j}}$ is dihedral angle formed by e_{i} and e_{j});
(iii) if either of e_{i} and e_{j} is a point, and another is an outer normal, then $g_{i j}=\sin h_{i j}$ (where $h_{i j}$ is the spherical distance with sign based on the direction from the point to the hyperplane).
If $m>n+1$, then

$$
\operatorname{det}\left(g_{i j}\right)_{i, j=1}^{m}=0
$$

Lemma 4 Let h_{i} be the altitude from vertex P_{i} of an n-simplex Ω_{n} in $S_{n}(1)$ for $i=1,2, \ldots$, $n+1$, and $M=\left(\cos \rho_{i j}\right)_{i, j=1}^{n+1}$ the edge matrix, then we have

$$
\begin{equation*}
\sin ^{2} h_{i}=\frac{|M|}{M_{i i}} \quad(i=1,2, \ldots, n+1) \tag{17}
\end{equation*}
$$

For the proof of Lemma 4 one is referred to [13].

Proof of Theorem 1 Let e_{i} is the unit outer normal of the oriented $f_{i}(i=1,2, \ldots, n+1)$ and the point $e_{n+2}=D$, such that $\widehat{e_{i} e_{j}}=\pi-\varphi_{i j}(i, j=1,2, \ldots, n+1)$ and the spherical distance with sign based on the direction from the point e_{n+2} to the hyperplane e_{i} is r_{i} for $i=1,2, \ldots, n+1$.

By Lemma 2 we know that the $(n+1) \times(n+1)$-order matrix $\left(\cos \widehat{e_{i} e_{j}}\right)_{i, j=1}^{n+1}=\left(-\cos \varphi_{i j}\right)_{i, j=1}^{n+1}=$ A is a positive definite symmetric matrix. Because $\lambda_{i} \neq 0(i=1,2, \ldots, n+1)$, the matrix $T=\left(-\lambda_{i} \lambda_{j} \cos \varphi_{i j}\right)_{i, j=1}^{n+1}$ is also a positive definite symmetric matrix.

By Lemma 3 we have

$$
B=\left|\begin{array}{cccc}
& & & \sin r_{1} \tag{18}\\
& & \vdots \\
-\cos \varphi_{i j} & & \sin r_{n+1} \\
\sin r_{1} & \cdots & \sin r_{n+1} & 1
\end{array}\right|=0 .
$$

From (18) and $\lambda_{i} \neq 0(i=1,2, \ldots, n+1)$, we get

$$
\operatorname{det} G=\left|\begin{array}{ccc}
& & \lambda_{1} \sin r_{1} \tag{19}\\
\begin{array}{lll}
-\lambda_{i} \lambda_{j} \cos \varphi_{i j} & \vdots \\
\lambda_{1} \sin r_{1} & \cdots & \lambda_{n+1} \sin r_{n+1}
\end{array} & \lambda_{n+1} \sin r_{n+1}
\end{array}\right|=0 .
$$

Because the matrix $T=\left(-\lambda_{i} \lambda_{j} \cos \varphi_{i j}\right)_{i, j=1}^{n+1}$ is also a positive definite symmetric matrix and $\operatorname{det} G=0$, the matrix G is a semi-positive definite symmetric matrix and the rank of matrix G is $n+1$. Let $u_{i}>0(i=1,2, \ldots, n+1)$ and $u_{n+2}=0$ be the eigenvalues of the matrix G, and

$$
\sigma_{1}=\sum_{i=1}^{n+2} u_{i}=\sum_{i=1}^{n+1} u_{i}, \quad \sigma_{2}=\sum_{1 \leq i<j \leq n+2} u_{i} u_{j}=\sum_{1 \leq i<j \leq n+1} u_{i} u_{j} .
$$

Using Maclaurin's inequality [5], we have

$$
\begin{equation*}
\left(\frac{1}{n+1} \sigma_{1}\right)^{2} \geq \frac{2}{n(n+1)} \sigma_{2} \tag{20}
\end{equation*}
$$

Equality holds if and only if $u_{1}=u_{2}=\cdots=u_{n+1}$.
By the relation between the eigenvalues and the principal minors of the matrix G, we have

$$
\begin{equation*}
\sigma_{1}=\sum_{i=1}^{n+1} \lambda_{i}^{2}+1, \quad \sigma_{2}=\sum_{1 \leq i<j \leq n+1} \lambda_{i}^{2} \lambda_{j}^{2} \sin ^{2} \varphi_{i j}+\sum_{i=1}^{n+1} \lambda_{i}^{2} \cos ^{2} r_{i} . \tag{21}
\end{equation*}
$$

Substituting (21) into (20), we get inequality (1). It is easy to see that equality holds in (1) if and only if the nonzero eigenvalues of matrix G are all equal.

Proof of Theorem 2 Let C be the circumcenter of Ω_{n}, then $\widehat{C P_{i}}=R(i=1,2, \ldots, n+1)$. For real numbers $x_{i}>0(i=1,2, \ldots, n+1)$, by Lemma 1 we know that the matrix Q in (15) is a positive definite symmetric matrix. We take points $e_{i}=P_{i}(i=1,2, \ldots, n+1)$ and $e_{n+2}=C$,
and by Lemma 3 we have

$$
\left|\begin{array}{cccc}
& & & \cos R \\
& & & \\
& & & \\
\cos \rho_{i j} & & \\
\cos R & \cdots & \cos R & 1
\end{array}\right|=0
$$

From this and $x_{i}>0(i=1,2, \ldots, n+1)$, we get

$$
\left.\operatorname{det} B=\left\lvert\, \begin{array}{ccc}
& & \sqrt{x_{1}} \cos R \tag{22}\\
\sqrt{\sqrt{x_{i} x_{j}} \cos \rho_{i j}} & \vdots \\
& & \\
\sqrt{x_{1}} \cos R & \cdots & \sqrt{x_{n+1}} \cos R
\end{array}\right.\right]=0 .
$$

Because the matrix $Q=\left(\sqrt{x_{i} x_{j}} \cos \rho_{i j}\right)_{i, j=1}^{n+1}$ is positive definite symmetric and $\operatorname{det} B=0$, the matrix B is a semi-positive definite symmetric matrix and its rank is $n+1$. Let $v_{i}>0$ $(i=1,2, \ldots, n+1), v_{n+2}=0$ be the eigenvalues of matrix B, and

$$
\sigma_{1}=\sum_{i=1}^{n+2} v_{i}=\sum_{i=1}^{n+1} v_{i}, \quad \sigma_{2}=\sum_{1 \leq i<j \leq n+2} v_{i} v_{j}=\sum_{1 \leq i<j \leq n+1} v_{i} v_{j} .
$$

Using Maclaurin's inequality [5], we have

$$
\begin{equation*}
\left(\frac{1}{n+1} \sigma_{1}\right)^{2} \geq \frac{2}{n(n+1)} \sigma_{2} . \tag{23}
\end{equation*}
$$

Equality holds if and only if $v_{1}=v_{2}=\cdots=v_{n+1}$.
By the relation between the eigenvalues and the principal minors of the matrix B, we have

$$
\begin{equation*}
\sigma_{1}=\sum_{i=1}^{n+1} x_{i}+1, \quad \sigma_{2}=\sum_{1 \leq i<j \leq n+1} x_{i} x_{j} \sin ^{2} \rho_{i j}+\sum_{i=1}^{n+1} x_{i}\left(1-\cos ^{2} R\right) . \tag{24}
\end{equation*}
$$

Substituting (24) into (23), we get inequality (11). It is easy to see that equality holds in (11) if and only if the nonzero eigenvalues of matrix B are all equal.

Proof of Theorem 3 From $x_{i}>0(i=1,2, \ldots, n+1)$ and the edge matrix $M=\left(\cos \rho_{i j}\right)_{i, j=1}^{n+1}$ of Ω_{n} being a positive definite symmetric matrix, we know that the matrix Q in (15) is also a positive definite symmetric matrix. Let $a_{i}>0(i=1,2, \ldots, n+1)$ be the eigenvalues of the matrix Q, and

$$
\sigma_{n}=\sum_{i=1}^{n+1} \prod_{\substack{j=1 \\ j \neq i}}^{n+1} a_{j}, \quad \sigma_{n+1}=\prod_{i=1}^{n+1} a_{i}
$$

By Maclaurin's inequality [5], we have

$$
\begin{equation*}
\left(\frac{1}{n+1} \sigma_{n}\right)^{\frac{1}{n}} \geq\left(\sigma_{n+1}\right)^{\frac{1}{n+1}} \tag{25}
\end{equation*}
$$

Equality holds if and only if $a_{1}=a_{2}=\cdots=a_{n+1}$.
By the relation between the eigenvalues and the principal minors of the matrix Q, we have

$$
\begin{align*}
& \sigma_{n}=\sum_{i=1}^{n+1} Q_{i i}=\sum_{i=1}^{n+1}\left(\prod_{\substack{j=1 \\
j \neq i}}^{n+1} x_{j}\right) M_{i i} \quad(i=1,2, \ldots, n+1), \tag{26}\\
& \sigma_{n+1}=|Q|=\left(\prod_{i=1}^{n+1} x_{i}\right) \cdot|M| . \tag{27}
\end{align*}
$$

From (25), (26), and (27), we get

$$
\begin{equation*}
\sum_{i=1}^{n+1}\left(\prod_{\substack{j=1 \\ j \neq i}}^{n+1} x_{j}\right) M_{i i} \geq(n+1)\left(\prod_{i=1}^{n+1} x_{i}\right)^{\frac{n}{n+1}} \cdot|M|^{\frac{n}{n+1}} \tag{28}
\end{equation*}
$$

By Lemma 4 we have

$$
\begin{equation*}
M_{i i}=|M| \csc ^{2} h_{i} \quad(i=1,2, \ldots, n+1) \tag{29}
\end{equation*}
$$

Substituting (29) into (28), we get inequality (14). It is easy to see that equality holds in (14) if and only if the eigenvalues of matrix Q are all equal.

Finally, we prove that inequality (30) is valid:

$$
\begin{equation*}
|M|^{\frac{1}{2}} \leq\left[\frac{2}{n(n+1)} \sum_{1 \leq i<j \leq n+1} \sin ^{2} \rho_{i j}\right]^{\frac{n+1}{4}} \tag{30}
\end{equation*}
$$

Let $b_{i}(i=1,2, \ldots, n+1)$ be the eigenvalues of the edge matrix $M=\left(\cos \rho_{i j}\right)_{i, j=1}^{n+1}$. Since the matrix M is a positive definite symmetric matrix, $b_{i}>0$. Let

$$
\sigma_{2}=\sum_{1 \leq i<j \leq n+1} b_{i} b_{j}, \quad \sigma_{n+1}=\prod_{i=1}^{n+1} b_{i} .
$$

By Maclaurin's inequality [5], we have

$$
\begin{equation*}
\left(\frac{2}{n(n+1)} \sigma_{2}\right)^{\frac{1}{2}} \geq\left(\sigma_{n+1}\right)^{\frac{1}{n+1}} \tag{31}
\end{equation*}
$$

Equality holds if and only if $b_{1}=b_{2}=\cdots=b_{n+1}$.
By the relation between the eigenvalues and the principal minors of the matrix M, we have

$$
\begin{equation*}
\sigma_{2}=\sum_{1 \leq i<j \leq n+1} \sin ^{2} \rho_{i j}, \quad \sigma_{n+1}=|M| . \tag{32}
\end{equation*}
$$

From (31) and (32), we get inequality (30). If Ω_{n} is a regular simplex in $S_{n}(1)$, then $\rho_{i j}=\frac{\pi}{2}$ $(i \neq j, i, j=1,2, \ldots, n+1),|M|=1$ and $M_{i i}=1(i=1,2, \ldots, n+1)$. By (17) we have $\sin h_{i}=1$ ($i=1,2, \ldots, n+1$); thus equality holds in (16) if Ω_{n} is a regular simplex.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors co-authored this paper. All authors read and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics and Teachers Educational Research, Hefei Normal University, Hefei, 230601, P.R. China. ${ }^{2}$ Anhui Xinhua University, Hefei, 230088, P.R. China. ${ }^{3}$ School of mathematical Since, Anhui University, Hefei, 230039, P.R. China.

Acknowledgements

The work was supported by the Doctoral Programs Foundation of Education Ministry of China (20113401110009) and the Foundation of Anhui higher school (KJ2013A220). We are grateful for the help.

Received: 26 August 2013 Accepted: 20 January 2014 Published: 10 Feb 2014

References

1. Feng, L: On a problem of Fenchel. Geom. Dedic. 64, 277-282 (1997)
2. Vinbergh, EB: Geometry II. Encyclopaedia of Mathematical Sciences, vol. 29. Springer, Berlin (1993)
3. Blumenthal, LM: Theory and Applications of Distance Geometry. Chelsea, New York (1970)
4. Karhga, B, Yakut, AT: Vertex angles of a simplex in hyperbolic space H^{n}. Geom. Dedic. 120, 49-58 (2006)
5. Mitrinović, DS, Pečarić, JE, Volenec, V: Recent Advances in Geometric Inequalities. Kluwer Academic, Dordrecht (1989)
6. Leng, GS, Ma, TY, Xianzheng, A: Inequalities for a simplex and an interior point. Geom. Dedic. 85, 1-10 (2001)
7. Yang, SG: Three geometric inequalities for a simplex. Geom. Dedic. 57, 105-110 (1995)
8. Gerber, L: The orthocentric simplex as an extreme simplex. Pac. J. Math. 56, 97-111 (1975)
9. Li, XY, Leng, GS, Tang, LH: Inequalities for a simplex and any point. Math. Inequal. Appl. 8, 547-557 (2005)
10. Yang, SG: Geometric inequalities for a simplex. Math. Inequal. Appl. 8, 727-733 (2006)
11. Karliga, B: Edge matrix of hyperbolic simplices. Geom. Dedic. 109, 1-6 (2004)
12. Yang, L, Zhang, JZ: The concept of the rank of an abstract distance space. J. Univ. Sci. Technol. China 10, 52-65 (1980) (in Chinese)
13. Yang, SG: Two results on metric addition in spherical space. Northeast. Math. J. 13(3), 357-360 (1997)
[^1]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: ©2014 Shi-guo et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: 10.1186/1029-242X-2014-59

 Cite this article as: Shi-guo et al.: Inequalities for an n-simplex in spherical space $S_{n}(1)$. Journal of Inequalities and Applications 2014, 2014:59

