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Abstract
For an n-dimensional simplex �n and any point D in spherical space Sn(1), we
establish an inequality for edge lengths of �n and distances from point D to faces of
�n, and from this we obtain some inequalities for the edge lengths and the in-radius
of the simplex �n. Besides, we establish some inequalities for the edge lengths and
altitudes of a spherical simplex, and we establish inequalities for the edge lengths and
circumradius of �n.
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1 Introduction
The n-dimensional spherical space of curvature  is defined as follows (see [–]).
Let Sn() = {x(x,x, . . . ,xn+) | ∑n+

i= xi = } be the n-dimensional unit sphere in the
(n+)-dimensional Euclidean En+. For any two points x(x,x, . . . ,xn+), y(y, y, . . . , yn+) ∈
Sn(), the spherical distance between points x and y is defined as the smallest non-negative
number Ùxy such that

cosÙxy = xy + xy + · · · + xn+yn+.

The n-dimensional unit sphere Sn() with the above spherical distance is called the n-
dimensional spherical space of curvature . Actually, the spherical space Sn() is the bound-
ary of an n-dimensional sphere of radius  in the (n+ )-dimensional Euclidean space En+

with geodesic metric (that is, shorter arc).
Let �n be an n-dimensional simplex with vertices Pi (i = , , . . . ,n + ) in the n-

dimensional spherical space Sn(), r and R the in-radius and the circumradius of �n, re-
spectively. Let ρij = P̃iPj (i �= j, i, j = , , . . . ,n + ) be the edge lengths of the spherical sim-
plex �n, hi the altitude of �n from vertex Pi, i.e. the spherical distance from point Pi to
the face fi = {P · · ·Pi–Pi+ · · ·Pn+} ((n–)-dimensional spherical simplex) of �n. Let D be
any point inside the simplex �n and ri be the spherical distance from point D to the face
fi of �n for i = , , . . . ,n + .
For an n-simplex �n in the n-dimensional Euclidean space En, some important inequal-

ities for the edge lengths of �n and ri (i = , , . . . ,n + ), inequalities for edge lengths and
in-radius, circumradius, and altitudes of �n were established (see [–]). But similar in-
equalities for an n-simplex in the spherical space Sn() have not been established. In this
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paper, we discuss the problems of inequalities for a spherical simplex and obtain some
related inequalities for an n-simplex in the spherical space Sn().

2 Inequalities for an n-simplex in the spherical space Sn(1)
In this section, we give some inequalities for the distances from an interior point to the
faces of spherical simplex �n and inequalities for edge lengths and in-radius, circumra-
dius, and altitudes of �n. Our main results are the following theorems.
Let ϕij (i �= j, i, j = , , . . . ,n + ) be the dihedral angle formed by two faces fi and fj of an

n-simplex �n in the spherical space Sn().

Theorem  Let �n be an n-simplex in the n-dimensional spherical space Sn() with dihe-
dral angles ϕij (i �= j, i, j = , , . . . ,n + ), D be any interior point of simplex �n and ri the
distance from the point D to the face fi of �n for i = , , . . . ,n + . For any real numbers
λi �=  (i = , , . . . ,n + ), we have

n+∑
i=

λ
i cos

 ri ≤
ñ

n
(n + )

Ç n+∑
i=

λ
i + 
å

–
∑

≤i<j≤n+

λ
i λ


j

ô

+
∑

≤i<j≤n+

λ
i λ


j cos

 ϕij, ()

with equality if and only if the nonzero eigenvalues of matrix G are all equal. Here

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ sin r
–λiλj cosϕij λ sin r

...
λn+ sin rn+

λ sin r λ sin r · · · λn+ sin rn+ 

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, ()

and ϕii = π (i = , , . . . ,n + ).

Let M = (cosρij)n+i,j= be the edge matrix of an n-simplex �n in Sn(), then M is a posi-
tive definite symmetric matrix with diagonal entries equal to  (see [, ]); by the cosine
theorem of a simplex �n in Sn() (see []), we have

cosϕij = –
Mij√

Mii
√

Mjj
(i, j = , , . . . ,n + ). ()

Here Mij denotes the cofactor of matrix M corresponding to the (i, j)-entry. From Theo-
rem  and () we get an inequality for ri (i = , , . . . ,n+) and the edge lengths of spherical
simplex �n as follows.

Theorem ′ For any interior point D of an n-simplex �n in Sn() and any real numbers
λi �=  (i = , , . . . ,n + ), we have

n+∑
i=

λ
i cos

 ri ≤
ñ

n
(n + )

Ç n+∑
i=

λ
i + 
å

–
∑

≤i<j≤n+

λ
i λ


j

ô
+

∑
≤i<j≤n+

λ
i λ


j

M
ij

MiiMjj
, ()

with equality if and only if the nonzero eigenvalues of matrix G are all equal.
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If we take λ
i =Mii (i = , , . . . ,n + ) in (), we get the following corollary.

Corollary  For any interior point D of an n-simplex �n in Sn(), we have

n+∑
i=

Mii cos
 ri ≤

ñ
n

(n + )

Ç n+∑
i=

Mii + 
å

–
∑

≤i<j≤n+

MiiMjj

ô
+

∑
≤i<j≤n+

M
ij. ()

Equality holds if and only if the nonzero eigenvalues of matrix G with λi =
√
Mii (i =

, , . . . ,n + ) are all equal.

If we take the point D to be the in-center of �n, then ri = r (i = , , . . . ,n + ) and from
Theorem  and Theorem ′, we get an inequality for the simplex �n as follows.

Corollary  For an n-simplex �n in Sn() and real numbers λi �=  (i = , , . . . ,n + ), we
haveÇ n+∑

i=

λ
i

å
cos r ≤

ñ
n

(n + )

Ç n+∑
i=

λ
i + 
å

–
∑

≤i<j≤n+

λ
i λ


j

ô

+
∑

≤i<j≤n+

λ
i λ


j cos

 ϕij, ()

or Ç n+∑
i=

λ
i

å
cos r ≤

ñ
n

(n + )

Ç n+∑
i=

λ
i + 
å

–
∑

≤i<j≤n+

λ
i λ


j

ô

+
∑

≤i<j≤n+

λ
i λ


j

M
ij

MiiMjj
. ()

Equality holds if and only if the nonzero eigenvalues ofmatrix Gwith ri = r (i = , , . . . ,n+)
are all equal.

If we take λ
i =Mii (i = , , . . . ,n+ ) in (), we get an inequality for the in-radius and the

edge lengths of a simplex as follows.

Corollary  For an n-simplex �n in Sn(), we have

cos r ≤ ∑n+
i= Mii

ñ
n

(n + )

Ç n+∑
i=

Mii + 
å

–
∑

≤i<j≤n+

MiiMjj +
∑

≤i<j≤n+

M
ij

ô
. ()

Equality holds if and only if the nonzero eigenvalues of matrix G with ri = r and λi =
√
Mii

(i = , , . . . ,n + ) are all equal.

Put λi =  (i = , , . . . ,n + ) in () and (), and we get the following corollary.

Corollary  For an n-simplex �n in Sn(), we have

cos r ≤ n + n
(n + )

+


n + 

∑
≤i<j≤n+

M
ij

MiiMjj
, ()
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or

cos r ≤ n + n
(n + )

+


n + 

∑
≤i<j≤n+

cos ϕij. ()

Equality holds if and only if the nonzero eigenvalues of matrix G with ri = r and λi = 
(i = , , . . . ,n + ) are all equal.

Besides, we obtain an inequality for the edge lengths and circumradius of an n-simplex
�n in Sn() as follows.

Theorem  Let ρij (i, j = , , . . . ,n + ) and R be the edge lengths and the circumradius of
an n-simplex �n in Sn(),respectively; let xi >  (i = , , . . . ,n + ) be real numbers, then we
have

∑
≤i<j≤n+

xixj sin ρij ≤
ñ

n
(n + )

Ç n+∑
i=

xi + 
å

–
n+∑
i=

xi

ô
+
Ç n+∑

i=

xi

å
cos R. ()

Equality holds if and only if the nonzero eigenvalues of matrix B are all equal. Here

B =

⎡
⎢⎢⎢⎢⎣

√x cosR
√xixj cosρij

...
√xn+ cosR√x cosR · · · √xn+ cosR 

⎤
⎥⎥⎥⎥⎦
. ()

If take x = x = · · · = xn+ =  in Theorem , we get an inequality as follows.

Corollary  For an n-simplex �n in Sn(), we have

∑
≤i<j≤n+

sin ρij ≤ n + n – 
(n + )

+ (n + ) cos R, ()

with equality holding if and only if the nonzero eigenvalues of matrix B with x = x = · · · =
xn+ =  are all equal.

Finally, we give an inequality for edge lengths and altitudes of an n-simplex in Sn() as
follows.

Theorem  Let hi (i = , , . . . ,n + ) and M be the altitudes and the edge matrix of an
n-simplex �n in Sn(), respectively; let xi >  (i = , , . . . ,n + ) be real numbers, then we
have

n+∑
i=

Çn+∏
j=
j �=i

xj

å
csc hi ≥ (n + )

Çn+∏
i=

xi

å n
n+

· |M| –
n+ , ()

with equality holding if and only if the eigenvalues of matrix Q are all equal. Here

Q = (√xixj cosρij)n+i,j=, M = (cosρij)n+i,j=. ()
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If we take xi = csc hi (i = , , . . . ,n + ) in (), we get the following corollary.

Corollary  For an n-simplex �n in Sn(), we have

n+∏
i=

sinhi ≤ |M|  ≤
ï


n(n + )

∑
≤i<j≤n+

sin ρij

ò n+

, ()

with equality holding if �n is regular.

We will prove |M|  ≤ [ 
n(n+)

∑
≤i<j≤n+ sin

 ρij]
n+
 and we have equality if �n is regular

in the next section.

3 Proof of theorems
To prove the theorems in the above section, we need some lemmas.

Lemma  Let M = (cosρij)n+i,j= be the edge matrix of an n-simplex �n in Sn(), then M is a
positive definite symmetric matrix with diagonal entries equal to .

For the proof of Lemma  one is referred to [, ].

Lemma  Let ϕij be the dihedral angle formed by two faces fi and fj of an n-simplex �n

in Sn() for i �= j, i, j = , , . . . ,n + , and ϕii = π (i = , , . . . ,n + ), then the Gram matrix
A = (– cosϕij)n+i,j= is positive definite symmetric matrix with diagonal entries equal to .

For the proof of Lemma  one is referred to [].

Lemma  (see []) Let μ be the set of all points and oriented (n – )-dimensional hyper-
planes in the spherical space Sn(). For arbitrary m elements e, e, . . . , em of μ, define gij as
follows:

(i) if ei and ej are two points, then gij = cos êiej (where êiej be spherical distance between
ei and ej);

(ii) if ei and ej are unit outer normals of two unit outer normal of oriented , then
gij = cos”eiej (where”eiej is dihedral angle formed by ei and ej);

(iii) if either of ei and ej is a point, and another is an outer normal, then gij = sinhij
(where hij is the spherical distance with sign based on the direction from the point to
the hyperplane).

If m > n + , then

det(gij)mi,j= = .

Lemma  Let hi be the altitude from vertex Pi of an n-simplex �n in Sn() for i = , , . . . ,
n + , and M = (cosρij)n+i,j= the edge matrix, then we have

sin hi =
|M|
Mii

(i = , , . . . ,n + ). ()

For the proof of Lemma  one is referred to [].
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Proof of Theorem  Let ei is the unit outer normal of the oriented fi (i = , , . . . ,n + ) and
the point en+ =D, such that”eiej = π –ϕij (i, j = , , . . . ,n+) and the spherical distancewith
sign based on the direction from the point en+ to the hyperplane ei is ri for i = , , . . . ,n+.
By Lemma we know that the (n+)× (n+)-ordermatrix (cos”eiej)n+i,j= = (– cosϕij)n+i,j= =

A is a positive definite symmetric matrix. Because λi �=  (i = , , . . . ,n + ), the matrix
T = (–λiλj cosϕij)n+i,j= is also a positive definite symmetric matrix.
By Lemma  we have

B =

∣∣∣∣∣∣∣∣∣∣∣

sin r

– cosϕij
...

sin rn+
sin r · · · sin rn+ 

∣∣∣∣∣∣∣∣∣∣∣

= . ()

From () and λi �=  (i = , , . . . ,n + ), we get

detG =

∣∣∣∣∣∣∣∣∣∣∣

λ sin r

–λiλj cosϕij
...

λn+ sin rn+
λ sin r · · · λn+ sin rn+ 

∣∣∣∣∣∣∣∣∣∣∣

= . ()

Because thematrix T = (–λiλj cosϕij)n+i,j= is also a positive definite symmetric matrix and
detG = , thematrixG is a semi-positive definite symmetric matrix and the rank ofmatrix
G is n+ . Let ui >  (i = , , . . . ,n+ ) and un+ =  be the eigenvalues of the matrixG, and

σ =
n+∑
i=

ui =
n+∑
i=

ui, σ =
∑

≤i<j≤n+

uiuj =
∑

≤i<j≤n+

uiuj.

Using Maclaurin’s inequality [], we have

Å


n + 
σ

ã
≥ 

n(n + )
σ. ()

Equality holds if and only if u = u = · · · = un+.
By the relation between the eigenvalues and the principal minors of the matrix G, we

have

σ =
n+∑
i=

λ
i + , σ =

∑
≤i<j≤n+

λ
i λ


j sin

 ϕij +
n+∑
i=

λ
i cos

 ri. ()

Substituting () into (), we get inequality (). It is easy to see that equality holds in ()
if and only if the nonzero eigenvalues of matrix G are all equal. �

Proof of Theorem  Let C be the circumcenter of �n, then C̃Pi = R (i = , , . . . ,n + ). For
real numbers xi >  (i = , , . . . ,n + ), by Lemma  we know that the matrix Q in () is a
positive definite symmetric matrix. We take points ei = Pi (i = , , . . . ,n + ) and en+ = C,
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and by Lemma  we have

∣∣∣∣∣∣∣∣∣∣∣

cosR

cosρij
...

cosR
cosR · · · cosR 

∣∣∣∣∣∣∣∣∣∣∣

= .

From this and xi >  (i = , , . . . ,n + ), we get

detB =

∣∣∣∣∣∣∣∣∣∣∣

√x cosR
√xixj cosρij

...
√xn+ cosR√x cosR · · · √xn+ cosR 

∣∣∣∣∣∣∣∣∣∣∣

= . ()

Because the matrix Q = (√xixj cosρij)n+i,j= is positive definite symmetric and detB = ,
the matrix B is a semi-positive definite symmetric matrix and its rank is n + . Let vi > 
(i = , , . . . ,n + ), vn+ =  be the eigenvalues of matrix B, and

σ =
n+∑
i=

vi =
n+∑
i=

vi, σ =
∑

≤i<j≤n+

vivj =
∑

≤i<j≤n+

vivj.

Using Maclaurin’s inequality [], we have

Å


n + 
σ

ã
≥ 

n(n + )
σ. ()

Equality holds if and only if v = v = · · · = vn+.
By the relation between the eigenvalues and the principal minors of the matrix B, we

have

σ =
n+∑
i=

xi + , σ =
∑

≤i<j≤n+

xixj sin ρij +
n+∑
i=

xi
(
 – cos R

)
. ()

Substituting () into (), we get inequality (). It is easy to see that equality holds
in () if and only if the nonzero eigenvalues of matrix B are all equal. �

Proof of Theorem  From xi >  (i = , , . . . ,n + ) and the edge matrix M = (cosρij)n+i,j=

of �n being a positive definite symmetric matrix, we know that the matrixQ in () is also
a positive definite symmetric matrix. Let ai >  (i = , , . . . ,n+ ) be the eigenvalues of the
matrix Q, and

σn =
n+∑
i=

n+∏
j=
j �=i

aj, σn+ =
n+∏
i=

ai.
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By Maclaurin’s inequality [], we have

Å


n + 
σn

ã 
n ≥ (σn+)


n+ . ()

Equality holds if and only if a = a = · · · = an+.
By the relation between the eigenvalues and the principal minors of the matrix Q, we

have

σn =
n+∑
i=

Qii =
n+∑
i=

Çn+∏
j=
j �=i

xj

å
Mii (i = , , . . . ,n + ), ()

σn+ = |Q| =
Çn+∏

i=

xi

å
· |M|. ()

From (), (), and (), we get

n+∑
i=

Çn+∏
j=
j �=i

xj

å
Mii ≥ (n + )

Çn+∏
i=

xi

å n
n+

· |M| n
n+ . ()

By Lemma  we have

Mii = |M| csc hi (i = , , . . . ,n + ). ()

Substituting () into (), we get inequality (). It is easy to see that equality holds in
() if and only if the eigenvalues of matrix Q are all equal.
Finally, we prove that inequality () is valid:

|M|  ≤
ï


n(n + )

∑
≤i<j≤n+

sin ρij

ò n+

. ()

Let bi (i = , , . . . ,n + ) be the eigenvalues of the edge matrixM = (cosρij)n+i,j=. Since the
matrixM is a positive definite symmetric matrix, bi > . Let

σ =
∑

≤i<j≤n+

bibj, σn+ =
n+∏
i=

bi.

By Maclaurin’s inequality [], we have

Å


n(n + )
σ

ã 
 ≥ (σn+)


n+ . ()

Equality holds if and only if b = b = · · · = bn+.
By the relation between the eigenvalues and the principal minors of the matrix M, we

have

σ =
∑

≤i<j≤n+

sin ρij, σn+ = |M|. ()
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From () and (), we get inequality (). If �n is a regular simplex in Sn(), then ρij = π


(i �= j, i, j = , , . . . ,n + ), |M| =  and Mii =  (i = , , . . . ,n + ). By () we have sinhi = 
(i = , , . . . ,n + ); thus equality holds in () if �n is a regular simplex. �
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