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Abstract
We study oscillatory behavior of a class of second-order forced differential equations
with mixed nonlinearities. Some new oscillation theorems are presented that improve
and complement those related results given in the literature. An example is provided
to illustrate the main results.
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1 Introduction
This paper is concerned with the oscillation of solutions to a class of second-order forced
differential equations with mixed nonlinearities

(
rx′)′(t) + q(t)x

(
τ(t)

)
+

n∑
i=

qi(t)
∣∣x(τi(t))∣∣βi–x(τi(t)) = e(t) sgn

(
x(t)

)
, (.)

where t ≥ t > , n ≥  is a natural number, βi ≥  (i = , , . . . ,n) are constants, r ∈
C([t,∞),R), qj, τj, e ∈ C([t,∞),R), r(t) > , r′(t) ≥ , qj(t) ≥  (j = , , , . . . ,n), e(t) ≤ .
We also assume that there exists a function τ ∈ C([t,∞),R) such that τ (t) ≤ τj(t) (j =
, , , . . . ,n), τ (t) ≤ t, limt→∞ τ (t) =∞, and τ ′(t) > .
We consider only those solutions x of equation (.) which satisfy condition sup{|x(t)| :

t ≥ T} >  for allT ≥ t.We assume that (.) possesses such solutions. As usual, a solution
of (.) is called oscillatory if it has arbitrarily large zeros on the interval [t,∞); otherwise,
it is termed nonoscillatory. Equation (.) is said to be oscillatory if all its solutions are
oscillatory.
Functional differential equations arise in many applied problems in natural sciences,

technology, and automatic control; see, for instance, Hale []. Inmechanical and engineer-
ing problems, questions related to the existence of oscillatory and nonoscillatory solutions
play an important role. As a result, many theoretical studies have been undertaken during
the past few years. We refer the reader to [–] and the references cited therein.
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In what follows, we briefly comment on the related results that motivate our study. Li
and Cheng [] studied a differential equation

(
r
∣∣x′∣∣α–x′)′(t) + q(t)

∣∣x(t)∣∣α–x(t) = e(t).

Zheng et al. [] considered the equation

(
r
∣∣x′∣∣α–x′)′(t) + q(t)

∣∣x(t)∣∣α–x(t) + n∑
i=

qi(t)
∣∣x(t)∣∣βi–x(t) = e(t).

Equation (.) was studied by Zhong et al. [] who established the following oscillation
theorem.

Theorem . (see [, Theorem .]) Assume that

∫ ∞

t
r–(t) dt =∞ (.)

and there exists a function ρ ∈ C([t,∞), (,∞)) such that

∫ ∞

t

(
ρ(t)Q(t) –

r(τ (t))(ρ ′
+(t))

ρ(t)τ ′(t)

)
dt =∞, (.)

where

Q(t) := q(t) +
n∑
i=

βi
[
n(βi – )

](–βi)/βi(qi(t))/βi ∣∣e(t)∣∣(βi–)/βi

and

ρ ′
+(t) :=max

{
,ρ ′(t)

}
. (.)

Then equation (.) is oscillatory.

The purpose of this paper is to refine Theorem . in some cases and analyze the oscilla-
tory behavior of solutions to (.) in the case when the integral in (.) is finite. This paper
proceeds as follows: in Section , we present our main results; in Section , an example is
provided to illustrate the results obtained.

2 Oscillation criteria
In what follows, all functional inequalities are tacitly assumed to hold eventually, that is,
for all t large enough. Before stating the main results, we begin with the following lemma.

Lemma . (Bernoulli’s inequality) For y≥ – and γ ≥ ,

( + y)γ ≥  + γ y.
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Theorem . Assume that condition (.) is satisfied, and let

n∑
i=

( – βi)qi(t) – e(t) ≥ . (.)

If there exists a function ρ ∈ C([t,∞), (,∞)) such that, for all constants M > ,

lim sup
t→∞

∫ t

t

[
ρ(s)

(
q(s) +

n∑
i=

βiqi(s) +
∑n

i=( – βi)qi(s) – e(s)
Mτ (s)

)

–
r(τ (s))(ρ ′

+(s))

ρ(s)τ ′(s)

]
ds =∞, (.)

where ρ ′
+ is defined as in (.), then equation (.) is oscillatory.

Proof Assume that (.) has a nonoscillatory solution x. Without loss of generality, we can
assume that x is an eventually positive solution, i.e., there exists a t ≥ t such that x(t) > 
for t ≥ t. Equation (.) yields

(
rx′)′(t) = –q(t)x

(
τ(t)

)
–

n∑
i=

qi(t)xβi
(
τi(t)

)
+ e(t) ≤ . (.)

With a proof similar to that of [, Theorem .], we conclude that

x(t) > , x′(t) > , x′′(t) ≤ ,
(
rx′)′(t)≤ . (.)

For t ≥ t, define a function

u(t) := ρ(t)
r(t)x′(t)
x(τ (t))

. (.)

Then u(t) >  for t ≥ t. Differentiating (.), by virtue of (.) and (.), we have x′(τ (t))≥
r(t)x′(t)/r(τ (t)), and so

u′(t) =
ρ ′(t)
ρ(t)

u(t) – ρ(t)
r(t)x′(t)
x(τ (t))

x′(τ (t))τ ′(t) – ρ(t)
q(t)x(τ(t))

x(τ (t))

– ρ(t)
∑n

i= qi(t)xβi (τi(t)) – e(t)
x(τ (t))

≤ ρ ′
+(t)

ρ(t)
u(t) –

τ ′(t)u(t)
ρ(t)r(τ (t))

– ρ(t)
[
q(t) +

∑n
i= qi(t)xβi (τi(t)) – e(t)

x(τ (t))

]
. (.)

Let y := x(τi(t)) – . It follows from Lemma . that

xβi
(
τi(t)

) ≥ βix
(
τi(t)

)
+  – βi. (.)
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Hence, we deduce that
∑n

i= qi(t)xβi (τi(t)) – e(t)
x(τ (t))

≥
∑n

i= qi(t)[βix(τi(t)) + ( – βi)] – e(t)
x(τ (t))

≥
n∑
i=

βiqi(t) +
∑n

i=( – βi)qi(t) – e(t)
x(τ (t))

. (.)

By virtue of (.), there exists a constantM >  such that

x(t)≤Mt.

Thus, by (.), we obtain

∑n
i= qi(t)xβi (τi(t)) – e(t)

x(τ (t))
≥

n∑
i=

βiqi(t) +
∑n

i=( – βi)qi(t) – e(t)
Mτ (t)

. (.)

Substitution of (.) into (.) implies that

u′(t) ≤ ρ ′
+(t)

ρ(t)
u(t) –

τ ′(t)u(t)
ρ(t)r(τ (t))

– ρ(t)

(
q(t) +

n∑
i=

βiqi(t) +
∑n

i=( – βi)qi(t) – e(t)
Mτ (t)

)

≤ r(τ (t))(ρ ′
+(t))

ρ(t)τ ′(t)
– ρ(t)

(
q(t) +

n∑
i=

βiqi(t) +
∑n

i=( – βi)qi(t) – e(t)
Mτ (t)

)
.

Integrating the latter inequality from t to t, we conclude that

∫ t

t

[
ρ(s)

(
q(s) +

n∑
i=

βiqi(s) +
∑n

i=( – βi)qi(s) – e(s)
Mτ (s)

)
–
r(τ (s))(ρ ′

+(s))

ρ(s)τ ′(s)

]
ds ≤ u(t),

which contradicts (.). This completes the proof. �

On the basis of Theorem ., we can obtain the following results due to condition (.).

Corollary . Assume that conditions (.) and (.) are satisfied. If there exists a function
ρ ∈ C([t,∞), (,∞)) such that

lim sup
t→∞

∫ t

t

[
ρ(s)

(
q(s) +

n∑
i=

βiqi(s)

)
–
r(τ (s))(ρ ′

+(s))

ρ(s)τ ′(s)

]
ds =∞,

where ρ ′
+ is defined as in (.), then equation (.) is oscillatory.

Using ρ(t) = t in Corollary ., we can get the following criterion.

Corollary . Assume that conditions (.) and (.) are satisfied. If

lim sup
t→∞

∫ t

t

[
s

(
q(s) +

n∑
i=

βiqi(s)

)
–
r(τ (s))
sτ ′(s)

]
ds =∞,

then equation (.) is oscillatory.
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In what follows, we derive some oscillation criteria for (.) in the case where

∫ ∞

t
r–(t) dt < ∞. (.)

Theorem . Assume that conditions (.) and (.) are satisfied, and let τj(t) ≤ t (j =
, , , . . . ,n). Suppose also that there exists a function ρ ∈ C([t,∞), (,∞)) such that (.)
holds. If

lim sup
t→∞

∫ t

t

[
δ(s)

(
q(s) +

n∑
i=

βiqi(s) +
∑n

i=( – βi)qi(s) – e(s)
K

)
–


r(s)δ(s)

]
ds =∞

(.)

holds for all constants K > , where

δ(t) :=
∫ ∞

t
r–(s) ds, (.)

then equation (.) is oscillatory.

Proof Assume that (.) has a nonoscillatory solution x. As above, we may assume that
there is a t ≥ t such that x(t) >  for t ≥ t. By virtue of (.), we have (.). Then there
exist two possible cases, i.e., x′(t) >  or

x′(t) < . (.)

Assume first that x′(t) > . Then we obtain (.). Proceeding as in the proof of Theo-
rem ., we can obtain a contradiction to (.). Suppose now that (.) holds. Define a
new function ω by

ω(t) :=
r(t)x′(t)
x(t)

, t ≥ t. (.)

Then ω(t) <  for t ≥ t and

ω′(t) =
(rx′)′(t)x(t) – r(t)x′(t)x′(t)

x(t)

=
–q(t)x(τ(t)) –

∑n
i= qi(t)xβi (τi(t)) + e(t)
x(t)

–
ω(t)
r(t)

. (.)

On the other hand, we have (.), and so

∑n
i= qi(t)xβi (τi(t)) – e(t)

x(t)
≥

∑n
i= qi(t)[βix(τi(t)) + ( – βi)] – e(t)

x(t)

≥
n∑
i=

βiqi(t) +
∑n

i=( – βi)qi(t) – e(t)
x(t)

(.)
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due to τi(t) ≤ t (i = , , . . . ,n). By (.), there exists a constant K >  such that x(t) ≤ K .
Hence, by virtue of (.), we conclude that

∑n
i= qi(t)xβi (τi(t)) – e(t)

x(t)
≥

n∑
i=

βiqi(t) +
∑n

i=( – βi)qi(t) – e(t)
K

. (.)

It follows now from (.), (.), and τ(t) ≤ t that

ω′(t) ≤ –q(t) –
n∑
i=

βiqi(t) –
∑n

i=( – βi)qi(t) – e(t)
K

–
ω(t)
r(t)

. (.)

Using the condition (rx′)′(t)≤ , we have, for s≥ t,

x′(s)≤ r(t)x′(t)
r(s)

.

Integrating the latter inequality from t to l, we deduce that

x(l) – x(t)≤ r(t)x′(t)
∫ l

t
r–(s) ds.

Passing to the limit as l → ∞, we have

–x(t)≤ r(t)x′(t)δ(t),

which yields

r(t)x′(t)
x(t)

δ(t)≥ –,

i.e.,

ω(t)δ(t)≥ –. (.)

Multiplying (.) by δ(t) and integrating the resulting inequality from t to t, we obtain

ω(t)δ(t) –ω(t)δ(t) +
∫ t

t
δ(s)

(
q(s) +

n∑
i=

βiqi(s) +
∑n

i=( – βi)qi(s) – e(s)
K

)
ds

+
∫ t

t

ω(s)
r(s)

ds +
∫ t

t

ω(s)δ(s)
r(s)

ds ≤ .

Hence, we derive from (.) that

∫ t

t

[
δ(s)

(
q(s) +

n∑
i=

βiqi(s) +
∑n

i=( – βi)qi(s) – e(s)
K

)
–


r(s)δ(s)

]
ds

≤  +ω(t)δ(t),

which contradicts (.). The proof is complete. �
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Theorem . Assume that conditions (.) and (.) are satisfied, and let τj(t) ≥ t (j =
, , , . . . ,n). Suppose further that there exists a function ρ ∈ C([t,∞), (,∞)) such that
(.) holds. If, for all constants K > ,

lim sup
t→∞

∫ t

t

[
δ(s)

(
q(s)

δ(τ(s))
δ(s)

+
n∑
i=

βiqi(s)
δ(τi(s))

δ(s)

)

+ δ(s)
∑n

i=( – βi)qi(s) – e(s)
K

–


r(s)δ(s)

]
ds =∞, (.)

where δ is as in (.), then equation (.) is oscillatory.

Proof Assume again that there exists a t ≥ t such that x(t) >  for t ≥ t. From (.), we
have (.). Then there exist two possible cases, i.e., x′(t) >  or (.). Suppose that x′(t) > .
Following the same lines as in Theorem ., we can obtain a contradiction to (.). Assume
now that (.) is satisfied. Define the function ω by (.). We have ω(t) <  for t ≥ t and
(.). On the other hand, it has been established in Theorems . and . that (.) and
(.) hold. By virtue of (.),

(
x
δ

)′
(t)≥ .

It follows from the latter inequality, τj(t)≥ t (j = , , , . . . ,n), and (.) that

x(τ(t))
x(t)

≥ δ(τ(t))
δ(t)

(.)

and ∑n
i= qi(t)xβi (τi(t)) – e(t)

x(t)
≥

∑n
i= qi(t)[βix(τi(t)) + ( – βi)] – e(t)

x(t)

≥
n∑
i=

βiqi(t)
δ(τi(t))

δ(t)
+

∑n
i=( – βi)qi(t) – e(t)

x(t)
. (.)

Since x′(t) < , there exists a constant K >  such that x(t) ≤ K . Hence, by (.), we con-
clude that

∑n
i= qi(t)xβi (τi(t)) – e(t)

x(t)
≥

n∑
i=

βiqi(t)
δ(τi(t))

δ(t)
+

∑n
i=( – βi)qi(t) – e(t)

K
. (.)

Using (.), (.), and (.), we obtain

ω′(t) ≤ –q(t)
δ(τ(t))

δ(t)
–

n∑
i=

βiqi(t)
δ(τi(t))

δ(t)
–

∑n
i=( – βi)qi(t) – e(t)

K
–

ω(t)
r(t)

. (.)

The remainder of the proof is similar to that of Theorem . and hence is omitted. This
completes the proof. �

Remark . From the proof of Theorems . and ., one can obtain oscillation results
for equation (.) with delayed and advanced arguments. The details are left to the reader.
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3 Example
The following example illustrates possible applications of the theoretical results presented
in this paper.

Example . For t ≥ , consider a second-order differential equation

x′′(t) +
γ

t
x
(
t


)
+


t

∣∣∣∣x
(
t


)∣∣∣∣x
(
t


)
+


t
x

(
t


)
= –


t

sgn
(
x(t)

)
, (.)

where γ >  is a constant. Let n = , r(t) = , q(t) = γ /t, q(t) = q(t) = /t, τ(t) = t/,
τ(t) = t/, τ (t) = τ(t) = t/, e(t) = –/t, β = , and β = . Then

∑n
i=(–βi)qi(t)–e(t) =

 and

lim sup
t→∞

∫ t

t

[
s

(
q(s) +

n∑
i=

βiqi(s)

)
–
r(τ (s))
sτ ′(s)

]
ds

= (γ – ) lim sup
t→∞

∫ t



ds
s
=∞, provided that γ > .

Hence, by Corollary ., equation (.) is oscillatory for any γ > .
Let Q be defined as in Theorem .. Then

Q(t) = q(t) +
n∑
i=

βi
[
n(βi – )

](–βi)/βi(qi(t))/βi ∣∣e(t)∣∣(βi–)/βi

=

t

[
γ +

∑
i=

βi

(
(βi – )



)(–βi)/βi
]

=

t

[
γ + 

(



)/

+ 
(



)/]

<

t
(γ + . + .) =


t
(γ + .).

Using the latter inequality and ρ(t) = t in (.), we observe that Theorem . cannot en-
sure oscillation of (.) on the interval (, .]. Therefore, Corollary . improves The-
orem ..

Remark . In this paper, several new oscillation criteria for equation (.) are obtained
by using the Riccati substitution and Bernoulli’s inequality. Employing inequalities differ-
ent from those exploited in [], we improve Theorem .; see Example .. Furthermore,
Theorems . and . complement those by Zhong et al. [] since our results can be
applied to the case where (.) holds.
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