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Abstract
The objective of this paper is to study asymptotic nature of a class of third-order
neutral delay differential equations. By using a generalized Riccati substitution and
the integral averaging technique, a new Philos-type criterion is obtained which
ensures that every solution of the studied equation is either oscillatory or converges
to zero. An illustrative example is included.
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1 Introduction
In this work, we study the oscillation and asymptotic behavior of a third-order nonlinear
neutral differential equation with variable delay arguments

(
r(t)

[
x(t) + P(t)x

(
t – τ (t)

)]′′)′ +
m∑
i=

Qi(t)fi
(
x
(
t – σi(t)

))
= , t ≥ t, ()

where m ≥  is an integer and t > . We assume that the following hypotheses are satis-
fied.

(A) r ∈ C([t,∞), (,∞)), P, τ ,Qi,σi ∈ C([t,∞), [,∞)), fi ∈ C(R,R), and ufi(u) >  for
u �= , i = , , . . . ,m;

(A) r′(t)≥ ,
∫ ∞
t

r–(t) dt =∞, and  ≤ P(t) ≤ p < ;
(A) limt→∞(t – τ (t)) = limt→∞(t – σi(t)) = ∞, i = , , . . . ,m;
(A) there exist constants αi >  such that fi(u)/u≥ αi for u �=  and i = , , . . . ,m.

Throughout, we define

z(t) := x(t) + P(t)x
(
t – τ (t)

)
. ()

By a solution of equation (), we mean a function x ∈ C([Tx,∞),R), Tx ≥ t, which has the
properties z ∈ C([Tx,∞),R), rz′′ ∈ C([Tx,∞),R), and satisfies () on [Tx,∞). We con-
sider only those solutions x of () which satisfy assumption sup{|x(t)| : t ≥ T} >  for all
T ≥ Tx. We assume that () possesses such solutions. A solution of () is called oscillatory
if it has arbitrarily large zeros on [Tx,∞); otherwise, it is termed nonoscillatory.
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As is well known, the third-order differential equations are derived frommany different
areas of applied mathematics and physics, for instance, deflection of buckling beam with
a fixed or variable cross-section, three-layer beam, electromagnetic waves, gravity-driven
flows, etc. In recent years, the oscillation theory of third-order differential equations has
received a great deal of attention since it has been widely applied in research of physi-
cal sciences, mechanics, radio technology, lossless high-speed computer network, control
system, life sciences, and population growth.
Numerous research activities are concerned with the oscillation of solutions to different

functional differential equations, for some related contributions, we refer the reader to
[–] and the references cited therein. In the following, we provide some background
details regarding the study of various classes of neutral differential equations. Baculíková
and Džurina [] studied a second-order neutral differential equation

(
r(t)

[
x(t) + p(t)x

(
τ (t)

)]′)′ + q(t)x
(
σ (t)

)
= .

Agarwal et al. [], Grace et al. [], and Zhang et al. [] considered a third-order nonlinear
differential equation

(
a(t)

(
b(t)x′(t)

)′)′ + q(t)xγ
(
σ (t)

)
= .

Baculíková and Džurina [], Candan [, ], Karpuz [], Li and Rogovchenko [], Li and
Thandapani [], and Li et al. [, ] investigated a class of third-order neutral differential
equations

(
r(t)

[
x(t) + p(t)x

(
τ (t)

)]′′)′ + q(t)x
(
σ (t)

)
= . ()

Define τ̃ (t) := t – τ (t) and σ̃i(t) := t – σi(t), i = , , . . . ,m. It follows from conditions (A)
and (A) that τ̃ (t)≤ t, σ̃i(t) ≤ t, and limt→∞ τ̃ (t) = limt→∞ σ̃i(t) = ∞, i = , , . . . ,m. Hence,
equation () is a special case of (). As a matter of fact, equation () reduces to the form of
() ifm =  and f(u) = u.
There are two techniques in the study of oscillation of third-order neutral differential

equations. One of them is comparison method which is used to reduce the third-order
neutral differential equations to the first-order differential equations or inequalities; see,
e.g., [–]. Another technique is the Riccati technique; see, e.g., [–, –]. In this pa-
per, using a generalized Riccati substitution which differs from those reported in [–,
–], a new asymptotic criterion for () is presented. In what follows, all functional in-
equalities are tacitly supposed to hold for all sufficiently large t.

2 Some lemmas
Lemma  Assume that conditions (A)-(A) hold and x is a positive solution of (). Then
there are only the following two possible cases for z defined by ():

(I) z(t) > , z′(t) > , z′′(t) > , z′′′(t) ≤ , and (r(t)z′′(t))′ ≤ ;
(II) z(t) > , z′(t) < , z′′(t) > , z′′′(t) ≤ , and (r(t)z′′(t))′ ≤ ,

for t ≥ T , where T ≥ t is sufficiently large.

Proof The proof is similar to that of Baculíková and Džurina [, Lemma ], and hence is
omitted. �
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Lemma  Assume that conditions (A)-(A) hold and let x be a positive solution of () and
corresponding z satisfy case (II) in Lemma . If

∫ ∞

t

∫ ∞

v


r(u)

( m∑
i=

∫ ∞

u
Qi(s) ds

)
dudv =∞, ()

then limt→∞ x(t) = limt→∞ z(t) = .

Proof Suppose that x is a positive solution of (). Since z(t) >  and z′(t) < , there exists a
finite constant l ≥  such that limt→∞ z(t) = l ≥ . We shall prove that l = . Assume now
that l > . Then for any ε > , there exists a t ≥ T such that l+ε > z(t) > l for t ≥ t. Choose
 < ε < l( – p)/p. It is not hard to find that

x(t) = z(t) – P(t)x
(
t – τ (t)

)
> l – P(t)x

(
t – τ (t)

)
> l – pz

(
t – τ (t)

)
> l – p(l + ε) :=N(l + ε) >Nz(t), ()

where N := (l – p(l + ε))/(l + ε) > . Using () and (), we conclude that

 =
(
r(t)z′′(t)

)′ +
m∑
i=

Qi(t)fi
(
x
(
t – σi(t)

))

≥ (
r(t)z′′(t)

)′ +
m∑
i=

αiQi(t)x
(
t – σi(t)

)

≥ (
r(t)z′′(t)

)′ +N
m∑
i=

αiQi(t)z
(
t – σi(t)

)

≥ (
r(t)z′′(t)

)′ +N
m∑
i=

αiQi(t)z(t). ()

Integrating () from t to ∞, we obtain

 ≥ –r(t)z′′(t) +N
m∑
i=

αi

∫ ∞

t
Qi(s)z(s) ds.

Noting that z(t) > l, we get

 ≥ –z′′(t) +
lN
r(t)

m∑
i=

αi

∫ ∞

t
Qi(s) ds. ()

Integrating () from t to ∞, we have

 ≥ z′(t) + lN
∫ ∞

t


r(u)

( m∑
i=

αi

∫ ∞

u
Qi(s) ds

)
du. ()

Integrating () from t to ∞, we deduce that

∫ ∞

t

∫ ∞

v


r(u)

( m∑
i=

αi

∫ ∞

u
Qi(s) ds

)
dudv ≤ z(t)

lN
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/512


Jiang and Li Journal of Inequalities and Applications 2014, 2014:512 Page 4 of 7
http://www.journalofinequalitiesandapplications.com/content/2014/1/512

which contradicts (). Hence, l =  and limt→∞ z(t) = . Then it follows from  ≤ x(t) ≤
z(t) that limt→∞ x(t) = . The proof is complete. �

Lemma  (See [, Lemma ]) Assume that u(t) > , u′(t) > , and u′′(t) ≤  for t ≥ t. If
σ ∈ C([t,∞), [,∞)), σ (t)≤ t, and limt→∞ σ (t) = ∞, then for every α ∈ (, ), there exists
a Tα ≥ t such that u(σ (t))/σ (t)≥ αu(t)/t for t ≥ Tα .

Remark  If u satisfies conditions of Lemma , then u(t – σi(t))/u(t) ≥ α(t – σi(t))/t for
i = , , . . . ,m when using conditions (A) and (A).

Lemma  (See [, Lemma ]) Assume that u(t) > , u′(t) > , u′′(t) > , and u′′′(t) ≤  for
t ≥ t. Then for each β ∈ (, ), there exists a Tβ ≥ t such that u(t) ≥ βtu′(t)/ for t ≥ Tβ .

Remark  If u satisfies conditions of Lemma , then u(t – σi(t))/u′(t – σi(t)) ≥ β(t –
σi(t))/ for i = , , . . . ,m when using condition (A).

3 Main results
We use the integral averaging technique to establish a Philos-type (see Philos []) crite-
rion for (). Let

D :=
{
(t, s) : t ≥ s ≥ t

}
and D :=

{
(t, s) : t > s≥ t

}
.

We say that a function H ∈ C(D,R) belongs to the class X if
(i) H(t, t) = , t ≥ t, H(t, s) > , (t, s) ∈D;
(ii) H has a nonpositive continuous partial derivative ∂H/∂s on D with respect to the

second variable, and there exist functions ρ ∈ C([t,∞), (,∞)), δ ∈ C([t,∞),R),
and h ∈ C(D,R) such that

∂H(t, s)
∂s

+
(
δ(s) +

ρ ′(s)
ρ(s)

)
H(t, s) = –h(t, s)

√
H(t, s). ()

Theorem  Assume that conditions (A)-(A) and () are satisfied. If

lim sup
t→∞


H(t, t)

∫ t

t

[
H(t, s)G(s) –




ρ(s)r(s)h(t, s)
]
ds =∞ ()

holds for some α ∈ (, ), β ∈ (, ), and for some H ∈ X, where

G(t) := ρ(t)

[
αβ( – p)



m∑
i=

αiQi(t)
(t – σi(t))

t
+ r(t)δ(t) –

(
r(t)δ(t)

)′
]
, ()

then every solution x of () is either oscillatory or satisfies limt→∞ x(t) = .

Proof Suppose to the contrary and assume that () has a nonoscillatory solution x. With-
out loss of generality, we can assume that there exists a t ≥ t such that x(t) > , x(t–τ (t)) >
, and x(t – σi(t)) >  for t ≥ t and i = , , . . . ,m. By Lemma , we observe that z satisfies
either (I) or (II) for t ≥ T , where T ≥ t is large enough.We consider each of the two cases
separately.
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Assume first that case (I) holds. It follows from z′(t) >  that

x(t) = z(t) – P(t)x
(
t – τ (t)

) ≥ z(t) – px
(
t – τ (t)

)
≥ z(t) – pz

(
t – τ (t)

) ≥ ( – p)z(t). ()

Using () and (), we deduce that

(
r(t)z′′(t)

)′ = –
m∑
i=

Qi(t)fi
(
x
(
t – σi(t)

))

≤ –
m∑
i=

αiQi(t)x
(
t – σi(t)

)

≤ –( – p)
m∑
i=

αiQi(t)z
(
t – σi(t)

)
. ()

Define a generalized Riccati substitution by

ω(t) := ρ(t)
[
r(t)z′′(t)
z′(t)

+ r(t)δ(t)
]
. ()

Then we have

ω′ = ρ ′
[
rz′′

z′ + rδ
]
+ ρ

[
rz′′

z′ + rδ
]′

=
ρ ′

ρ
ω + ρ(rδ)′ + ρ

(
rz′′

z′

)′

=
ρ ′

ρ
ω + ρ(rδ)′ + ρ

(rz′′)′

z′ – ρr
(
z′′

z′

)

. ()

By virtue of (), we conclude that

(
z′′

z′

)

=
[

ω

ρr
– δ

]

=
(

ω

ρr

)

+ δ – 
ωδ

ρr
. ()

Substituting () and () into (), we obtain

ω′ = ρ
(rz′′)′

z′ +
ρ ′

ρ
ω + ρ(rδ)′ – ρr

[
ω

ρr
+ δ – 

ωδ

ρr

]

= ρ
(rz′′)′

z′ – ρ
[
rδ – (rδ)′

]
+

(
ρ ′

ρ
+ δ

)
ω –

ω

rρ

≤ –( – p)ρ
m∑
i=

αiQi
z(t – σi(t))

z′(t)
– ρ

[
rδ – (rδ)′

]
+

(
ρ ′

ρ
+ δ

)
ω –

ω

rρ
. ()

It follows from Remarks  and  that, for any α ∈ (, ) and β ∈ (, ),

z(t – σi(t))
z′(t)

=
z(t – σi(t))
z′(t – σi(t))

z′(t – σi(t))
z′(t)

≥ αβ


(t – σi(t))

t
, ()
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i = , , . . . ,m. Combining () and (), we get

ω′(t) ≤ –
αβ( – p)


ρ(t)

m∑
i=

αiQi(t)
(t – σi(t))

t

– ρ(t)
[
r(t)δ(t) –

(
r(t)δ(t)

)′] +(
ρ ′(t)
ρ(t)

+ δ(t)
)

ω(t) –
ω(t)
r(t)ρ(t)

= –G(t) +A(t)ω(t) – B(t)ω(t),

whereG is defined as in (),A(t) := (ρ ′(t)/ρ(t))+δ(t), andB(t) := /(r(t)ρ(t)). Replacing in
the latter inequality t with s, multiplying both sides by H(t, s) and integrating with respect
to s from some T (T ≥ T ) to t, we derive from H(t, t) =  and () that

∫ t

T
H(t, s)G(s) ds

≤
∫ t

T
H(t, s)

[
–ω′(s) +A(s)ω(s) – B(s)ω(s)

]
ds

=H(t,T)ω(T) +
∫ t

T

[(
∂H(t, s)

∂s
+A(s)H(t, s)

)
ω(s) –H(t, s)B(s)ω(s)

]
ds

=H(t,T)ω(T) –
∫ t

T

[
h(t, s)

√
H(t, s)ω(s) +H(t, s)B(s)ω(s)

]
ds

=H(t,T)ω(T) –
∫ t

T

(√
H(t, s)B(s)ω(s) +

h(t, s)

√
B(s)

)

ds +
∫ t

T

h(t, s)
B(s)

ds

≤H(t,T)ω(T) +
∫ t

T

h(t, s)
B(s)

ds,

and hence

lim sup
t→∞


H(t,T)

∫ t

T

[
H(t, s)G(s) –




ρ(s)r(s)h(t, s)
]
ds ≤ ω(T),

which contradicts condition ().
Assume now that case (II) holds. By virtue of Lemma , limt→∞ x(t) = . This completes

the proof. �

Corollary  The conclusion of Theorem  remains intact if condition () is replaced by
the assumptions

lim sup
t→∞


H(t, t)

∫ t

t
H(t, s)G(s) ds =∞

and

lim sup
t→∞


H(t, t)

∫ t

t
ρ(s)r(s)h(t, s) ds < ∞.

As an application of Theorem , we provide the following example.
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Example  For t ≥ , consider a third-order neutral delay differential equation

(
x(t) +



x
(
t


))′′′
+ t–x

(
t


)
+ t–x

(
t


)
= . ()

Let ρ(t) = t, δ(t) = , and H(t, s) = (t – s). It is not difficult to verify that all assumptions
of Theorem  are satisfied. Hence, every solution x of () is either oscillatory or satisfies
limt→∞ x(t) = . As a matter of fact, one such solution is x(t) = t–.
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