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Abstract
In this paper, we introduce symmetric variational relation problems and establish the
existence theorem of solutions of symmetric variational relation problems. As the
special cases, symmetric (vector) quasi-equilibrium problems and symmetric
variational inclusion problems are obtained. Further, we study the notion of essential
stability of equilibria of symmetric variational relation problems. We prove that most
of symmetric variational relation problems (in the sense of Baire category) are
essential and, for any symmetric variational relation problem, there exists at least one
essential component of its solution set.
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1 Introduction
Let X and Y be real locally convex Hausdorff spaces, and let C andD be nonempty subsets
ofX andY , respectively. Let S : C×D⇒ C andT : C×D⇒D be set-valuedmappings, and
f , g : C×D −→ R be real functions. According toNoor andOettli [], the symmetric quasi-
equilibrium problem (SQEP) consists in finding (x∗, y∗) ∈ C × D such that x∗ ∈ S(x∗, y∗),
y∗ ∈ T(x∗, y∗), and

f
(
x, y∗) ≥ f

(
x∗, y∗), ∀x ∈ S

(
x∗, y∗),

g
(
x∗, y

) ≥ g
(
x∗, y∗), ∀y ∈ T

(
x∗, y∗).

The problem is a generalization of equilibrium problem proposed by Blum and Oettli [].
The equilibrium problem contains as special cases, for instance, optimization problems,
problems of Nash equilibria, fixed point problems, variational inequalities, and comple-
mentarity problems.
Fu [] introduced symmetric vector quasi-equilibrium problems (SVQEP). Let Z be a

real Hausdorff topological vector space, and let P ⊂ Z be a closed convex, pointed cone
with apex at the origin and with intP �= ∅, where intP denotes the interior of P. Let X, Y ,
C, D, S, T be as above. Let vector mappings f , g : C × D −→ Z be given. The symmetric
vector quasi-equilibrium problem (SVQEP) consists in finding (x∗, y∗) ∈ C ×D such that
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x∗ ∈ S(x∗, y∗), y∗ ∈ T(x∗, y∗), and

f
(
x, y∗) – f

(
x∗, y∗) /∈ – intP, ∀x ∈ S

(
x∗, y∗),

g
(
x∗, y

)
– g

(
x∗, y∗) /∈ – intP, ∀y ∈ T

(
x∗, y∗).

Farajzadeh [] considered symmetric vector quasi-equilibrium problems in the Haus-
dorff topological vector space by means of a particular technique and answered an open
question raised by Fu. The stability of the set of solutions for symmetric vector quasi-
equilibrium problems is discussed in [–]. Fakhar and Zafarani [] introduced general-
ized symmetric vector quasi-equilibrium problems (GSVQEP). Let X, Y , C, D, S, T , f , g
be as above. Let P be the set-valued mapping from Z to Z such that for every z ∈ Z, P(z) is
a pointed, closed and convex cone of Z with a nonempty interior intP(z) and θ : X −→ Z,
η : Y −→ Z. The generalized symmetric vector quasi-equilibrium problem (GSVQEP)
consists in finding (x∗, y∗) ∈ C ×D such that x∗ ∈ S(x∗, y∗), y∗ ∈ T(x∗, y∗), and

f
(
x, y∗) – f

(
x∗, y∗) /∈ – intP

(
η
(
y∗)), ∀x ∈ S

(
x∗, y∗),

g
(
x∗, y

)
– g

(
x∗, y∗) /∈ – intP

(
θ
(
x∗)), ∀y ∈ T

(
x∗, y∗).

It is well known that the equilibrium problems are unified models of several prob-
lems, namely, optimization problems, saddle point problems, variational inequalities,
fixed point problems, Nash equilibrium problems etc. Recently, Luc [] introduced amore
general model of equilibrium problems, which is called a variational relation problem (in
short, VR). The stability of the solution set of variational relation problems was studied
in [, ]. Further studies of variational relation problems have been done. Lin andWang
[] studied simultaneous variational relation problems (SVR) and related applications.
Balaj and Luc [] introduced mixed variational relation problems (MR), and established
existence of solutions to a general inclusion problem. Particular cases of variational inclu-
sions and intersections of set-valued mappings were also discussed in []. Balaj and Lin
[] brought forward generalized variational relation problems (GVR), and obtained an ex-
istence theorem of the solutions for a variational relation problem. An existence theorem
for a variational inclusion problem, a KKM theorem and an extension of the well-known
Ky Fan inequality have been established as particular cases. Lin andAnsari [] introduced
a system of quasi-variational relations and established the existence of solutions of SQVP
by means of the maximal element theorem for a family of multivalued mappings.
Agarwal et al. [] presented a unified approach in studying the existence of solutions

for two types of variational relation problems, which encompass several generalized equi-
librium problems, variational inequalities and variational inclusions investigated in the
recent literature. Balaj and Lin [] established existence criteria for the solutions of two
very general types of variational relation problems. Moreover, Luc et al. [] established
two main existence conditions for solutions of variational relation problems without con-
vexity, and Pu and Yang [–] studied variational relation problems without the KKM
property and on Hadamard manifolds.
Motivated and inspired by research works mentioned above, in this paper, we introduce

symmetric variational relation problems, and study the existence and essential stability
of solutions of symmetric variational relation problems. The results of this paper improve

http://www.journalofinequalitiesandapplications.com/content/2014/1/5
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and generalize several known results on variational relation problems and symmetric (vec-
tor) quasi-equilibrium problems.

2 Symmetric variational relation
Let X, Y be two nonempty, compact and convex subsets of two normed linear spaces,
respectively. Let S : X ×Y ⇒ X and T : X ×Y ⇒ Y be set-valued mappings, and R(x, y,u),
Q(x, y, v) be two relations linking x,u ∈ X and y, v ∈ Y . The symmetric variational relation
problem consists in finding (x∗, y∗) ∈ X × Y such that x∗ ∈ S(x∗, y∗), y∗ ∈ T(x∗, y∗), and

R
(
x∗, y∗,x

)
holds, ∀x ∈ S

(
x∗, y∗),

Q
(
x∗, y∗, y

)
holds, ∀y ∈ T

(
x∗, y∗).

We recall first some known results concerning set-valued mappings for later use.

Lemma . (., . of []) (i) Assume that X is a topological space, Y is a locally
convex space, and a correspondence f : X ⇒ Y is upper semicontinuous at some point x ∈
X. If the set cl(cof (x)) is compact, then the closed convex hull correspondence clcof : X ⇒
Y is upper semicontinuous at x. (ii) In a completely metrizable locally convex space, the
closed convex hull of a compact set is compact.

Lemma. (. of []) Let A, . . . ,An be nonempty and compact subsets of theHausdorff
topological linear space. Then co(

⋃n
i=Ai) is compact.

Lemma . Let A be a nonempty and compact subset of the compact normed linear
space E, and let B ⊃ A be open in E. Then clcoA ⊂ coB.

Proof Since B ⊃ A is open in E, coB is also open. Then, for any x ∈ A, there exists an open
convex neighborhood V (x) of x such that x ∈ V (x) ⊂ clV (x) ⊂ coB. Since A is nonempty
and compact, there is a finite subset {x, . . . ,xn} of A such that

A⊂
n⋃
i=

V (xi) ⊂
n⋃
i=

clV (xi) ⊂ coB,

which implies that

coA⊂ co

( n⋃
i=

clV (xi)

)
⊂ coB.

Since clV (xi) is compact for any i ∈ {, . . . ,n}, by Lemma ., co(
⋃n

i= clV (xi)) is compact.
Hence

clcoA ⊂ clco

( n⋃
i=

clV (xi)

)
= co

( n⋃
i=

clV (xi)

)
⊂ coB. �

The following theorem is the main result of this paper.

Theorem . Assume that
(i) X , Y are two nonempty, compact and convex subsets of two normed linear spaces;
(ii) S, T are continuous with nonempty convex compact values;

http://www.journalofinequalitiesandapplications.com/content/2014/1/5
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(iii) R(·, ·, ·) and Q(·, ·, ·) are closed;
(iv) for any y ∈ Y , any finite subset {x, . . . ,xn} of X and any x ∈ co{x, . . . ,xn}, there is

i ∈ {, . . . ,n} such that R(x, y,xi) holds;
(v) for any x ∈ X , any finite subset {y, . . . , yn} of Y and any y ∈ co{y, . . . , yn}, there is

i ∈ {, . . . ,n} such that Q(x, y, yi) holds.
Then the symmetric variational relation problem has at least one solution.

Proof Firstly, denote

Gr(R) =
{
(x, y,u) ∈ X × Y ×X|R(x, y,u) holds},

Gr(Q) =
{
(x, y, v) ∈ X × Y × Y |Q(x, y, v) holds}.

Then Gr(R) and Gr(Q) are closed in X × Y ×X and X × Y × Y , respectively. Next, define
two mappings f : X × Y ×X −→R and g : X × Y × Y −→R by

f (x, y,u) = d
(
(x, y,u),Gr(R)

)
,

g(x, y, v) = d
(
(x, y, v),Gr(Q)

)
,

where d and d are the distance on X × Y ×X and X × Y × Y , respectively. Then (i) f , g
are continuous; (ii) f (x, y,u) =  if and only if R(x, y,u) holds, and g(x, y, v) =  if and only
if Q(x, y, v) holds; (iii) f (x, y,u) ≥  for any (x, y,u) ∈ X × Y × X, and g(x, y, v) ≥  for any
(x, y, v) ∈ X × Y × Y .
Now, define the mappings H : X × Y ⇒ X and F : X × Y ⇒ Y by

H(x, y) =
{
u ∈ S(x, y)|f (x, y,u) = max

u′∈S(x,y)
f
(
x, y,u′)},

F(x, y) =
{
v ∈Q(x, y)|g(x, y, v) = max

v′∈Q(x,y)
g
(
x, y, v′)}.

Since S, T are continuous with nonempty convex compact values, and f , g are contin-
uous, it follows from the well-known Berge maximum theorem that H and F are upper
semicontinuous with nonempty compact values. By Lemma ., clcoH and clcoF are up-
per semicontinuous with nonempty convex compact values. Thus, define the mapping
ϕ : X × Y ⇒ X × Y by

ϕ(x, y) = clcoH(x, y)× clcoF(x, y).

By the well-known Fan-Glicksberg fixed point theorem, there exists (x∗, y∗) ∈ X × Y such
that (x∗, y∗) ∈ ϕ(x∗, y∗), i.e.,

x∗ ∈ clcoH
(
x∗, y∗) ⊂ S

(
x∗, y∗),

y∗ ∈ clcoF
(
x∗, y∗) ⊂ T

(
x∗, y∗).

Suppose that the result is false, without loss of generality, there is u ∈ S(x∗, y∗) such that
R(x∗, y∗,u) does not hold. Then f (x∗, y∗,u) > . By the definition of H , we have

f
(
x∗, y∗,u

) ≥ f
(
x∗, y∗,u

)
> 
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for any u ∈H(x∗, y∗), i.e.,

H
(
x∗, y∗) ⊂ {

u ∈ X : R
(
x∗, y∗,u

)
does not hold

}
.

Since R(·, ·, ·) is closed, {u ∈ X : R(x∗, y∗,u) does not hold} is open in X. By Lemma .,

clcoH
(
x∗, y∗) ⊂ co

{
u ∈ X : R

(
x∗, y∗,u

)
does not hold

}
.

Since x∗ ∈ clcoH(x∗, y∗), x∗ ∈ co{u ∈ X : R(x∗, y∗,u) does not hold}, i.e., there is a finite sub-
set {u, . . . ,un} ⊂ {u ∈ X : R(x∗, y∗,u) does not hold} such that x∗ ∈ co{u, . . . ,un}. By con-
dition (iv), there is i ∈ {, . . . ,n} such that R(x∗, y∗,ui ) holds, which contradicts the fact
that R(x∗, y∗,ui) does not hold for any i ∈ {, . . . ,n}. This completes the proof. �

Remark . By Theorem ., we obtain the following typical examples.
() Let f : X × Y −→ R and g : X × Y −→ R be two real-valued functions. Define the

variational relations R, Q as follows:

R(x, y,u) holds if and only if f (x, y) ≤ f (u, y);

Q(x, y, v) holds if and only if g(x, y) ≤ g(x, v).

The symmetric quasi-equilibrium problem (SQEP) consists in finding (x∗, y∗) ∈ X × Y
such that x∗ ∈ S(x∗, y∗), y∗ ∈ T(x∗, y∗), and

f
(
x, y∗) ≥ f

(
x∗, y∗), ∀x ∈ S

(
x∗, y∗),

g
(
x∗, y

) ≥ g
(
x∗, y∗), ∀y ∈ T

(
x∗, y∗).

By virtue of Theorem ., problem (SQEP) has at least one solution.
() Let X, Y , S, T be as above, Z be a real Hausdorff topological vector space, and P ⊂ Z

be a closed convex, pointed cone with apex at the origin and with intP �= ∅, where intP
denotes the interior of P. Let vector mappings f , g : C × D −→ Z be given. Define the
variational relations R, Q as follows:

R(x, y,u) holds if and only if f (u, y) – f (x, y) /∈ – intP;

Q(x, y, v) holds if and only if g(x, v) – g(x, y) /∈ – intP.

The symmetric vector quasi-equilibrium problem (SVQEP) consists in finding (x∗, y∗) ∈
X × Y such that x∗ ∈ S(x∗, y∗), y∗ ∈ T(x∗, y∗), and

f
(
x, y∗) – f

(
x∗, y∗) /∈ – intP, ∀x ∈ S

(
x∗, y∗),

g
(
x∗, y

)
– g

(
x∗, y∗) /∈ – intP, ∀y ∈ T

(
x∗, y∗).

By virtue of Theorem ., problem (SVQEP) has at least one solution.
() Let X, Y , S, T be as above, Z be a real Hausdorff topological vector space, A,A′ :

X × Y × X ⇒ Z and B′,B : X × Y × Y ⇒ Z be two multivalued mappings. Define the

http://www.journalofinequalitiesandapplications.com/content/2014/1/5
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variational relations R, Q as follows:

R(x, y,u) holds if and only if A(x, y,u) ⊂ B(x, y,u);

Q(x, y, v) holds if and only if A′(x, y, v)⊂ B′(x, y, v).

The symmetric variational inclusion of type (I) consists in finding (x∗, y∗) ∈ X × Y such
that x∗ ∈ S(x∗, y∗), y∗ ∈ T(x∗, y∗), and

A
(
x∗, y∗,u

) ⊂ B
(
x∗, y∗,u

)
, ∀u ∈ S

(
x∗, y∗),

A′(x∗, y∗, v
) ⊂ B′(x∗, y∗, v

)
, ∀v ∈ T

(
x∗, y∗).

By virtue of Theorem ., the symmetric variational inclusion of type (I) has at least one
solution.
() Define the variational relations R, Q as follows:

R(x, y,u) holds if and only if A(x, y,u)∩ B(x, y,u) �= ∅;
Q(x, y, v) holds if and only if A′(x, y, v)∩ B′(x, y, v) �= ∅.

The symmetric variational inclusion of type (II) problem consists in finding (x∗, y∗) ∈ X ×
Y such that x∗ ∈ S(x∗, y∗), y∗ ∈ T(x∗, y∗), and

A
(
x∗, y∗,u

) ∩ B
(
x∗, y∗,u

) �= ∅, ∀u ∈ S
(
x∗, y∗),

A′(x∗, y∗, v
) ∩ B′(x∗, y∗, v

) �= ∅, ∀v ∈ T
(
x∗, y∗).

By virtue of Theorem ., the symmetric variational inclusion of type (II) has at least one
solution.
() Define the variational relations R, Q as follows:

R(x, y,u) holds if and only if  ∈ A(x, y,u);

Q(x, y, v) holds if and only if  ∈ A′(x, y, v).

The symmetric variational inclusion of type (III) problem consists in finding (x∗, y∗) ∈
X × Y such that x∗ ∈ S(x∗, y∗), y∗ ∈ T(x∗, y∗), and

 ∈ A
(
x∗, y∗,u

)
, ∀u ∈ S

(
x∗, y∗),

 ∈ A′(x∗, y∗, v
)
, ∀v ∈ T

(
x∗, y∗).

By virtue of Theorem ., the symmetric variational inclusion of type (III) has at least one
solution.

3 Essential stability
Essential components play an important role in the study of stability. Now, let us start
studying the essential stability of solution set of symmetric variational relation problems.
First, denote by M the collection of symmetric variational relation problems such that

http://www.journalofinequalitiesandapplications.com/content/2014/1/5
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all conditions of Theorem . hold. For each q ∈ M, denote by �(q) the solution set of q.
Thus, a set-valued correspondence� :M ⇒ X×Y is well defined. To analyze the stability
of �(q) in M, some topological structure in the collection M is also needed. For each
q,q′ ∈ M, define the distance on M by

ρ
(
q,q′) = sup

(x,y)∈X×Y
hX

(
S(x, y),S′(x, y)

)
+ sup

(x,y)∈X×Y
hY

(
T(x, y),T ′(x, y)

)
+ h

(
Gr(R),Gr

(
R′)) + h′(Gr(Q),Gr(Q′)),

where hX is the Hausdorff distance defined on X, hY is the Hausdorff distance defined on
Y , h is the Hausdorff distance defined on X × Y × X, and h′ is the Hausdorff distance
defined on X × Y × Y . Clearly, (M,ρ) is a metric space.

Definition . Let q ∈ M. An (x, y) ∈ �(q) is said to be an essential point of�(q) if, for any
open neighborhoodN(x, y) of (x, y) inX×Y , there is a positive δ such thatN(x, y)∩�(q′) �=
∅ for any q′ ∈ M with ρ(q,q′) < δ. q is said to be essential if each (x, y) ∈ �(q) is essential.

Definition . Let q ∈ M. A nonempty closed subset e(q) of�(q) is said to be an essential
set of �(q) if, for any open set U , e(q) ⊂ U , there is a positive δ such that U ∩�(q′) �= ∅ for
any q′ ∈ M with ρ(q,q′) < δ.

Definition . Let q ∈ M. An essential subset m(q) ⊂ �(q) is said to be a minimal es-
sential set of �(q) if it is a minimal element of the family of essential sets ordered by set
inclusion. A component C(q) is said to be an essential component of �(q) if C(q) is essen-
tial.

Remark . () It is easy to see that the problem q ∈ M is essential if and only if the
mapping � : M ⇒ X × Y is lower semicontinuous at q. () For two closed e(q) ⊂ e(q) ⊂
�(q), if e(q) is essential, then e(q) is also essential.

First of all, let us introduce some mathematical tools for the following proof, which can
be found in [–].

Lemma . ([]) Let X and Y be two topological spaces with Y compact. If F is a closed
set-valued mapping from X to Y , then F is upper semi-continuous.

Lemma . ([]) If X, Y are two metric spaces, X is complete and F : X ⇒ Y is upper
semicontinuous with nonempty compact values, then the set of points, where F is lower
semicontinuous, is a dense residual set in X .

Lemma. ([]) Let C,Dbe two nonempty, convex and compact subsets of linear normed
space E. Then

h(C,λC +μD) ≤ h(C,D),

where h is the Hausdorff distance defined on E, and λ,μ ≥ , λ +μ = .

http://www.journalofinequalitiesandapplications.com/content/2014/1/5
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Lemma . ([]) Let (Y ,ρ) be a metric space, K and K be two nonempty compact sub-
sets of Y , V and V be two nonempty disjoint open subsets of Y . If h(K,K) < ρ(V,V) :=
inf{ρ(x, y)|x ∈ V, y ∈ V}, then

h
(
K, (K\V)∪ (K\V)

) ≤ h(K,K),

where h is the Hausdorff metric defined on Y .

Theorem . (M,ρ) is a complete metric space.

Proof Let {qn}∞n= be any Cauchy sequence in M, then, for any ε > , there is N >  such
that ρ(qn,qm) < ε for any n,m >N , i.e.,

sup
(x,y)∈X×Y

hX
(
Sn(x, y),Sm(x, y)

)
+ sup

(x,y)∈X×Y
hY

(
Tn(x, y),Tm(x, y)

)
+ h

(
Gr

(
Rn),Gr(Rm))

+ h′(Gr(Qn),Gr(Qm)) ≤ ε

for any n,m >N .
() Clearly, there exist set-valued mappings S : X × Y ⇒ X, T : X × Y ⇒ Y , and a closed

subset A of X × Y × X, a closed subset B of X × Y × Y such that Sn(x, y) −→ S(x, y),
Tn(x, y) −→ T(x, y) for any (x, y) ∈ X × Y , and S, T are continuous with nonempty convex
compact values, and Gr(Rn)−→ A, Gr(Qn) −→ B.
() Further, define the following symmetric variational relation q = (S,T ,R,Q) by

R(x, y,u) holds if and only if (x, y,u) ∈ A,

Q(x, y, v) holds if and only if (x, y, v) ∈ B.

Clearly, qn −→ q under the distance ρ . We will show that q ∈ M.
(i) Clearly, R(·, ·, ·) and Q(·, ·, ·) are closed.
(ii) Suppose that there exist y ∈ Y , a finite subset {x, . . . ,xn} of X and x ∈ co{x, . . . ,xn}

such that R(x, y,xi) does not hold for each i ∈ {, . . . ,n}, then (x, y,xi) /∈ A for each i ∈
{, . . . ,n}. Since qm −→ q, then (x, y,xi) /∈Gr(Rm) for each i ∈ {, . . . ,n} and for enough large
m, which implies that Rm(x, y,xi) does not hold for each i ∈ {, . . . ,n}. It is a contradiction.
Thus, for any y ∈ Y , any finite subset {x, . . . ,xn} of X and any x ∈ co{x, . . . ,xn}, there is
i ∈ {, . . . ,n} such that R(x, y,xi) holds. Similarly, for any x ∈ X, any finite subset {y, . . . , yn}
of Y and any y ∈ co{y, . . . , yn}, there is i ∈ {, . . . ,n} such thatQ(x, y, yi) holds. Hence q ∈ M

and (M,ρ) is complete. �

Theorem . The solution mapping � : M ⇒ X × Y is upper semicontinuous with
nonempty compact values.

Proof The desired conclusion follows from Lemma . as soon as we show that Graph(�)
is closed. Let {(qn,xn, yn) ∈ M × X × Y }∞n= be a sequence converging to (q,x, y) such
that (xn, yn) ∈ �(qn) for any n. Then xn ∈ Sn(xn, yn) and yn ∈ Tn(xn, yn), Rn(xn, yn,u) and

http://www.journalofinequalitiesandapplications.com/content/2014/1/5
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Qn(xn, yn, v) hold for any u ∈ Sn(xn, yn) and any v ∈ Tn(xn, yn). Since qn −→ q, it follows
that x ∈ S(x, y) and y ∈ T(x, y).
Suppose that there exists u ∈ S(x, y) such that R(x, y,u) does not hold, then there ex-

ists un ∈ Sn(xn, yn) such that un −→ u, and (x, y,u) /∈ Gr(R). For enough large n, we
have (xn, yn,un) /∈ Gr(Rn), i.e., Rn(xn, yn,un) does not hold. It is a contradiction. There-
fore R(x, y,u) holds for any u ∈ S(x, y). Similarly, Q(x, y, v) holds for any v ∈ T(x, y). Hence
(x, y) ∈ �(q). �

Theorem . There exists a dense residual subset G of M such that q is essential for each
q ∈ G.

Proof Since the metric space (M,ρ) is complete (by Theorem .), and the mapping
� : M ⇒ X × Y is upper semicontinuous with compact values (by Theorem .), by
Lemma ., � is lower semicontinuous on a dense residual subset G of M. Thus, by Re-
mark .(), q is essential for each q ∈ G. �

Theorem . For each q ∈ M, there exists at least one minimal essential subset of �(q).

Proof ByTheorem.,� :M ⇒ X×Y is upper semicontinuouswith compact values, that
is, for each open set O ⊃ �(q), there exists δ >  such that O ⊃ �(q′) for any q′ ∈ M with
ρ(q,q′) < δ. Hence �(q) is an essential set of itself. Let 
 denote the family of all essential
sets of �(q) ordered by set inclusion. Then 
 is nonempty and every decreasing chain of
elements in 
 has a lower bound (because by the compactness the intersection is in 
);
therefore, by Zorn’s lemma, 
 has a minimal element and it is a minimal essential set of
�(q). �

Theorem . For each q ∈ M, every minimal essential subset of �(q) is connected.

Proof For each q ∈ M, letm(q)⊂ �(q) be aminimal essential subset of�(q). Suppose that
m(q) is not connected, then there exist two non-empty compact subsets c(q), c(q) with
m(q) = c(q) ∪ c(q), and there exist two disjoint open subsets V, V of X × Y such that
V ⊃ c(q), V ⊃ c(q). Sincem(q) is a minimal essential set of �(q), neither c(q) nor c(q)
is essential. There exist two open sets O ⊃ c(q), O ⊃ c(q) such that, for any δ > , there
exist q,q ∈ M with

ρ
(
q,q

)
< δ, ρ

(
q,q

)
< δ, �

(
q

) ∩O = ∅, �
(
q

) ∩O = ∅.

Denote W = V ∩ O, W = V ∩ O, we know that W, W are open, W ⊃ c(q), W ⊃
c(q), and wemay assume that V ⊃W , V ⊃W . DenoteG =W ×X andG =W ×Y ,
inf{d(a,b)|x ∈G,b ∈G} = ε > .
Since m(q) is essential and m(q) ⊂ (W ∪ W), there exists  < δ∗ < ε such that �(q′) ∩

(W ∪ W) �= ∅ for any q′ ∈ M with ρ(q,q′) < δ∗. Since m(q) is a minimal essential set of
�(q), neither c(q) nor c(q) is essential. Thus, for δ∗

 > , there exist two q,q ∈ M such
that

�
(
q

) ∩W = ∅, �
(
q

) ∩W = ∅, ρ
(
q,q

)
<

δ∗


, ρ

(
q,q

)
<

δ∗


.
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Thus

ρ
(
q,q

)
<

δ∗


.

Next, define the symmetric variational relation problem q′ = (S′,T ′,R′,Q′) by

S′(x, y) = λ(x, y)S(x, y) +μ(x, y)S(x, y),

T ′(x, y) = λ(x, y)T (x, y) +μ(x, y)T(x, y),

A =
[
Gr

(
R)\G

] ∪ [
Gr

(
R)\G

]
,

B =
[
Gr

(
Q)\G

] ∪ [
Gr

(
Q)\G

]
,

R′(x, y,u) holds if and only if (x, y,u) ∈ A,

Q′(x, y, v) holds if and only if (x, y, v) ∈ B,

where

λ(x, y) =
d((x, y),W )

d((x, y),W ) + d((x, y),W )
, ∀(x, y) ∈ X × Y ,

μ(x, y) =
d((x, y),W )

d((x, y),W ) + d((x, y),W )
, ∀(x, y) ∈ X × Y .

Easily, we can check that
(i) S′, T ′ are continuous with nonempty compact convex values.
(ii) Since Gr(R) and Gr(R) are closed in X × Y × X, A is closed in X × Y × X, which

implies that R′(·, ·, ·) is closed. Similarly, Q′(·, ·, ·) is closed.
(iii) Suppose that there exist y ∈ Y , a finite subset {x, . . . ,xn} ⊂ X and x ∈ co{x, . . . ,xn}

such that R′(x, y,xi) does not hold for any i ∈ {, . . . ,n}, then
(
x, y,xi

)
/∈ A =

[
Gr

(
R)\G

] ∪ [
Gr

(
R)\G

]
, ∀i ∈ {, . . . ,n}.

AsW ∩W = ∅, without loss of generality, we may assume that (x, y) ∈ (X,Y )\W. There-
fore,

(
x, y,xi

)
/∈ Gr

(
R)\G, ∀i ∈ {, . . . ,n},

i.e.,

(
x, y,xi

)
/∈ Gr

(
R) ∩ [

(X,Y )\W ×X
]
, ∀i ∈ {, . . . ,n},

which implies that (x, y,xi) ∈Gr(R) for any i ∈ {, . . . ,n}. Thus R(x, y,xi) does not hold for
any i ∈ {, . . . ,n}, which is a contradiction.Hence, for any y ∈ Y , any finite subset {x, . . . ,xn}
of X and any x ∈ co{x, . . . ,xn}, there is i ∈ {, . . . ,n} such that R′(x, y,xi) holds. Similarly, for
any x ∈ Y , any finite subset {y, . . . , yn} of Y and any y ∈ co{y, . . . , yn}, there is i ∈ {, . . . ,n}
such that Q′(x, y, yi) holds. Hence q′ ∈ M.
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Yang Journal of Inequalities and Applications 2014, 2014:5 Page 11 of 13
http://www.journalofinequalitiesandapplications.com/content/2014/1/5

(iv) Further, by Lemma . and Lemma ., we have

sup
(x,y)∈X×Y

hX
(
S(x, y),S′(x, y)

) ≤ sup
(x,y)∈X×Y

hX
(
S(x, y),S(x, y)

)
+ sup

(x,y)∈X×Y
hX

(
S(x, y),S′(x, y)

)

≤ δ∗


+

δ∗



≤ 


δ∗,

sup
(x,y)∈X×Y

hY
(
T(x, y),T ′(x, y)

) ≤ sup
(x,y)∈X×Y

hY
(
T(x, y),T (x, y)

)
+ sup

(x,y)∈X×Y
hY

(
T (x, y),T ′(x, y)

)

≤ δ∗


+

δ∗



≤ 


δ∗,

h
(
Gr(R),Gr

(
R′)) ≤ h

(
Gr(R),Gr

(
R)) + h

(
Gr

(
R),Gr(R′))

≤ δ∗


+

δ∗



≤ 


δ∗,

h′(Gr(Q),Gr(Q′)) ≤ h′(Gr(Q),Gr(Q)) + h′(Gr(Q),Gr(Q′))
≤ δ∗


+

δ∗



≤ 


δ∗.

Hence

ρ
(
q′,q

)
= sup

(x,y)∈X×Y
hX

(
S(x, y),S′(x, y)

)
+ sup

(x,y)∈X×Y
hY

(
T(x, y),T ′(x, y)

)
+ h

(
Gr(R),Gr

(
R′)) + h′(Gr(Q),Gr(Q′))

≤ 

δ∗

< δ∗.

Thus q′ ∈ M and ρ(q′,q) < δ∗.
Since

(
�

(
q′) ∩W

) ∪ (
�

(
q′) ∩W

)
=�

(
q′) ∩ (W ∪W) �= ∅,

we assume �(q′)∩W �= ∅ without loss of generality. Then there exists (x, y) ∈ �(q′)∩W

such that (x, y) ∈ W, x ∈ S′(x, y), y ∈ T ′(x, y), and R′(x, y,u) and Q′(x, y, v) hold for any u ∈
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S′(x, y) and any v ∈ T ′(x, y). Since (x, y) ∈W,

S′(x, y) = S(x, y), T ′(x, y) = T (x, y),

R(x, y,u) and Q(x, y, v) hold ∀u ∈ S(x, y),∀v ∈ T (x, y),

which implies that (x, y) ∈ �(q). Hence�(q)∩W �= ∅, which contradicts�(q)∩W = ∅.
Thusm(q) is connected. �

Theorem . For each q ∈ M, there exists at least one essential component of �(q).

Proof By Theorem ., there exists at least one connected minimal essential subset m(q)
of �(q). Thus, there is a component C of �(q) such that m(q) ⊂ C. It is obvious that C is
essential by Remark .(). Thus C is an essential component. �

Remark . Our paper has improved the results of []. (i) The symmetric (vector) quasi-
equilibrium problem is a special case of symmetric variational relation problem; (ii) In [],
the existence of essential connected components is based on disturbance of S, T for fixed
f, g (see Section  in []), but the existence of essential connected components in our
paper is based on disturbance of S, T , R, Q, which are more general.

4 Conclusion
In this paper, symmetric variational relation problems are introduced, and we establish
the existence theorem of solutions of symmetric variational relation problems. Further,
we study the notion of essential stability of equilibria of symmetric variational relation
problems. Our paper improves the results of [].

Competing interests
The author declares that they have no competing interests.

Author’s contributions
The author read and approved the final manuscript.

Acknowledgements
Supported by the open project of Key Laboratory of Mathematical Economics (SUFE), Ministry of Education (Project
Number: 201309KF02).

Received: 25 July 2013 Accepted: 1 December 2013 Published: 02 Jan 2014

References
1. Noor, MA, Oettli, W: On general nonlinear complementarity problems and quasi-equilibria. Matematiche XLIX,

313-331 (1994)
2. Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123-145

(1994)
3. Fu, JY: Symmetric vector quasi-equilibrium problems. J. Math. Anal. Appl. 285, 708-713 (2003)
4. Farajzadeh, AP: On the symmetric vector quasi-equilibrium problems. J. Math. Anal. Appl. 322, 1099-1110 (2006)
5. Chen, JC, Gong, XH: The stability of set of solutions for symmetric vector quasi-equilibrium problems. J. Optim.

Theory Appl. 136(3), 359-374 (2008)
6. Zhang, WY: Well-posedness for convex symmetric vector quasi-equilibrium problems. J. Math. Anal. Appl. 387(2),

909-915 (2012)
7. Long, XJ, Huang, NJ: Metric characterizations of α-well-posedness for symmetric quasi-equilibrium problems. J. Glob.

Optim. 45(3), 459-471 (2009)
8. Fakhar, M, Zafarani, J: Generalized symmetric vector quasiequilibrium problems. J. Optim. Theory Appl. 136, 397-409

(2008)
9. Luc, DT: An abstract problem in variational analysis. J. Optim. Theory Appl. 138, 65-76 (2008)
10. Khanh, PQ, Luc, DT: Stability of solutions in parametric variational relation problems. Set-Valued Var. Anal. 16(7-8),

1015-1035 (2008)

http://www.journalofinequalitiesandapplications.com/content/2014/1/5


Yang Journal of Inequalities and Applications 2014, 2014:5 Page 13 of 13
http://www.journalofinequalitiesandapplications.com/content/2014/1/5

11. Pu, YJ, Yang, Z: Stability of solutions for variational relation problems with applications. Nonlinear Anal. 75, 1758-1767
(2012)

12. Lin, LJ, Wang, SY: Simultaneous variational relation problems and related applications. Comput. Math. Appl. 58,
1711-1721 (2009)

13. Balaj, M, Luc, DT: On mixed variational relation problems. Comput. Math. Appl. 60, 2712-2722 (2010)
14. Balaj, M, Lin, LJ: Equivalent forms of a generalized KKM theorem and their applications. Nonlinear Anal. 73, 673-682

(2010)
15. Balaj, M, Lin, LJ: Generalized variational relation problems with applications. J. Optim. Theory Appl. 148, 1-13 (2011)
16. Lin, LJ, Ansari, QH: Systems of quasi-variational relations with applications. Nonlinear Anal. 72, 1210-1220 (2010)
17. Agarwal, RP, Balaj, M, O’Regan, D: A unifying approach to variational relation problems. J. Optim. Theory Appl. 155,

417-429 (2012)
18. Balaj, M, Lin, LJ: Existence criteria for the solutions of two types of variational relation problems. J. Optim. Theory Appl.

156, 232-246 (2013)
19. Luc, DT, Sarabi, E, Soubeyran, A: Existence of solutions in variational relation problems without convexity. J. Math.

Anal. Appl. 364, 544-555 (2010)
20. Pu, YJ, Yang, Z: Variational relation problem without the KKM property with applications. J. Math. Anal. Appl. 393,

256-264 (2012)
21. Yang, Z, Pu, YJ: Generalized Knaster-Kuratowski-Mazurkiewicz theorem without convex hull. J. Optim. Theory Appl.

154(1), 17-29 (2012)
22. Yang, Z, Pu, YJ: Existence and stability of solutions for maximal element theorem on Hadamard manifolds with

applications. Nonlinear Anal. 75(2), 516-525 (2012)
23. Aubin, JP, Ekeland, I: Applied Nonlinear Analysis. Wiley, New York (1984)
24. Fort, MK Jr.: A unified theory of semi-continuity. Duke Math. J. 16(2), 237-246 (1949)
25. Yu, J, Luo, Q: On essential components of the solution set of generalized games. J. Math. Anal. Appl. 230, 303-310

(1999)
26. Yu, J, Zhou, YH: A Hausdorff metric inequality with applications to the existence of essential components. Nonlinear

Anal. 69, 1851-1855 (2008)

10.1186/1029-242X-2014-5
Cite this article as: Yang: On existence and essential stability of solutions of symmetric variational relation problems.
Journal of Inequalities and Applications 2014, 2014:5

http://www.journalofinequalitiesandapplications.com/content/2014/1/5

	On existence and essential stability of solutions of symmetric variational relation problems
	Abstract
	MSC
	Keywords

	Introduction
	Symmetric variational relation
	Essential stability
	Conclusion
	Competing interests
	Author's contributions
	Acknowledgements
	References


