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Abstract
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1 Introduction
Let S,S, . . . ,Sn, . . . be a sequence of random variables defined on a probability space
(�,F ,P) and S = .

Definition . Let {Sj, j ≥ } be an L sequence of random variables. Assume that for j =
, , . . . ,

E
{
(Sj+ – Sj)f (S, . . . ,Sj)

} ≥  (.)

for all coordinatewise nondecreasing functions f such that the expectation is defined.
Then {Sj, j ≥ } is called a demimartingale. If in addition the function f is assumed to be
nonnegative, the sequence {Sj, j ≥ } is called a demisubmartingale.

Definition . Let {Sj, j ≥ } be an L sequence of random variables. Assume that for
j = , , . . . ,

E
{
(Sj+ – Sj)f (S, . . . ,Sj)

} ≤  (.)

for all coordinatewise nondecreasing functions f such that the expectation is defined.
Then {Sj, j ≥ } is called an N-demimartingale. If in addition the function f is assumed
to be nonnegative, the sequence {Sj, j ≥ } is called an N-demisupermartingale.

The concepts of demimartingales and demisubmartingales were due to Newman
and Wright []. It can be checked that a submartingale with the natural choice of σ -
algebras is a demisubmartingale, but the converse statement cannot always be true.
Newman and Wright [] proved that the partial sums of mean zero associated random
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variables form a demimartingale. Similarly, the notion of N-demimartingales and N-
demisupermartingales can be found in Christofides []. It is trivial to verify that the par-
tial sums ofmean zero negatively associated randomvariables form anN-demimartingale,
and a supermartingalewith the natural choice of σ -algebras is anN-demisupermartingale,
but the converse statement cannot always be true (see Christofides []). Various re-
sults and examples of demisubmartingales and demimartingales have been obtained. For
example, Newman and Wright [] obtained Doob type maximal inequalities and up-
crossing inequality for demisubmartingales; Wood [] investigated more properties of
demimartingales; Christofides [] generalized the Chow type maximal inequalities for
demisubmartingales; Prakasa Rao [] investigated the Whittle type maximal inequality
for demisubmartingales; Christofides [] constructed some U-statistics based on associ-
ated random variables and proved them to be demimartingales; Wang [] studied some
maximal inequalities for associated random variables and demimartingales; Prakasa Rao
[] obtained more maximal and minimal type inequalities for demisubmartingales; Wang
and Hu [] also studied somemaximal inequalities for demimartingales and their applica-
tions; Wang et al. [] gave a Doob type inequality and a strong law of large numbers
for demimartingales; Wang et al. [] also studied the maximal and minimal type in-
equalities for demimartingales; Christofides and Hadjikyriakou [] gave some maximal
and moment inequalities for demimartingales; Hu et al. [] investigated the Marshall
type inequalities for demimartingales; Wang et al. [] got some maximal inequalities
for demimartingales based on concave Young functions. Meanwhile, for the results of N-
demisupermartingales and N-demimartingales, Christofides [] gave some maximal type
inequalities for N-demimartingales; Prakasa Rao [] studied the Chow type maximal in-
equality for N-demimartingales, Christofides and Hadjikyriakou [] got some exponen-
tial inequalities forN-demimartingales; Hu et al. [] gave a note on the inequalities forN-
demimartingales; Hadjikyriakou [] obtained aMarcinkiewicz-Zygmund type inequality
for nonnegativeN-demimartingales;Wang et al. [] studied somemaximal type inequal-
ities forN-demimartingales and provided a strong law of large numbers as an application;
Yang and Hu [] investigated more maximal type inequalities for N-demimartingales,
etc. For more results and examples of demimartingales and N-demimartingales, one
can refer to Prakasa Rao [] and Hadjikyriakou []. On the other hand, the condi-
tional demimartingales and N-demimartingales have received more attention; we refer
to Christofides and Hadjikyriakou [], Wang andWang [], Prakasa Rao [] and Had-
jikyriakou [], etc.
Inspired by the papers above, we investigate some maximal and minimal type inequal-

ities for demisubmartingales and demimartingales. Meanwhile, by giving an example, we
point out that the Chow type maximal inequality ofN-demimartingales is not true, which
affects some maximal type inequalities for N-demimartingales.
Throughout this paper, let I(A) denote the indicator function of the set A and x+ = I

(x≥ ).

Lemma . (Christofides [, Lemma .]) Let {Sn,n ≥ } be a demisubmartingale (or a
demimartingale) and g be a nondecreasing convex function such that g(Si) ∈ L, i≥ .Then
{g(Sn),n≥ } is a demisubmartingale.

2 Main results
First, we provide a maximal type inequality for a sequence of demisubmartingales.
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Theorem . Let {Sn,n≥ } be a demisubmartingale with S =  and assume that {cn,n≥
} is a nondecreasing sequence of positive numbers. Then, for any ε > ,

εP
{
max
≤k≤n

ckSk ≥ ε
}

≤ cnE
[
S+nI

(
max
≤k≤n

ckSk ≥ ε
)]

. (.)

Proof Following Christofides [], we give the proof of Theorem .. For fixed n ≥ , let
A = {max≤k≤n ckSk ≥ ε}. Then A can be written as A =

⋃n
j=Aj, where A = {cS ≥ ε},

Aj = {ciSi < ε, ≤ i < j, cjSj ≥ ε},  < j ≤ n, and Ai ∩Aj = ∅ when i �= j. Therefore, one has

εP(A) = ε

n∑
j=

P(Aj) =
n∑
j=

E(εIAj ) ≤
n∑
j=

E(cjSjIAj ) =
n∑
j=

E
(
cjS+j IAj

)

= E
(
cS+ IA

)
+ E

(
cS+ IA

)
+

n∑
j=

E
(
cjS+j IAj

)

= E
(
cS+ IA

)
+ E

[
cS+ (IA∪A – IA )

]
+

n∑
j=

E
(
cjS+j IAj

)

= E
(
cS+ IA∪A

)
+ E

[(
cS+ – cS+

)
IA

]
+

n∑
j=

E
(
cjS+j IAj

)

≤ E
(
cS+ IA∪A

)
+ cE

[(
S+ – S+

)
IA

]
+

n∑
j=

E
(
cjS+j IAj

)

= E
(
cS+ IA∪A

)
– cE

[(
S+ – S+

)
IA

]
+

n∑
j=

E
(
cjS+j IAj

)
, (.)

which is from the facts thatA ∩A = ∅, IA = IA∪A – IA and {ck ,k ≥ } is a nondecreasing
sequence of positive numbers.
Let h(y) = limx→y– (x+ – y+)/(x – y) and f (x) = x+ =max{,x}. Then f and h are nonnega-

tive nondecreasing functions. By the convexity of the function f (x) = x+, we have

S+ – S+ ≥ (S – S)h(S),

and then we can get

E
[(
S+ – S+

)
IA

] ≥ E
[
(S – S)h(S)IA

]
.

Since h(S)IA is a nonnegative nondecreasing function of S and {Sn,n≥ } is a demisub-
martingale, we have

E
[(
S+ – S+

)
IA

] ≥ E
[
(S – S)h(S)IA

] ≥ .

So we can get

εP(A) ≤ E
(
cS+ IA∪A

)
+

n∑
j=

E
(
cjS+j IAj

)

= E
(
cS+ IA∪A

)
+ E

(
cS+ IA

)
+

n∑
j=

E
(
cjS+j IAj

)
. (.)
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Since A ∩A ∩A = ∅, one has IA = IA∪A∪A – IA∪A . Thus we have

εP(A) ≤ E
(
cS+ IA∪A

)
+ E

[
cS+ (IA∪A∪A – IA∪A )

]
+

n∑
j=

E
(
cjS+j IAj

)

= E
(
cS+ IA∪A∪A

)
+ E

[(
cS+ – cS+

)
IA∪A

]
+

n∑
j=

E
(
cjS+j IAj

)

≤ E
(
cS+ IA∪A∪A

)
+ cE

[(
S+ – S+

)
IA∪A

]
+

n∑
j=

E
(
cjS+j IAj

)

= E
(
cS+ IA∪A∪A

)
– cE

[(
S+ – S+

)
IA∪A

]
+

n∑
j=

E
(
cjS+j IAj

)
. (.)

By the convexity of the function f (x) = x+ again,

S+ – S+ ≥ (S – S)h(S), (.)

then

E
[(
S+ – S+

)
IA∪A

] ≥ E
[
(S – S)h(S)IA∪A

]
. (.)

Obviously, A ∪ A = {max(cS, cS) ≥ ε} and IA∪A is a nonnegative and component-
wise nondecreasing function of {S,S}, then h(S)IA∪A is a nonnegative and componen-
twise nondecreasing function of {S,S}. By the demisubmartingale property, the right-
hand side of (.) is nonnegative. Thus

E
[(
S+ – S+

)
IA∪A

] ≥ 

and the right-hand side of (.) is bounded by

E
(
cS+ IA∪A∪A

)
+

n∑
j=

E
(
cjS+j IAj

)
.

Working in this manner we prove that

εP(A) ≤ E
(
cn–S+n–IA∪A∪···∪An–

)
+ E

(
cnS+nIAn

)
= E

(
cn–S+n–IA∪A∪···∪An–

)
+ E

[
cnS+n (IA∪A∪···∪An – IA∪A∪···∪An– )

]
≤ cnE

(
S+nIA

)
– cnE

[(
S+n – S+n–

)
IA∪A∪···∪An–

]
. (.)

By the convexity of the function f (x) = x+, we have

S+n – S+n– ≥ (Sn – Sn–)h(Sn–).

Hence

E
[(
S+n – S+n–

)
IA∪A∪···∪An–

] ≥ E
[
(Sn – Sn–)h(Sn–)IA∪A∪···∪An–

]
. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/489


Dai et al. Journal of Inequalities and Applications 2014, 2014:489 Page 5 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/489

Since A ∪ A ∪ · · · ∪ An– = {max(cS, cS, . . . , cn–Sn–) ≥ ε}, IA∪A∪···∪An– is a non-
negative and componentwise nondecreasing function of {S,S, . . . ,Sn–}. Then h(Sn–)×
IA∪A∪···∪An– is a nonnegative and componentwise nondecreasing function of {S,S,
. . . ,Sn–}. As {Sn,n≥ } forms a demisubmartingale and {cn,n≥ } is a sequence of positive
numbers, we have

cnE
[
(Sn – Sn–)h(Sn–)IA∪A∪···∪An–

] ≥ . (.)

Consequently, it follows from (.), (.) and (.) that

εP(A) ≤ E
(
cnS+nIA

)
.

So (.) is proved. �

Corollary . Assume that {Sn,n ≥ } is a demisubmartingale or a demimartingale with
S = . Let g be a nondecreasing convex function such that g(Sn) ∈ L, n≥  and {cn,n≥ }
be a nondecreasing sequence of positive numbers. Then, for any ε > ,

εP
{
max
≤k≤n

ckg(Sk) ≥ ε
}

≤ E
[
cng+(Sn)I

(
max
≤k≤n

ckg(Sk)≥ ε
)]

. (.)

Proof By Lemma ., {g(Sn),n≥ } is a demisubmartingale. By Theorem ., we obtain the
result of (.). �

Remark . Chow [] proved a maximal inequality for submartingales, which contains
the Hajek-Renyi inequality and other inequalities as special cases (see Theorem  of Chow
[]). Christofides [] generalized Theorem  of Chow [] and obtained a Chow type
maximal inequality for demimartingales (see Theorem . of Christofides []). Wang []
generalized Theorem . of Christofides [] to the nonnegative convex functions (see The-
orem . ofWang []). Based on Christofides [] andWang [],Wang andHu [] obtained
some similarmaximal inequalities for demisubmartingales and demimartingales (seeThe-
orem . and Theorem . ofWang andHu []). Inspired by these papers, we also get some
similar Chow type maximal inequality for demisubmartingales and demimartingales (see
Theorem . and Corollary .).

Second, we provide a minimal type inequalities for a sequence of nonnegative demi-
martingales.

Theorem . Let {Sn,n≥ } be a nonnegative demimartingale with S =  and {cn,n≥ }
be a nonincreasing sequence of positive numbers. Then, for any ε > ,

εP
{
min
≤k≤n

ckSk ≤ ε
}

≥ cnE
[
SnI

(
min
≤k≤n

ckSk ≤ ε
)]

. (.)

Proof Following Christofides [], we let A = {min≤k≤n ckSk ≤ ε}, n ≥ . Then A can be
written as A =

⋃n
j=Aj, where A = {cS ≤ ε}, Aj = {ciSi > ε, ≤ i < j, cjSj ≤ ε},  < j ≤ n, and

http://www.journalofinequalitiesandapplications.com/content/2014/1/489
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Ai ∩Aj = ∅ when i �= j. Thus, similar to the proof of (.),

εP(A) = ε

n∑
j=

P(Aj) =
n∑
j=

E(εIAj ) ≥
n∑
j=

E(cjSjIAj )

= E(cSIA ) + E(cSIA ) +
n∑
j=

E(cjSjIAj )

= E(cSIA ) + E
[
cS(IA∪A – IA )

]
+

n∑
j=

E(cjSjIAj )

= E(cSIA∪A ) + E
[
(cS – cS)IA

]
+

n∑
j=

E(cjSjIAj )

≥ E(cSIA∪A ) + cE
[
(S – S)IA

]
+

n∑
j=

E(cjSjIAj )

= E(cSIA∪A ) + cE
[
(S – S)(–IA )

]
+

n∑
j=

E(cjSjIAj ),

which is from the fact that A ∩A = ∅ and IA = IA∪A – IA . Since IA is a nonincreasing
function of S, –IA is a nondecreasing function of S. By the definition of a demimartin-
gale, one has

E
[
(S – S)(–IA )

] ≥ . (.)

So we can get

εP(A) ≥ E(cSIA∪A ) +
n∑
j=

E(cjSjIAj )

= E(cSIA∪A ) + E(cSIA ) +
n∑
j=

E(cjSjIAj )

= E(cSIA∪A ) + E
[
cS(IA∪A∪A – IA∪A )

]
+

n∑
j=

E(cjSjIAj )

= E(cSIA∪A∪A ) + E
[
(cS – cS)IA∪A

]
+

n∑
j=

E(cjSjIAj )

≥ E(cSIA∪A∪A ) + cE
[
(S – S)IA∪A

]
+

n∑
j=

E(cjSjIAj )

= E(cSIA∪A∪A ) + cE
[
(S – S)(–IA∪A )

]
+

n∑
j=

E(cjSjIAj ). (.)

Since A ∪ A = {min(cS, cS) ≤ ε}, IA∪A is a componentwise nonincreasing func-
tion of {S,S} and –IA∪A is a componentwise nondecreasing function of {S,S}. By the

http://www.journalofinequalitiesandapplications.com/content/2014/1/489
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definition of a demimartingale,

E
[
(S – S)(–IA∪A )

] ≥ . (.)

It follows from (.) and (.) that

εP(A) ≥ E(cSIA∪A∪A ) +
n∑
j=

E(cjSjIAj ).

By iterations,

εP(A) ≥ E(cn–Sn–IA∪A∪···∪An– ) + E(cnSnIAn ).

= E(cn–Sn–IA∪A∪···∪An– ) + E
[
cnSn(IA∪A∪···∪An – IA∪A∪···∪An– )

]
≥ cnE(SnIA) + cnE

[
(Sn – Sn–)(–IA∪A∪···∪An– )

]
. (.)

Since A ∪A ∪ · · · ∪An– = {min(cS, cS, . . . , cn–Sn–) ≤ ε}, IA∪A∪···∪An– is a compo-
nentwise nonincreasing function of {S,S, . . . ,Sn–} and –IA∪A∪···∪An– is a component-
wise nondecreasing function of {S,S, . . . ,Sn–}. By the fact that {Sn,n ≥ } is a nonnega-
tive demimartingale and {ck ,k ≥ } is a nonincreasing sequence of positive numbers, it is
checked that

cnE
[
(Sn – Sn–)(–IA∪A∪···∪An– )

] ≥ . (.)

Finally, by (.) and (.), we get

εP(A) ≥ cnE(SnIA).

So (.) holds. �

Corollary . Let {Sn,n≥ } be a demimartingale. Then, for any ε > ,

εP
{
min
≤k≤n

Sk ≤ ε
}

≥
∫

{min≤k≤n Sk≤ε}
Sn dP.

Proof By the proof of Theorem . with ck ≡ , we can get the minimal inequality for
demimartingales without the assumption of nonnegativeness. �

Remark . Newman and Wright [] obtained some inequalities for demisubmartin-
gales and demimartingales, including maximal and minimal inequalities (see Theorem 
of Newman and Wright []). Prakasa Rao [] generalized some results of Newman and
Wright [] and got minimal type inequalities for demisubmartingales (see Theorems .-
. of Prakasa Rao []). Wang et al. [] also obtained someminimal inequalities for non-
negative demimartingales (see Theorem ., Corollary . and Corollary . of Wang et
al. []). Similar to Theorem . of Prakasa Rao [] and Theorem . of Wang et al. [],
we get some minimal type inequalities for nonnegative demimartingales in Theorem .
and Corollary .. It is pointed out that Corollary . is not a new result (see Theorem .
of Prakasa Rao [], Corollary . of Hu et al. [], Corollary . of Wang et al. []).

http://www.journalofinequalitiesandapplications.com/content/2014/1/489
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Third, we consider the Chow type maximal inequality for N-demimartingales. Similar
to Chow [] and Christofides [], Prakasa Rao [] obtained a Chow type maximal in-
equality for N-demimartingales.

Theorem . (see Theorem . of Prakasa Rao [] or Theorem .. of Prakasa Rao [])
Assume that {Sn,n ≥ } is an N-demimartingale with S =  and m(·) is a nonnegative
nondecreasing function on R with m() = . Let g(·) be a function on R with g() =  and
suppose that

g(x) – g(y) ≥ (y – x)h(y) (.)

for all x, y, where h(·) is a nonnegative and nondecreasing function. Further assume that
{ck ,  ≤ k ≤ n} is a sequence of positive numbers such that (ck – ck+)g(Sk) ≥  for  ≤ k ≤
n – . Define Yk =max≤j≤k cjg(Sj), k ≥ , Y = . Then

E
(∫ Yn


udm(u)

)
≤

n∑
i=

ciE
[(
g(Si) – g(Si–)

)
m(Yn)

]
. (.)

Let ε >  and define m(t) =  if t ≥ ε and m(t) =  if t < ε. By Theorem .,

εP(Yn ≥ ε) ≤
n∑
i=

ciE
[(
g(Si) – g(Si–)

)
I(Yn ≥ ε)

]
(.)

(see (..) of Prakasa Rao []) was obtained. It can be seen that g(x) = –αx, α ≥ , and
g(x) = –αx+, α ≥ , satisfy the condition of (.) (see Prakasa Rao [, ]).
It is a fact that if {Sn}n≥ is anN-demimartingale, then {–Sn}n≥ is also anN-demimartin-

gale (see Christofides [] or Prakasa Rao []). By using Theorem ., Hadjikyriakou []
got the following maximal inequality for N-demimartingales.

Corollary . (Hadjikyriakou [, Theorem ..]) Assume that {Sn,n ≥ } is an N-
demimartingale. Then, for every ε > ,

εP
(
max
≤k≤n

Sk ≥ ε
)

≤ E
(
SnI

(
max
≤k≤n

Sk ≥ ε
))

. (.)

But we find that the Chow type maximal inequality for N-demimartingales, i.e., Theo-
rem ., is not true. We give an example as follows.

An example forN-demimartingales Let g(x) = –x,m(x) = x+, c = c = , S = . Assume
that S and S are independent random variables with probability distributions

S ∼
(
– 






)
, S ∼

(
– 






)
.

In addition, let Y = cg(S) = –S and

Y =max
{
cg(S), cg(S)

}
=max{–S, –S}.

http://www.journalofinequalitiesandapplications.com/content/2014/1/489
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It is easy to check that for any nondecreasing function f ,

E
[
(S – S)f (S)

]
=

[
– – (–)

]
f (–)× 


+ (– – )f ()× 


+

[
 – (–)

]
f (–)

× 

+ ( – )f ()× 



= f (–) – f ()≤ .

Hence {S,S} is an N-demimartingale. It follows from the distribution of S that

Y ∼
(
– 






)
.

Meanwhile,

P(Y = ) = P(S = ,S = –) =


,

P(Y = –) = P(S = ,S = ) =


,

P(Y = ) = P(S = –,S = ) + P(S = –,S = –) =


+


=


,

so

Y ∼
(
–  









)
.

It can be seen that if Y(ω) ≥ , then

∫ Y


udm(u) =

∫ Y


udu =



Y 
 .

Otherwise, for the case Y(ω) < , one has

∫ Y


udm(u) = .

Consequently,

∫ Y


udm(u) =



Y 
 I(Y ≥ )∼

(
 

 









)
.

On the other hand, we can calculate that

E
[∫ Y


udm(u)

]
=



http://www.journalofinequalitiesandapplications.com/content/2014/1/489
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and

∑
k=

ckE
{[
g(Sk) – g(Sk–)

]
m(Y)

}
= E

[
g(S)m(Y)

]
= –E

(
SY +


)

= –
[
–× × 


+ × × 


+ (–)× × 



]

=


.

But we have



= E

[∫ Y


udm(u)

]
>

∑
k=

ckE
{[
g(Sk) – g(Sk–)

]
m(Y)

}
=


,

which is contrary to (.). Therefore, Theorem . is not true. In fact, in the proof of
Theorem . of Prakasa Rao [] or the proof of Theorem .. of Prakasa Rao [], it
was given that h(Si)m(Yi) is a nondecreasing function of S,S, . . . ,Si. But by checking the
proof carefully, we find that one cannot find that h(Si)m(Yi) is a nondecreasing function
of S,S, . . . ,Si under the conditions of Theorem ..
Similarly, it can be checked that

P(Y ≥ ) =


+


=


,

and

∑
k=

E
[(
g(Sk) – g(Sk–)

)
I(Y ≥ )

]
= –E

[
SI(Y ≥ )

]

= –
[
–× × 


+ × × 


+ (–)× × 



]

=


.

Then

P(Y ≥ ) > –E
[
SI(Y ≥ )

]
,

which is contrary to (.). So (.) is not true.
Meanwhile, one has

P
(
max
≤k≤

Sk ≥ 
)
= P(S = ,S = –) + P(S = ,S = ) + P(S = –,S = ) =




and

E
[
SI

(
max(S,S)

) ≥ 
]
= –× 


+ × 


+ × 


=


.

So



= P

(
max
≤k≤

Sk ≥ 
)
> E

[
SI

(
max(S,S)

) ≥ 
]
=


,
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which is contrary to (.). Thus, (.) is not true. There are some problems of maximal
type inequalities for N-demimartingales in the literature such as Wang et al. [], Hu et
al. [], Wang et al. [] and Yang and Hu []. It is interesting to investigate the maximal
type inequalities of N-demimartingales for researchers in the future.
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