RESEARCH

Open Access

Multi-valued version of *SCC*, *SKC*, *KSC*, and *CSC* conditions in Ptolemy metric spaces

SJ Hosseini Ghoncheh and A Razani*

*Correspondence: razani@ipm.ir Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

In this paper, multi-valued version of SCC, SKC, KSC, and CSC conditions in Ptolemy metric space are presented. Then the existence of a fixed point for these mappings in a Ptolemy metric space are proved. Finally, some examples are presented. **MSC:** 47H10

Keywords: CAT(0) spaces; fixed point; C condition; Ptolemy metric space

1 Introduction

The definition of a Ptolemy metric space is introduced by Schoenberg [1, 2]. In order to define it, we need to recall the definition of a Ptolemy inequality as follows.

Definition 1.1 [1] Let (X, d) be a metric space, the inequality

 $d(x,y)d(z,p) \le d(x,z)d(y,p) + d(x,p)d(y,z)$

is called a Ptolemy inequality, where $x, y, z, p \in X$.

Now, the definition of Ptolemy metric space is as follows.

Definition 1.2 [1] A Ptolemy metric space is a metric space where the Ptolemy inequality holds.

Schoenberg proved that every pre-Hilbert space is Ptolemaic and each linear quasinormed Ptolemaic space is a pre-Hilbert space (see [1] and [3]). Moreover, Burckley *et al.* [4] proved that CAT(0) spaces are Ptolemy metric spaces. They presented an example to show the converse is not true. Espinola and Nicolae in [5] proved a geodesic Ptolemy space with a uniformly continuous midpoint map is reflexive. With respect to this, they proved some fixed point theorems.

In 2008, Suzuki [6] introduced the *C* condition.

Definition 1.3 Let T be a mapping on a subset K of a metric space X, then T is said to satisfy C condition if

$$\frac{1}{2}d(x,Tx) \le d(x,y)$$
 implies $d(Tx,Ty) \le d(x,y)$,

for all $x, y \in K$.

©2014 Hosseini Ghoncheh and Razani; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Karapınar and Taş [7] presented some new definitions which are modifications of Suzuki's *C* condition as follows.

Definition 1.4 Let *T* be a mapping on a subset *K* of a metric space *X*.

(i) T is said to satisfy the *SCC* condition if

$$\frac{1}{2}d(x,Tx) \le d(x,y) \quad \text{implies} \quad d(Tx,Ty) \le M(x,y),$$

where

$$M(x, y) = \max\{d(x, y), d(x, Tx), d(Ty, y), d(Tx, y), d(x, Ty)\} \text{ for all } x, y \in K.$$

(ii) T is said to satisfy the *SKC* condition if

$$\frac{1}{2}d(x,Tx) \le d(x,y) \quad \text{implies} \quad d(Tx,Ty) \le N(x,y),$$

where

$$N(x,y) = \max\left\{d(x,y), \frac{1}{2}\left\{d(x,Tx) + d(Ty,y)\right\}, \frac{1}{2}\left\{d(Tx,y) + d(x,Ty)\right\}\right\} \text{ for all } x, y \in K.$$

(iii) *T* is said to satisfy the *KSC* condition if

$$\frac{1}{2}d(x,Tx) \le d(x,y) \quad \text{implies} \quad d(Tx,Ty) \le \frac{1}{2} \big\{ d(x,Tx) + d(Ty,y) \big\}.$$

(iv) T is said to satisfy the *CSC* condition if

$$\frac{1}{2}d(x,Tx) \le d(x,y) \quad \text{implies} \quad d(Tx,Ty) \le \frac{1}{2} \big\{ d(Tx,y) + d(x,Ty) \big\}.$$

It is clear that every nonexpansive mapping satisfies the *SKC* condition [7, Proposition 9]. There exist mappings which do not satisfy the *C* condition, but they satisfy the *SCC* condition as the following example shows.

Example 1.5 [8] Define a mapping *T* on [0,3] with d(x, y) = |x - y| by

$$T(x) = \begin{cases} 0 & \text{if } x \neq 3, \\ 2 & \text{if } x = 3. \end{cases}$$

Karapınar and Taş [7] proved some fixed point theorems as follows.

Theorem 1.6 Let T be a mapping on a closed subset K of a metric space X. Assume T satisfies the SKC, KSC, SCC or CSC condition, then F(T) is closed. Moreover, if X is strictly convex and K is convex, then F(T) is also convex.

Theorem 1.7 Let *T* be a mapping on a closed subset *K* of a metric space *X* which satisfying the SKC, KSC, SCC or CSC condition, then $d(x, Ty) \le 5d(Tx, x) + d(x, y)$ holds for $x, y \in K$.

Hosseini Ghoncheh and Razani [8] proved some fixed point theorems for the *SCC*, *SKC*, *KSC*, and *CSC* conditions in a single-valued version in Ptolemy metric space. In this paper, the notation of *SCC*, *SKC*, *KSC*, and *CSC* conditions are generalized for multi-valued mappings and some new fixed point theorems are obtained in Ptolemy metric spaces.

Let *X* be a metric space and $\{x_n\}$ be a bounded sequence in *X*. For $x \in X$, let

$$r(x, \{x_n\}) = \limsup_{n \to \infty} d(x, x_n).$$

The asymptotic radius $r({x_n})$ of ${x_n}$ in *K* is given by

$$r(K, \{x_n\}) = \inf_{x \in K} r(x, \{x_n\}),$$

and the asymptotic center $A({x_n})$ of ${x_n}$ in *K* is the set

$$A(K, \{x_n\}) = \{x \in K : r(x, \{x_n\})\} = r(K, \{x_n\}).$$

Definition 1.8 [9] A sequence $\{x_n\}$ in a *CAT*(0) space *X* is said to be Δ -convergent to $x \in X$, if *x* is the unique asymptotic center of every subsequence of $\{x_n\}$.

Lemma 1.9

- (i) *Every bounded sequence in X has a* Δ *-convergent subsequence* [10, p.3690].
- (ii) If C is a closed convex subset of X and if $\{x_n\}$ is a bounded sequence in C, then the asymptotic center of $\{x_n\}$ is in C [11, Proposition 2.1].
- (iii) If C is a closed convex subset of X and if $f : C \to X$ is a nonexpansive mapping, then the conditions, $\{x_n\}\Delta$ -converges to x and $d(x_n, f(x_n)) \to 0$, imply $x \in C$ and f(x) = x[10, Proposition 3.7].

Lemma 1.10 [12] If $\{x_n\}$ is a bounded sequence in X with $A(\{x_n\}) = \{x\}$ and $\{u_n\}$ is a subsequence of $\{x_n\}$ with $A(\{u_n\}) = \{u\}$ and the sequence $\{d(x_n, u)\}$ converges, then x = u.

The next lemma and theorem play main roles for obtaining a fixed point in the Ptolemy metric spaces.

Lemma 1.11 [13] Let $\{z_n\}$ and $\{w_n\}$ be bounded sequences in metric space K and $\lambda \in (0,1)$. Suppose $z_{n+1} = \lambda w_n + (1-\lambda)z_n$ and $d(w_{n+1},w_n) \leq d(z_{n+1},z_n)$ for all $n \in \mathbb{N}$. Then $\limsup_{n\to\infty} d(w_n,z_n) = 0$.

Theorem 1.12 [5] Let X be a complete geodesic Ptolemy space with a uniformly continuous midpoint map, $\{x_n\} \subseteq X$ a bounded sequence and $K \subseteq X$ nonempty closed and convex. Then $\{x_n\}$ has a unique asymptotic center in K.

2 Main results

Let *X* be complete geodesic Ptolemy space and P(X) denote the class of all subsets of *X*. Denote

 $P_f(X) = \{A \subset X : A \neq \emptyset \text{ has property } f\}.$

Thus P_{bd} , P_{cl} , P_{cv} , P_{cp} , $P_{cl,bd}$, $P_{cp,cv}$ denote the classes of bounded, closed, convex, compact, closed bounded, and compact convex subsets of X, respectively. Also $T: K \to P_f(X)$ is called a multi-valued mapping on X. A point $u \in X$ is called a fixed point of T if $u \in Tu$.

Definition 2.1 [14] Let *K* be a subset of a *CAT*(0) space *X*. A map $T : X \to P(X)$ is said to satisfy the *C* condition if for each $x \in K$, $u_x \in Tx$, and $y \in K$

$$\frac{1}{2}d(x,u_x) \le d(x,y)$$

there exists a $u_y \in Ty$ such that

$$d(u_x, u_y) \le d(x, y).$$

Espinola and Nicolae [5] used the *C* condition as follows.

Theorem 2.2 Let X be a complete geodesic Ptolemy space with a uniformly continuous midpoint map, and K a nonempty bounded, closed, and convex subset of X. Suppose $T : K \rightarrow P_{cp}(K)$ is a multi-valued mapping satisfying the C condition, then $F(T) \neq \emptyset$.

Now, we extend the SCC, SKC, KSC, and CSC conditions to multi-valued versions.

Definition 2.3 Let *K* be a subset of a geodesic Ptolemy space *X*. A map $T: X \to P(X)$ is said to satisfy conditions (i) *SCC*, (ii) *SKC*, (iii) *KSC*, (iv) *CSC* if for each $x \in K$, $u_x \in Tx$, and $y \in K$

$$\frac{1}{2}d(x,u_x) \le d(x,y)$$

there exists a $u_y \in Ty$ such that

(i) $d(u_x, u_y) \le M'(x, y)$, where

$$M'(x, y) = \max\{d(x, y), d(x, u_x), d(u_y, y), d(u_x, y), d(x, u_y)\},\$$

(ii) $d(u_x, u_y) \leq N'(x, y)$, where

$$N'(x,y) = \max\left\{d(x,y), \frac{1}{2}\left\{d(x,u_x) + d(u_y,y)\right\}, \frac{1}{2}\left\{d(u_x,y) + d(x,u_y)\right\}\right\},$$

(iii) $d(u_x, u_y) \le \frac{1}{2} \{ d(x, u_x) + d(u_y, y) \},\$

(iv)
$$d(u_x, u_y) \le \frac{1}{2} \{ d(u_x, y) + d(x, u_y) \}.$$

Remark 2.4 Notice that any *KSC* or *CSC* map is a *SKC* map.

Lemma 2.5 Let X be a complete geodesic Ptolemy space, and K a nonempty closed subset of X. Suppose $T : K \to P_{cp}(K)$ is a multi-valued mapping satisfying the SKC condition, then for every $x, y \in K$, $u_x \in T(x)$ and $u_{xx} \in T(u_x)$ the following hold:

(i)
$$d(u_x, u_{xx}) \leq d(x, u_x)$$
,

(ii) either
$$\frac{1}{2}d(x, u_x) \le d(x, y)$$
 or $\frac{1}{2}d(u_x, u_{xx}) \le d(u_x, y)$,
(iii) either $d(u_x, u_y) \le N'(x, y)$ or $d(u_y, u_{xx}) \le N'(u_x, y)$,
where

$$N'(u_x, y) = \max\left\{d(u_x, y), \frac{1}{2}\left\{d(u_{xx}, u_x) + d(u_y, y)\right\}, \frac{1}{2}\left\{d(u_{xx}, y) + d(u_y, u_x)\right\}\right\}$$

Proof The first statement follows from the SKC condition. Indeed, we always have

$$\frac{1}{2}d(x,u_x)\leq d(x,u_x),$$

which yields

$$d(u_x, u_{xx}) \le N'(x, u_x), \tag{2.1}$$

where

$$N'(x, u_x) = \max\left\{ d(x, u_x), \frac{1}{2} \{ d(u_x, x) + d(u_{xx}, u_x) \}, \frac{1}{2} \{ d(u_x, u_x) + d(u_{xx}, x) \} \right\}$$
$$= \max\left\{ d(x, u_x), \frac{1}{2} \{ d(u_x, x) + d(u_{xx}, u_x) \}, \frac{1}{2} d(u_{xx}, x) \right\}.$$

If $N'(x, u_x) = d(x, u_x)$ we are done. If $N'(x, u_x) = \frac{1}{2} \{ d(u_x, x) + d(u_{xx}, u_x) \}$ then (2.1) turns into

$$d(u_x, u_{xx}) \le N'(x, u_x) = \frac{1}{2} \{ d(u_x, x) + d(u_{xx}, u_x) \}.$$
(2.2)

By simplifying (2.2), one can get (i). For the case $N'(x, u_x) = \frac{1}{2}d(u_{xx}, x)$ (2.1) turns into

$$d(u_x, u_{xx}) \leq N'(x, u_x) = \frac{1}{2}d(u_{xx}, x) \leq \frac{1}{2} \{ d(u_x, x) + d(u_{xx}, u_x) \},\$$

which implies (i). It is clear that (iii) is a consequence of (ii). To prove (ii), assume the contrary, that is,

$$\frac{1}{2}d(u_x, x) > d(x, y)$$
 and $\frac{1}{2}d(u_{xx}, u_x) > d(u_x, y)$

hold for all $x, y \in K$. Thus by triangle inequality and (i), we have

$$d(x, u_x) \le d(x, y) + d(y, u_x)$$

$$< \frac{1}{2} \{ d(u_x, x) + d(u_{xx}, u_x) \}$$

$$\le \frac{1}{2} d(u_x, x) + \frac{1}{2} d(u_x, x) = d(x, u_x).$$

Theorem 2.6 Let X be a complete geodesic Ptolemy space, K a nonempty closed subset of X. Suppose $T: K \to P_{cp}(K)$ is a multi-valued mapping satisfying SKC condition, then $d(x, u_y) \leq 7d(u_x, x) + d(x, y)$ for all $x, y \in K$, $u_x \in Tx$, and $u_y \in Ty$. *Proof* The proof is based on Lemma 2.5; it is proved that

$$d(u_x, u_y) \le N'(x, y)$$
 or $d(u_y, u_{xx}) \le N'(u_x, y)$

holds, where

$$N'(u_x, y) = \max\left\{d(u_x, y), \frac{1}{2}\left\{d(u_{xx}, u_x) + d(u_y, y)\right\}, \frac{1}{2}\left\{d(u_{xx}, y) + d(u_y, u_x)\right\}\right\}$$

Consider the first case. If N'(x, y) = d(x, y), then we have

$$d(x, u_y) \le d(x, u_x) + d(u_x, u_y) \le d(x, u_x) + d(x, y).$$

For $N'(x, y) = \frac{1}{2} \{ d(u_x, x) + d(u_y, y) \}$ one can observe

$$d(x, u_y) \le d(x, u_x) + d(u_x, u_y)$$

$$\le d(x, u_x) + \frac{1}{2} \{ d(u_x, x) + d(u_y, y) \}$$

$$\le \frac{3}{2} d(u_x, x) + \frac{1}{2} d(u_y, y)$$

$$\le \frac{3}{2} d(u_x, x) + \frac{1}{2} \{ d(u_y, x) + d(x, y) \}.$$

Thus,

$$\frac{1}{2}d(x, u_y) \le \frac{3}{2}d(x, u_x) + \frac{1}{2}d(x, y) \quad \text{if and only if} \quad d(x, u_y) \le 3d(x, u_x) + d(x, y).$$

For $N'(x, y) = \frac{1}{2} \{ d(u_x, y) + d(u_y, x) \}$ one can obtain

$$d(x, u_y) \le d(x, u_x) + d(u_x, u_y)$$

$$\le d(x, u_x) + \frac{1}{2} \{ d(u_x, y) + d(u_y, x) \}$$

$$\le d(u_x, x) + \frac{1}{2} \{ d(u_x, x) + d(x, y) \} + \frac{1}{2} d(u_y, x).$$

Thus

$$\frac{1}{2}d(x, u_y) \le \frac{3}{2}d(x, u_x) + \frac{1}{2}d(x, y) \quad \text{if and only if} \quad d(x, u_y) \le 3d(x, u_x) + d(x, y).$$

Take the second case into account. For $N'(u_x, y) = d(u_x, y)$

$$d(x, u_y) \le d(x, u_x) + d(u_x, u_{xx}) + d(u_{xx}, u_y)$$

$$\le d(x, u_x) + (u_x, x) + d(u_x, y)$$

$$= 2d(x, u_x) + d(u_x, y)$$

$$\le 2d(x, u_x) + d(u_x, x) + d(x, y)$$

$$= 3d(x, u_x) + d(x, y).$$

If $N'(u_x, y) = \frac{1}{2} \{ d(u_{xx}, u_x) + d(u_y, y) \}$ then

$$\begin{aligned} d(x, u_y) &\leq d(x, u_x) + d(u_x, u_{xx}) + d(u_{xx}, u_y) \\ &\leq 2d(x, u_x) + \frac{1}{2} \{ d(u_{xx}, u_x) + d(u_y, y) \} \\ &\leq \frac{5}{2} d(x, u_x) + \frac{1}{2} d(u_y, y) \\ &\leq \frac{5}{2} d(x, u_x) + \frac{1}{2} \{ d(u_y, x) + d(x, y) \}; \end{aligned}$$

then

$$\frac{1}{2}d(x,u_y) \leq \frac{5}{2}d(x,u_x) + \frac{1}{2}d(x,y) \quad \text{if and only if} \quad d(x,u_y) \leq 5d(x,u_x) + d(x,y).$$

For the last case, $N'(u_x, y) = \frac{1}{2} \{ d(u_{xx}, y) + d(u_y, u_x) \}$ and we have

$$\begin{aligned} d(x, u_y) &\leq d(x, u_x) + d(u_x, u_{xx}) + d(u_{xx}, u_y) \\ &\leq 2d(x, u_x) + \frac{1}{2} \Big\{ d(u_{xx}, y) + d(u_y, u_x) \Big\} \\ &\leq 2d(x, u_x) + \frac{1}{2} \Big\{ d(u_{xx}, u_x) + d(u_x, x) + d(x, y) \Big\} + \frac{1}{2} \Big\{ d(u_y, x) + d(x, u_x) \Big\} \\ &\leq \frac{7}{2} d(x, u_x) + \frac{1}{2} d(u_y, x) + \frac{1}{2} d(x, y). \end{aligned}$$

Thus

$$\frac{1}{2}d(x, u_y) \le \frac{7}{2}d(x, u_x) + \frac{1}{2}d(x, y) \quad \text{if and only if} \quad d(x, u_y) \le 7d(x, u_x) + d(x, y).$$

Hence, the result follows from all the above cases.

Corollary 2.7 Let X be a complete geodesic Ptolemy space, K a nonempty closed subset of X. Suppose $T: K \to P_{cp}(K)$ is a multi-valued mapping satisfying SCC condition, then $d(x, u_y) \leq 7d(u_x, x) + d(x, y)$ for all $x, y \in K$, $u_x \in Tx$, and $u_y \in Ty$.

Theorem 2.8 Let X be a complete geodesic Ptolemy space with a uniformly continuous midpoint map, and K a nonempty, bounded, closed, and convex subset of X. Suppose $T : K \to P_{cp}(K)$ is a multi-valued mapping satisfying the SKC condition and x_n is a sequence in K with $\lim_{n\to\infty} d(x_n, u_{x_n}) = 0$, where $u_{x_n} \in Tx_n$, then $F(T) \neq \emptyset$.

Proof By Theorem 1.12, x_n has unique asymptotic center denoted by x. Let $n \in \mathbb{N}$. Applying Theorem 2.6 for x_n , x_n and u_{x_n} , respectively, it follows that there exists $u_{z_n} \in Tx$ such that $d(x_n, u_{z_n}) \le 7d(x_n, u_{x_n}) + d(x_n, x)$.

Let $u_{z_{n_k}}$ be a subsequence of u_{z_n} that converges to some $u_z \in Tx$, then

$$d(x_{n_k}, u_z) \leq d(x_{n_k}, u_{z_{n_k}}) + d(u_{z_{n_k}}, u_z)$$

$$\leq 7d(x_{n_k}, u_{x_{n_k}}) + d(x_{n_k}, x) + d(u_{z_{n_k}}, u_z),$$

taking the superior limit as $k \to \infty$ and knowing that the asymptotic center of $\{x_{n_k}\}$ is precisely x. Thus we obtain $x = u_z \in Tx$. Hence the proof is complete.

By the same idea of [4, p.6] we construct a function $T : X \to P(X)$, which is *SKC* and has a fixed point.

Example 2.9 Consider the space

$$X = \{(0,0), (0,1), (1,1), (1,2)\}$$

with l^∞ metric,

$$d((x_1, y_1), (x_2, y_2)) = \max\{|x_1 - x_2|, |y_1 - y_2|\}.$$

X is a geodesic Ptolemy space, but it is not a CAT(0) space (see [4]).

Define a mapping T on X by

$$T(x, y) = \begin{cases} \{(1, 1), (0, 0)\} & \text{if } (x, y) \neq (0, 0), \\ \{(0, 1)\} & \text{if } (x, y) = (0, 0). \end{cases}$$

T satisfies the *SKC* condition. Suppose x = (0, 0) and y = (1, 1), thus $Tx = \{(0, 1)\}$, then $u_x = (0, 1)$, so

$$\frac{1}{2}d(x,u_x) = \frac{1}{2}d\big((0,0),(0,1)\big) = \frac{1}{2} \le d(x,y) = d\big((0,0),(1,1)\big) = 1,$$

and we can choose $u_y = (0, 0)$,

$$N'((0,0),(1,1)) = \max\left\{ d((0,0),(1,1)), \frac{1}{2} [d((0,0),(0,1)) + d((0,0),(1,1))], \frac{1}{2} [d((0,1),(1,1)) + d((0,0),(0,0))] \right\} = 1;$$

thus

$$d(u_x, u_y) = d((0,1), (0,0)) = 1 \le N'(x,y) = N'((0,0), (1,1)) = 1.$$

One can check the *SKC* condition holds for the other points of the space *X*.

Note that $(1, 1) \in T(1, 1)$; thus $F(T) = \{(1, 1)\} \neq \emptyset$.

Corollary 2.10 Let X be a complete geodesic Ptolemy space with a uniformly continuous midpoint map, and K a nonempty bounded, closed, and convex subset of X. Suppose $T : K \rightarrow P_{cp}(K)$ is a multi-valued mapping satisfying the condition SCC and x_n is a sequence in K with $\lim_{n\to\infty} d(x_n, Tx_n) = 0$, then $F(T) \neq \emptyset$.

One can find in [15] the multi-valued version of the E_{μ} and C_{λ} conditions.

Definition 2.11 Let *K* be a subset of a metric space (X, d). A map $T : K \to P_{cl,bd}(X)$ is said to satisfy the E'_{μ} condition provided that

dist(
$$x$$
, Ty) $\leq \mu$ dist(x , Tx) + $d(x$, y), x , $y \in K$;

we say that *T* satisfies the *E*' condition whenever *T* satisfies E'_{μ} for some $\mu \ge 1$.

One can replace the metric space with a Ptolemy space in the following definition.

Definition 2.12 Let *K* be a subset of a metric space (X, d) and $\lambda \in (0, 1)$. A map $T : K \to P(X)$ is said to satisfy the C'_{λ} condition if for each $x, y \in K$,

 $\lambda \operatorname{dist}(x, Tx) \leq d(x, y)$

implies

 $H(Tx, Ty) \le d(x, y),$

where $H(\cdot, \cdot)$ stands for the Hausdorff distance.

Theorem 2.13 Let X be a complete geodesic Ptolemy space with a uniformly continuous midpoint map, and K be a nonempty bounded, closed, and convex subset of X. Suppose $T: K \rightarrow P_{cl,bd}(K)$ is a multi-valued mapping satisfying E' and C'_{λ} conditions, then $F(T) \neq \emptyset$.

Proof We find an approximate fixed point for *T*. Take $x_0 \in K$, since $Tx_0 \neq \emptyset$ we can choose $y_0 \in Tx_0$. Define

$$x_1 = (1 - \lambda) x_0 \oplus \lambda y_0.$$

Since *K* is convex, $x_1 \in K$. Let $y_1 \in Tx_1$ be chosen such that

$$d(y_0, y_1) = \operatorname{dist}(y_0, Tx_1).$$

Similarly, set

$$x_2 = (1 - \lambda)x_1 \oplus \lambda y_1.$$

Again we choose $y_2 \in Tx_2$ such that

$$d(y_1, y_2) = \operatorname{dist}(y_1, Tx_2).$$

By the same argument, we get $y_2 \in K$. In this way we find a sequence $\{x_n\} \subset K$ such that

$$x_{n+1} = (1-\lambda)x_n \oplus \lambda y_n,$$

where $y_n \in Tx_n$ and

$$d(y_{n-1}, y_n) = \operatorname{dist}(y_{n-1}, Tx_n).$$

For every $n \in \mathbb{N}$

$$\lambda d(x_n, y_n) = d(x_n, x_{n+1}),$$

for which it follows that

$$\lambda \operatorname{dist}(x_n, Tx_n) \leq \lambda d(x_n, y_n) = d(x_n, x_{n+1});$$

since *T* satisfies the C'_{λ} condition,

$$H(Tx_n, Tx_{n+1}) \le d(x_n, x_{n+1}),$$

this implies

$$d(y_{n+1}, y_n) = \operatorname{dist}(y_n, Tx_{n+1})$$
$$\leq H(Tx_n, Tx_{n+1})$$
$$\leq d(x_n, x_{n+1}).$$

Now, we apply Lemma 1.11 to conclude $\lim_{n\to\infty} d(x_n, y_n) = 0$, where $y_n \in Tx_n$. The bounded sequence $\{x_n\}$ is Δ -convergent, hence by passing to a subsequence Δ -lim_n $x_n = v \in K$. We choose $z_n \in Tv$ such that

$$d(x_n, z_n) = \operatorname{dist}(x_n, T\nu).$$

Since Tv is compact, the sequence $\{z_n\}$ has a convergent subsequence $\{z_{n_k}\}$ with $\lim_{k\to\infty} z_{n_k} = w \in Tv$. Moreover, $z_n \in K$, and K is closed; then $w \in K$. By the E' condition

$$\operatorname{dist}(x_{n_k}, T\nu) \le \mu \operatorname{dist}(x_{n_k}, Tx_{n_k}) + d(x_{n_k}, \nu) \quad \text{for some } \mu \ge 1.$$

Note that

$$d(x_{n_k}, w) \le d(x_{n_k}, z_{n_k}) + d(z_{n_k}, w)$$

$$\le \mu \operatorname{dist}(x_{n_k}, Tx_{n_k}) + d(x_{n_k}, v) + d(z_{n_k}, w);$$

this implies

$$\limsup_{n\to\infty} d(x_{n_k},w) \leq \limsup_{n\to\infty} d(x_{n_k},v).$$

Thus by the Opial property, $w = v \in Tv$.

Example 2.14 [15] Let $X = \mathbb{R}$ and $D = [0, \frac{7}{2}]$. Define a mapping T on D with d(x, y) = |x - y| by

$$T(x) = \begin{cases} [0, \frac{x}{7}] & \text{if } x \neq \frac{7}{2}, \\ \{1\} & \text{if } x = \frac{7}{2}. \end{cases}$$

First we show *T* satisfies the C'_{λ} condition. Let $x, y \in [0, \frac{7}{2})$, then

$$H(Tx,Ty) = \left|\frac{x-y}{7}\right| \le |x-y|.$$

Let $x \in [0, \frac{5}{2}]$ and $y = \frac{7}{2}$, then

$$H(Tx,Ty)=1\leq \frac{7}{2}-x.$$

Let $x \in (\frac{5}{2}, \frac{7}{2})$ and $y = \frac{7}{2}$, then dist $(x, Tx) = \frac{6x}{7}$, thus

$$\frac{1}{2}\operatorname{dist}(x, Tx) = \frac{6x}{14} > \frac{30}{28} > 1 > |x - y|$$

and

$$\frac{1}{2}\operatorname{dist}(y, Ty) = \frac{5}{4} > 1 > |x - y|.$$

Thus *T* satisfies the C'_{λ} condition with $\lambda = \frac{1}{2}$. Let $x, y \in D$, then

 $\operatorname{dist}(x, Ty) \le 3d(x, Tx) + |x - y|,$

this shows *T* satisfies the *E*' condition. Since $T(0) = \{0\}, 0 \in F(T) \neq \emptyset$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Received: 16 February 2014 Accepted: 13 November 2014 Published: 26 Nov 2014

References

- 1. Schoenberg, IJ: A remark on MM Day's characterization of inner-product spaces and conjecture of LM Blumenthal. Proc. Am. Math. Soc. 3, 961-964 (1952)
- 2. Schoenberg, JJ: On metric arcs of vanishing Menger curvature. Ann. Math. 41, 715-726 (1940)
- 3. Dovgoshei, AA, Petrov, EA: Ptolemic spaces. Sib. Math. J. 52, 222-229 (2011)
- 4. Burckley, SM, Falk, K, Wraith, DJ: Ptolemaic spaces and CAT(0). Glasg. Math. J. 51, 301-314 (2009)
- 5. Espinola, R, Nicolae, A: Geodesic Ptolemy spaces and fixed points. Nonlinear Anal. 74, 27-34 (2011)
- 6. Suzuki, T: Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. **340**, 1088-1095 (2008)
- Karapınar, E, Taş, K: Generalized (C)-conditions and related fixed point theorems. Comput. Math. Appl. 61, 3370-3380 (2011)
- 8. Hosseini Ghoncheh, SJ, Razani, A: Fixed point theorems for some generalized nonexpansive mappings in Ptolemy spaces. Fixed Point Theory Appl. 2014, 76 (2014)
- 9. Dhompongsa, S, Kaewkhao, A, Panyanak, B: On Kirk's strong convergence theorem for multivalued nonexpansive mappings on *CAT*(0) spaces. Nonlinear Anal. **75**, 459-468 (2012)
- 10. Kirk, WA, Panyanak, B: A concept of convergence in geodesic spaces. Nonlinear Anal. 68, 3689-3696 (2008)
- Dhompongsa, S, Kirk, WA, Panyanak, B: Nonexpansive set-valued mappings in metric and Banach spaces. J. Nonlinear Convex Anal. 8, 35-45 (2007)
- Dhompongsa, S, Panyanak, B: On Δ-convergence theorems in CAT(0) spaces. Comput. Math. Appl. 56, 2572-2579 (2008)
- 13. Goebel, K, Kirk, WA: Iteration processes for nonexpansive mappings. In: Topological Methods in Nonlinear Functional Analysis, vol. 21, pp. 115-123. Am. Math. Soc., Providence (1983)
- 14. Razani, A, Salahifard, H: Invariant approximation for CAT(0) spaces. Nonlinear Anal. 71, 2421-2425 (2010)
- Abkar, A, Eslamian, M: Generalized nonexpansive multivalued mappings in strictly convex Banach spaces. Fixed Point Theory 14, 269-280 (2013)

10.1186/1029-242X-2014-471

Cite this article as: Hosseini Ghoncheh and Razani: Multi-valued version of SCC, SKC, KSC, and CSC conditions in Ptolemy metric spaces. Journal of Inequalities and Applications 2014, 2014:471

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com