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Abstract
In this paper, multi-valued version of SCC, SKC, KSC, and CSC conditions in Ptolemy
metric space are presented. Then the existence of a fixed point for these mappings in
a Ptolemy metric space are proved. Finally, some examples are presented.
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1 Introduction
The definition of a Ptolemy metric space is introduced by Schoenberg [, ]. In order to
define it, we need to recall the definition of a Ptolemy inequality as follows.

Definition . [] Let (X,d) be a metric space, the inequality

d(x, y)d(z,p) ≤ d(x, z)d(y,p) + d(x,p)d(y, z)

is called a Ptolemy inequality, where x, y, z,p ∈ X.

Now, the definition of Ptolemy metric space is as follows.

Definition . [] A Ptolemymetric space is a metric space where the Ptolemy inequality
holds.

Schoenberg proved that every pre-Hilbert space is Ptolemaic and each linear quasi-
normed Ptolemaic space is a pre-Hilbert space (see [] and []). Moreover, Burckley et
al. [] proved that CAT() spaces are Ptolemy metric spaces. They presented an example
to show the converse is not true. Espinola and Nicolae in [] proved a geodesic Ptolemy
space with a uniformly continuous midpoint map is reflexive. With respect to this, they
proved some fixed point theorems.
In , Suzuki [] introduced the C condition.

Definition . Let T be a mapping on a subset K of a metric space X, then T is said to
satisfy C condition if



d(x,Tx)≤ d(x, y) implies d(Tx,Ty)≤ d(x, y),

for all x, y ∈ K .
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Karapınar and Taş [] presented some new definitions which are modifications of
Suzuki’s C condition as follows.

Definition . Let T be a mapping on a subset K of a metric space X.
(i) T is said to satisfy the SCC condition if



d(x,Tx)≤ d(x, y) implies d(Tx,Ty) ≤M(x, y),

where

M(x, y) =max
{
d(x, y),d(x,Tx),d(Ty, y),d(Tx, y),d(x,Ty)

}
for all x, y ∈ K .

(ii) T is said to satisfy the SKC condition if



d(x,Tx)≤ d(x, y) implies d(Tx,Ty) ≤N(x, y),

where

N(x, y) =max

{
d(x, y),



{
d(x,Tx) + d(Ty, y)

}
,


{
d(Tx, y) + d(x,Ty)

}}
for all x, y ∈ K .

(iii) T is said to satisfy the KSC condition if



d(x,Tx)≤ d(x, y) implies d(Tx,Ty) ≤ 


{
d(x,Tx) + d(Ty, y)

}
.

(iv) T is said to satisfy the CSC condition if



d(x,Tx)≤ d(x, y) implies d(Tx,Ty) ≤ 


{
d(Tx, y) + d(x,Ty)

}
.

It is clear that every nonexpansive mapping satisfies the SKC condition [, Proposi-
tion ]. There exist mappings which do not satisfy the C condition, but they satisfy the
SCC condition as the following example shows.

Example . [] Define a mapping T on [, ] with d(x, y) = |x – y| by

T(x) =

{
 if x �= ,
 if x = .

Karapınar and Taş [] proved some fixed point theorems as follows.

Theorem . Let T be a mapping on a closed subset K of a metric space X. Assume T
satisfies the SKC, KSC, SCC or CSC condition, then F(T) is closed.Moreover, if X is strictly
convex and K is convex, then F(T) is also convex.

Theorem . Let T be amapping on a closed subset K of a metric space X which satisfying
the SKC, KSC, SCC or CSC condition, then d(x,Ty)≤ d(Tx,x) + d(x, y) holds for x, y ∈ K .

http://www.journalofinequalitiesandapplications.com/content/2014/1/471


Hosseini Ghoncheh and Razani Journal of Inequalities and Applications 2014, 2014:471 Page 3 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/471

Hosseini Ghoncheh and Razani [] proved some fixed point theorems for the SCC, SKC,
KSC, and CSC conditions in a single-valued version in Ptolemy metric space. In this pa-
per, the notation of SCC, SKC, KSC, and CSC conditions are generalized for multi-valued
mappings and some new fixed point theorems are obtained in Ptolemy metric spaces.
Let X be a metric space and {xn} be a bounded sequence in X. For x ∈ X, let

r
(
x, {xn}

)
= lim sup

n→∞
d(x,xn).

The asymptotic radius r({xn}) of {xn} in K is given by

r
(
K , {xn}

)
= inf

x∈K r
(
x, {xn}

)
,

and the asymptotic center A({xn}) of {xn} in K is the set

A
(
K , {xn}

)
=

{
x ∈ K : r

(
x, {xn}

)}
= r

(
K , {xn}

)
.

Definition . [] A sequence {xn} in a CAT() space X is said to be �-convergent to
x ∈ X, if x is the unique asymptotic center of every subsequence of {xn}.

Lemma .
(i) Every bounded sequence in X has a �-convergent subsequence [, p.].
(ii) If C is a closed convex subset of X and if {xn} is a bounded sequence in C, then the

asymptotic center of {xn} is in C [, Proposition .].
(iii) If C is a closed convex subset of X and if f : C → X is a nonexpansive mapping, then

the conditions, {xn}�-converges to x and d(xn, f (xn))→ , imply x ∈ C and f (x) = x
[, Proposition .].

Lemma . [] If {xn} is a bounded sequence in X with A({xn}) = {x} and {un} is a sub-
sequence of {xn} with A({un}) = {u} and the sequence {d(xn,u)} converges, then x = u.

The next lemma and theorem play main roles for obtaining a fixed point in the Ptolemy
metric spaces.

Lemma . [] Let {zn} and {wn} be bounded sequences in metric space K and λ ∈
(, ). Suppose zn+ = λwn + ( – λ)zn and d(wn+,wn) ≤ d(zn+, zn) for all n ∈ N. Then
lim supn→∞ d(wn, zn) = .

Theorem. [] Let X be a complete geodesic Ptolemy space with a uniformly continuous
midpoint map, {xn} ⊆ X a bounded sequence and K ⊆ X nonempty closed and convex.
Then {xn} has a unique asymptotic center in K .

2 Main results
Let X be complete geodesic Ptolemy space and P(X) denote the class of all subsets of X.
Denote

Pf (X) = {A⊂ X : A �= ∅ has property f }.

http://www.journalofinequalitiesandapplications.com/content/2014/1/471
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Thus Pbd , Pcl , Pcv, Pcp, Pcl,bd , Pcp,cv denote the classes of bounded, closed, convex, compact,
closed bounded, and compact convex subsets of X, respectively. Also T : K → Pf (X) is
called a multi-valued mapping on X. A point u ∈ X is called a fixed point of T if u ∈ Tu.

Definition . [] Let K be a subset of a CAT() space X. A map T : X → P(X) is said to
satisfy the C condition if for each x ∈ K , ux ∈ Tx, and y ∈ K



d(x,ux)≤ d(x, y)

there exists a uy ∈ Ty such that

d(ux,uy)≤ d(x, y).

Espinola and Nicolae [] used the C condition as follows.

Theorem . Let X be a complete geodesic Ptolemy space with a uniformly continuous
midpoint map, and K a nonempty bounded, closed, and convex subset of X. Suppose T :
K → Pcp(K ) is a multi-valued mapping satisfying the C condition, then F(T) �= ∅.

Now, we extend the SCC, SKC, KSC, and CSC conditions to multi-valued versions.

Definition . Let K be a subset of a geodesic Ptolemy space X. A map T : X → P(X) is
said to satisfy conditions (i) SCC, (ii) SKC, (iii) KSC, (iv) CSC if for each x ∈ K , ux ∈ Tx,
and y ∈ K



d(x,ux)≤ d(x, y)

there exists a uy ∈ Ty such that
(i) d(ux,uy) ≤M′(x, y), where

M′(x, y) =max
{
d(x, y),d(x,ux),d(uy, y),d(ux, y),d(x,uy)

}
,

(ii) d(ux,uy) ≤N ′(x, y), where

N ′(x, y) =max

{
d(x, y),



{
d(x,ux) + d(uy, y)

}
,


{
d(ux, y) + d(x,uy)

}}
,

(iii) d(ux,uy) ≤ 
 {d(x,ux) + d(uy, y)},

(iv) d(ux,uy) ≤ 
 {d(ux, y) + d(x,uy)}.

Remark . Notice that any KSC or CSC map is a SKC map.

Lemma . Let X be a complete geodesic Ptolemy space, and K a nonempty closed subset
of X. Suppose T : K → Pcp(K ) is amulti-valuedmapping satisfying the SKC condition, then
for every x, y ∈ K , ux ∈ T(x) and uxx ∈ T(ux) the following hold:

(i) d(ux,uxx) ≤ d(x,ux),

http://www.journalofinequalitiesandapplications.com/content/2014/1/471
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(ii) either 
d(x,ux)≤ d(x, y) or 

d(ux,uxx) ≤ d(ux, y),
(iii) either d(ux,uy) ≤N ′(x, y) or d(uy,uxx) ≤N ′(ux, y),

where

N ′(ux, y) =max

{
d(ux, y),



{
d(uxx,ux) + d(uy, y)

}
,


{
d(uxx, y) + d(uy,ux)

}}
.

Proof The first statement follows from the SKC condition. Indeed, we always have



d(x,ux)≤ d(x,ux),

which yields

d(ux,uxx) ≤N ′(x,ux), (.)

where

N ′(x,ux) =max

{
d(x,ux),



{
d(ux,x) + d(uxx,ux)

}
,


{
d(ux,ux) + d(uxx,x)

}}

=max

{
d(x,ux),



{
d(ux,x) + d(uxx,ux)

}
,


d(uxx,x)

}
.

IfN ′(x,ux) = d(x,ux) we are done. IfN ′(x,ux) = 
 {d(ux,x) +d(uxx,ux)} then (.) turns into

d(ux,uxx) ≤N ′(x,ux) =


{
d(ux,x) + d(uxx,ux)

}
. (.)

By simplifying (.), one can get (i). For the case N ′(x,ux) = 
d(uxx,x) (.) turns into

d(ux,uxx) ≤N ′(x,ux) =


d(uxx,x) ≤ 


{
d(ux,x) + d(uxx,ux)

}
,

which implies (i). It is clear that (iii) is a consequence of (ii). To prove (ii), assume the
contrary, that is,



d(ux,x) > d(x, y) and



d(uxx,ux) > d(ux, y)

hold for all x, y ∈ K . Thus by triangle inequality and (i), we have

d(x,ux) ≤ d(x, y) + d(y,ux)

<


{
d(ux,x) + d(uxx,ux)

}
≤ 


d(ux,x) +



d(ux,x) = d(x,ux). �

Theorem . Let X be a complete geodesic Ptolemy space, K a nonempty closed subset
of X. Suppose T : K → Pcp(K ) is a multi-valued mapping satisfying SKC condition, then
d(x,uy) ≤ d(ux,x) + d(x, y) for all x, y ∈ K , ux ∈ Tx, and uy ∈ Ty.

http://www.journalofinequalitiesandapplications.com/content/2014/1/471
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Proof The proof is based on Lemma .; it is proved that

d(ux,uy)≤N ′(x, y) or d(uy,uxx) ≤N ′(ux, y)

holds, where

N ′(ux, y) =max

{
d(ux, y),



{
d(uxx,ux) + d(uy, y)

}
,


{
d(uxx, y) + d(uy,ux)

}}
.

Consider the first case. If N ′(x, y) = d(x, y), then we have

d(x,uy) ≤ d(x,ux) + d(ux,uy) ≤ d(x,ux) + d(x, y).

For N ′(x, y) = 
 {d(ux,x) + d(uy, y)} one can observe

d(x,uy) ≤ d(x,ux) + d(ux,uy)

≤ d(x,ux) +


{
d(ux,x) + d(uy, y)

}
≤ 


d(ux,x) +



d(uy, y)

≤ 

d(ux,x) +



{
d(uy,x) + d(x, y)

}
.

Thus,



d(x,uy) ≤ 


d(x,ux) +



d(x, y) if and only if d(x,uy) ≤ d(x,ux) + d(x, y).

For N ′(x, y) = 
 {d(ux, y) + d(uy,x)} one can obtain

d(x,uy) ≤ d(x,ux) + d(ux,uy)

≤ d(x,ux) +


{
d(ux, y) + d(uy,x)

}
≤ d(ux,x) +



{
d(ux,x) + d(x, y)

}
+


d(uy,x).

Thus



d(x,uy) ≤ 


d(x,ux) +



d(x, y) if and only if d(x,uy) ≤ d(x,ux) + d(x, y).

Take the second case into account. For N ′(ux, y) = d(ux, y)

d(x,uy) ≤ d(x,ux) + d(ux,uxx) + d(uxx,uy)

≤ d(x,ux) + (ux,x) + d(ux, y)

= d(x,ux) + d(ux, y)

≤ d(x,ux) + d(ux,x) + d(x, y)

= d(x,ux) + d(x, y).

http://www.journalofinequalitiesandapplications.com/content/2014/1/471
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If N ′(ux, y) = 
 {d(uxx,ux) + d(uy, y)} then

d(x,uy) ≤ d(x,ux) + d(ux,uxx) + d(uxx,uy)

≤ d(x,ux) +


{
d(uxx,ux) + d(uy, y)

}
≤ 


d(x,ux) +



d(uy, y)

≤ 

d(x,ux) +



{
d(uy,x) + d(x, y)

}
;

then



d(x,uy) ≤ 


d(x,ux) +



d(x, y) if and only if d(x,uy) ≤ d(x,ux) + d(x, y).

For the last case, N ′(ux, y) = 
 {d(uxx, y) + d(uy,ux)} and we have

d(x,uy) ≤ d(x,ux) + d(ux,uxx) + d(uxx,uy)

≤ d(x,ux) +


{
d(uxx, y) + d(uy,ux)

}
≤ d(x,ux) +



{
d(uxx,ux) + d(ux,x) + d(x, y)

}
+


{
d(uy,x) + d(x,ux)

}
≤ 


d(x,ux) +



d(uy,x) +



d(x, y).

Thus



d(x,uy) ≤ 


d(x,ux) +



d(x, y) if and only if d(x,uy) ≤ d(x,ux) + d(x, y).

Hence, the result follows from all the above cases. �

Corollary . Let X be a complete geodesic Ptolemy space, K a nonempty closed subset
of X. Suppose T : K → Pcp(K ) is a multi-valued mapping satisfying SCC condition, then
d(x,uy) ≤ d(ux,x) + d(x, y) for all x, y ∈ K , ux ∈ Tx, and uy ∈ Ty.

Theorem . Let X be a complete geodesic Ptolemy space with a uniformly continuous
midpoint map, and K a nonempty, bounded, closed, and convex subset of X. Suppose T :
K → Pcp(K ) is a multi-valued mapping satisfying the SKC condition and xn is a sequence
in K with limn→∞ d(xn,uxn ) = , where uxn ∈ Txn, then F(T) �= ∅.

Proof ByTheorem., xn has unique asymptotic center denoted by x. Let n ∈N. Applying
Theorem . for xn, x, and uxn , respectively, it follows that there exists uzn ∈ Tx such that
d(xn,uzn ) ≤ d(xn,uxn ) + d(xn,x).
Let uznk be a subsequence of uzn that converges to some uz ∈ Tx, then

d(xnk ,uz) ≤ d(xnk ,uznk ) + d(uznk ,uz)

≤ d(xnk ,uxnk ) + d(xnk ,x) + d(uznk ,uz),

http://www.journalofinequalitiesandapplications.com/content/2014/1/471


Hosseini Ghoncheh and Razani Journal of Inequalities and Applications 2014, 2014:471 Page 8 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/471

taking the superior limit as k → ∞ and knowing that the asymptotic center of {xnk } is
precisely x. Thus we obtain x = uz ∈ Tx. Hence the proof is complete. �

By the same idea of [, p.] we construct a function T : X → P(X), which is SKC and has
a fixed point.

Example . Consider the space

X =
{
(, ), (, ), (, ), (, )

}

with l∞ metric,

d
(
(x, y), (x, y)

)
=max

{|x – x|, |y – y|
}
.

X is a geodesic Ptolemy space, but it is not a CAT() space (see []).
Define a mapping T on X by

T(x, y) =

{
{(, ), (, )} if (x, y) �= (, ),
{(, )} if (x, y) = (, ).

T satisfies the SKC condition. Suppose x = (, ) and y = (, ), thus Tx = {(, )}, then ux =
(, ), so



d(x,ux) =



d
(
(, ), (, )

)
=



≤ d(x, y) = d
(
(, ), (, )

)
= ,

and we can choose uy = (, ),

N ′((, ), (, )) = max

{
d
(
(, ), (, )

)
,


[
d
(
(, ), (, )

)
+ d

(
(, ), (, )

)]
,



[
d
(
(, ), (, )

)
+ d

(
(, ), (, )

)]}
= ;

thus

d(ux,uy) = d
(
(, ), (, )

)
=  ≤ N ′(x, y) =N ′((, ), (, )) = .

One can check the SKC condition holds for the other points of the space X.
Note that (, ) ∈ T(, ); thus F(T) = {(, )} �= ∅.

Corollary . Let X be a complete geodesic Ptolemy space with a uniformly continuous
midpoint map, and K a nonempty bounded, closed, and convex subset of X. Suppose T :
K → Pcp(K ) is a multi-valued mapping satisfying the condition SCC and xn is a sequence
in K with limn→∞ d(xn,Txn) = , then F(T) �= ∅.

One can find in [] the multi-valued version of the Eμ and Cλ conditions.

http://www.journalofinequalitiesandapplications.com/content/2014/1/471
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Definition . Let K be a subset of a metric space (X,d). A map T : K → Pcl,bd(X) is said
to satisfy the E′

μ condition provided that

dist(x,Ty)≤ μdist(x,Tx) + d(x, y), x, y ∈ K ;

we say that T satisfies the E′ condition whenever T satisfies E′
μ for some μ ≥ .

One can replace the metric space with a Ptolemy space in the following definition.

Definition . Let K be a subset of a metric space (X,d) and λ ∈ (, ). A map T : K →
P(X) is said to satisfy the C′

λ condition if for each x, y ∈ K ,

λdist(x,Tx)≤ d(x, y)

implies

H(Tx,Ty) ≤ d(x, y),

where H(·, ·) stands for the Hausdorff distance.

Theorem . Let X be a complete geodesic Ptolemy space with a uniformly continuous
midpoint map, and K be a nonempty bounded, closed, and convex subset of X. Suppose
T : K → Pcl,bd(K ) is amulti-valuedmapping satisfying E′ andC′

λ conditions, then F(T) �= ∅.

Proof We find an approximate fixed point for T . Take x ∈ K , since Tx �= ∅we can choose
y ∈ Tx. Define

x = ( – λ)x ⊕ λy.

Since K is convex, x ∈ K . Let y ∈ Tx be chosen such that

d(y, y) = dist(y,Tx).

Similarly, set

x = ( – λ)x ⊕ λy.

Again we choose y ∈ Tx such that

d(y, y) = dist(y,Tx).

By the same argument, we get y ∈ K . In this way we find a sequence {xn} ⊂ K such that

xn+ = ( – λ)xn ⊕ λyn,

where yn ∈ Txn and

d(yn–, yn) = dist(yn–,Txn).

http://www.journalofinequalitiesandapplications.com/content/2014/1/471
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For every n ∈N

λd(xn, yn) = d(xn,xn+),

for which it follows that

λdist(xn,Txn) ≤ λd(xn, yn) = d(xn,xn+);

since T satisfies the C′
λ condition,

H(Txn,Txn+)≤ d(xn,xn+),

this implies

d(yn+, yn) = dist(yn,Txn+)

≤H(Txn,Txn+)

≤ d(xn,xn+).

Now,we apply Lemma . to conclude limn→∞ d(xn, yn) = , where yn ∈ Txn. The bounded
sequence {xn} is �-convergent, hence by passing to a subsequence �- limn xn = v ∈ K . We
choose zn ∈ Tv such that

d(xn, zn) = dist(xn,Tv).

Since Tv is compact, the sequence {zn} has a convergent subsequence {znk } with
limk→∞ znk = w ∈ Tv. Moreover, zn ∈ K , and K is closed; then w ∈ K . By the E′ condition

dist(xnk ,Tv) ≤ μdist(xnk ,Txnk ) + d(xnk , v) for some μ ≥ .

Note that

d(xnk ,w) ≤ d(xnk , znk ) + d(znk ,w)

≤ μdist(xnk ,Txnk ) + d(xnk , v) + d(znk ,w);

this implies

lim sup
n→∞

d(xnk ,w) ≤ lim sup
n→∞

d(xnk , v).

Thus by the Opial property, w = v ∈ Tv. �

Example . [] LetX =R andD = [,  ]. Define amapping T onDwith d(x, y) = |x–y|
by

T(x) =

{
[, x ] if x �= 

 ,
{} if x = 

 .

http://www.journalofinequalitiesandapplications.com/content/2014/1/471
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First we show T satisfies the C′
λ condition. Let x, y ∈ [,  ), then

H(Tx,Ty) =
∣∣∣∣x – y



∣∣∣∣ ≤ |x – y|.

Let x ∈ [,  ] and y = 
 , then

H(Tx,Ty) =  ≤ 

– x.

Let x ∈ (  ,

 ) and y = 

 , then dist(x,Tx) = x
 , thus



dist(x,Tx) =

x


>



>  > |x – y|

and



dist(y,Ty) =



>  > |x – y|.

Thus T satisfies the C′
λ condition with λ = 

 . Let x, y ∈ D, then

dist(x,Ty)≤ d(x,Tx) + |x – y|,

this shows T satisfies the E′ condition. Since T() = {},  ∈ F(T) �= ∅.
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