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Abstract
In this paper, we prove some tripled fixed point theorems in fuzzy normed spaces.
Our results improve and restate the proof lines of the main results given in the paper
(Abbas et al. in Fixed Point Theory Appl. 2012:187, 2012).
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1 Introduction
Once the notion of coupled fixed point was given by Gnana Bhaskar and Lakshmikantham
in [], the theory of multidimensional fixed points has attracted much attention (see, for
instance, [–]), specially in the tripled case (see [–]).
Recently, many authors have shown the existence of tripled fixed points and common

tripled fixed points for some contractions in cone metric spaces, partially ordered met-
ric spaces, fuzzy metric spaces, fuzzy normed spaces, intuitionistic fuzzy normed spaces
and others. Especially in [], Abbas et al. proved some tripled fixed point theorem for
contractive mappings in partially complete intuitionistic fuzzy normed spaces. But the
authors found some mistakes in the proof lines of their main result. In this paper we give
a corrected version of the main theorem.
A t-norm (resp., a t-conorm) is a mapping ∗ : [, ] → [, ] (resp., � : [, ] → [, ])

that is associative, commutative, and non-decreasing in both arguments and has  (resp.,
) as identity.

Definition  ([, ]) For any a ∈ [, ], let the sequence {∗na}∞n= be defined by ∗a = a
and ∗na = (∗n–a) ∗ a. Then a t-norm ∗ is said to be of H-type if the sequence {∗na}∞n= is
equicontinuous at a = .

Definition  A fuzzy normed space (briefly, FNS) is a triple (X,μ,∗), where X is a vector
space, ∗ is a continuous t-norm and μ : X × (,∞) → [, ] is a fuzzy set such that, for all
x, y ∈ X and t, s > ,
(F) μ(x, t) > ;
(F) μ(x, t) =  for all t >  if and only if x = ;
(F) μ(αx, t) = μ(x, t

|α| ) for all α �= ;
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(F) μ(x, t) ∗ μ(y, s) ≤ μ(x + y, t + s);
(F) μ(x, ·) : (,∞)→ [, ] is continuous;
(F) limt→∞ μ(x, t) =  and limt→ μ(x, t) = .

Using the continuous t-norms and t-conorms, Saadati and Park [] introduced the con-
cept of an intuitionistic fuzzy normed space.

Definition  ([, ]) An intuitionistic fuzzy normed space (briefly, IFNS) is a -tuple
(X,μ,ν,∗,�) where X is a vector space, ∗ is a continuous t-norm, � is a continuous t-
conorm and μ,ν : X × (,∞) → [, ] are fuzzy sets such that, for all x, y ∈ X and t, s > ,
(IF) μ(x, t) + ν(x, t)≤ ;
(IF) μ(x, t) >  and ν(x, t) < ;
(IF) μ(x, t) =  for all t >  if and only if x =  if and only if ν(x, t) =  for all t > ;
(IF) μ(αx, t) = μ(x, t

|α| ) and ν(αx, t) = ν(x, t
|α| ) for all α �= ;

(IF) μ(x, t) ∗ μ(y, s) ≤ μ(x + y, t + s) and ν(x, t) � ν(y, s)≥ ν(x + y, t + s);
(IF) μ(x, ·),ν(x, ·) : (,∞) → [, ] are continuous;
(IF) limt→∞ μ(x, t) =  = limt→ ν(x, t) and limt→ μ(x, t) =  = limt→∞ ν(x, t).

Obviously, if (X,μ,ν,∗,�) is a IFNS, then (X,μ,∗) is a FNS. We refer to this space as its
support.

Lemma  μ(x, ·) is a non-decreasing function on (,∞) and ν(x, ·) is a non-increasing
function on (,∞).

Some properties and examples of IFNS and the concepts of convergence and a Cauchy
sequence in IFNS are given in [].

Definition  Let (X,μ,ν,∗,�) be an IFNS.
() A sequence {xn} ⊂ X is called a Cauchy sequence if, for any ε >  and t > , there

exists n ∈ N such that μ(xn – xm, t) >  – ε and ν(xn – xm, t) < ε for all n,m ≥ n.
() A sequence {xn} ⊂ X is said to be convergent to a point x ∈ X, denoted by xn → x or

by limn→∞ xn = x, if, for any ε >  and t > , there exists n ∈N such that μ(xn – x, t) > – ε

and ν(xn – x, t) < ε for all n≥ n.
() An IFNS in which every Cauchy sequence is convergent is said to be complete.

Definition  ([]) Let F : X → X and g : X → X be two mappings.
• We say that F and g are commuting if gF(x, y, z) = F(gx, gy, gz) for all x, y, z ∈ X .
• A point (x, y, z) ∈ X is called a tripled coincidence point of the mappings F and g if
F(x, y, z) = gx, F(y,x, y) = gy and F(z, y,x) = gz. If g is the identity, (x, y, z) is called a
tripled fixed point of F .

• If (X,�) is a partially ordered set, then F is said to have themixed g-monotone
property if it verifies the following properties:

x,x ∈ X, gx � gx �⇒ F(x, y, z) � F(x, y, z), ∀y ∈ X,

y, y ∈ X, gy � gy �⇒ F(x, y, z) � F(x, y, z), ∀x ∈ X,

z, z ∈ X, gz � gz �⇒ F(x, y, z) � F(x, y, z), ∀x ∈ X.
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If g is the identity mapping, then F is said to have themixed monotone property.
• If (X,�) is a partially ordered set, then X is said to have the sequential g-monotone
property if it verifies the following properties:
(B) If {xn} is a non-decreasing sequence and limn→∞ xn = x, then gxn � gx for all

n ∈ N.
(B) If {xn} is a non-increasing sequence and limn→∞ yn = y, then gyn � gy for all

n ∈ N.
If g is the identity mapping, then X is said to have the sequentialmonotone property.

Definition  Let X and Y be two IFNS. A function f : X → Y is said to be continuous at
a point x ∈ X if, for any sequence {xn} in X converging to x, the sequence {f (xn)} in Y
converges to f (x). If f is continuous at each x ∈ X, then f is said to be continuous on X.

The following lemma proved by Haghi et al. [] is useful for our main results:

Lemma  Let X be a nonempty set and g : X → X be amapping. Then there exists a subset
E ⊂ X such that g(E) = g(X) and g : E → X is one-to-one.

Definition  Let (X,μ,ν,∗,�) be an IFNS. The pair (μ,ν) is said to satisfy the n-property
on X× (,∞) if limn→∞[μ(x,knt)]np =  and limn→∞[ν(x,knt)]np =  whenever x ∈ X, k > 
and p > .

In order to state our results, we recall the main result given in [].

Theorem  (Abbas et al., Theorem .) Let (X,�) be a partially ordered set and suppose
that a � a = a, ab≤ a ∗ b for all a,b ∈ [, ]. Let (X,μ,ν,∗,�) be a complete IFNS such that
(μ,ν) has the n-property. Let F : X×X×X → X and g : X → X be two mappings such that
F has the mixed g-monotone property and

μ
(
F(x, y, z) – F(u, v,w),kt

) ≥ μ(gx – gu, t) ∗ μ(gy – gv, t) ∗ μ(gz – gw, t),

ν
(
F(x, y, z) – F(u, v,w),kt

) ≤ ν(gx – gu, t) � ν(gy – gv, t) � ν(gz – gw, t),

for which gx� gu and gy � gv and gz � gw, where  < k < . Suppose either
(a) F is continuous or
(b) X has the sequential g-monotone property.

If there exist x, y, z ∈ X such that gx � F(x, y, z), gy � F(y,x, y) and gz �
F(z, y,x), then F and g have a tripled coincidence point.

2 Comments and revised tripled fixed point theorem
Firstly, we show that the conditions of Theorem  are inadequate and, further, the proof
lines of Theorem  are not correct. We also would like to point out that the results in []
can be corrected under the appropriate conditions on the t-norm and the FNS. The proof
lines of Theorem  are not correct (see pp. and ):

μ(xn – xm, t) ≥
[
μ

(
x – x, ( – k)

t
kn

)]m

≥
[
μ

(
x – x, ( – k)

t
kn

)]np

→ ,
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where p >  such that m < np. Hence the sequence {xn} is a Cauchy sequence. This is
not correct since the same p would not be valid for all positive integers m > n ≥ n. For
example, let (X,‖ · ‖) be an ordinary normed space, define μ(x, t) = t

t+‖x‖ for any x ∈ X and
t >  and a ∗ b = ab for all a,b ∈ [, ]. Then (X,μ,  – μ,∗,∗′) is an IFNS. If k = / and
m = n, we have

[
μ

(
x – x, ( – k)

t
kn

)]m

=
[

n–t
n–t + ‖x – x‖

]n

→ e–
‖x–x‖

t < .

Now, by replacing in Theorem  the hypothesis that μ satisfies the n-property with the
one that the t-norm is of H-type, we state and prove a tripled fixed point theorem as a
modification.

Theorem  Let (X,�) be a partially ordered set and (X,μ,∗) be a complete FNS such that
∗ is of H-type and a∗a≥ a for all a ∈ [, ]. Let k ∈ (, ) be a number and F : X×X×X →
X be mapping such that F has the mixed monotone property and

μ
(
F(x, y, z) – F(u, v,w),kt

) ≥ μ(x – u, t) ∗ μ(y – v, t) ∗ μ(z –w, t), ()

for which x� u, y� v and z � w. Suppose that either:
(a) F is continuous or
(b) X has the sequential monotone property.

If there exist x, y, z ∈ X such that x � F(x, y, z), y � F(y,x, y) and z � F(z, y,
x), then F has a tripled fixed point. Furthermore, if x and y are comparable, then x = y,
that is, x = F(x,x).

Proof As in [] starting with x, y, z ∈ X such that x � F(x, y, z), y � F(y,x, y)
and z � F(z, y,x), one can define inductively three sequences {xn}, {yn}, {zn} ⊂ X such
that xn+ = F(xn, yn, zn), yn+ = F(yn,xn, yn) and zn+ = F(zn, yn,xn).
Define

δn(t) = μ(xn – xn+, t) ∗ μ(yn – yn+, t) ∗ μ(zn – zn+, t).

Continuing as in [], we have

μ(xn – xn+,kt) ≥ δn–(t), μ(yn – yn+,kt)≥ δn–(t) and

μ(zn – zn+,kt) ≥ δn–(t) ∗ δn–(t).
()

Since a ∗ a ≥ a for all a ∈ [, ], it follows that

δn(kt) = μ(xn – xn+,kt) ∗ μ(yn – yn+,kt) ∗ μ(zn – zn+,kt)≥ δn–(t).

This implies that

≥ δn(t) ≥ δn–

(
t
k

)
≥ δn–

(
t
k

)
≥ · · · ≥ δ

(
t
kn

)
.

Since limn→∞ δ( t
kn ) =  for all t > , we have limn→∞ δn(t) =  for all t > .
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Now, we claim that, for any p ≥  and n≥ ,

μ(xn – xn+p, t) ≥ ∗pδn–(t – kt),

μ(yn – yn+p, t)≥ ∗pδn–(t – kt), and

μ(zn – zn+p, t) ≥ ∗pδn–(t – kt).

()

In fact, it is obvious for p =  by (), a ∗ a ≥ a and Lemma  since t/k ≥ t – kt and δn– is
non-decreasing. Assume that () holds for some p ≥ . By (), we have

μ(xn – xn+, t) ≥ μ(xn – xn+,kt)≥ δn–(t)

and so

μ(xn – xn+, t – kt) ≥ δn–(t – kt).

Thus, from (), () and a ∗ a ≥ a, we have

μ(xn+ – xn+p+,kt)≥ μ(xn – xn+p, t) ∗ μ(yn – yn+p, t) ∗ μ(zn – zn+p, t)

≥ ∗pδn–(t – kt). ()

Hence, by the monotonicity of the t-norm ∗, we have

μ(xn – xn+p+, t) = μ(xn – xn+p+, t – kt + kt)

≥ μ(xn – xn+, t – kt) ∗ μ(xn+ – xn+p+,kt)

≥ δn–(t – kt) ∗ (∗pδn–(t – kt)
)
= ∗p+δn–(t – kt).

Similarly, we have

μ(yn+ – yn+p+,kt)≥ ∗p+δn–(t – kt) and

μ(zn+ – zn+p+,kt) ≥ ∗p+δn–(t – kt).
()

Therefore, by induction, () holds for all p ≥ . Suppose that t >  and ε ∈ (, ] are given.
By hypothesis, since ∗ is a t-normofH-type, there exists  < η <  such that ∗p(a) > –ε for
all a ∈ ( –η, ] and p ≥ . Since limn→∞ δn(t) = , there exists n such that δn(t – kt) > –η

for all n ≥ n. Hence, from (), we get

μ(xn – xn+p, t) >  – ε, μ(yn – yn+p, t) >  – ε, μ(zn – zn+p, t) >  – ε, ∀n≥ n.

Therefore, {xn}, {yn} and {zn} areCauchy sequences.We can continue as in [] to complete
the proof. �

Theorem Let (X,�) be a partially ordered set and (X,μ,∗) be a complete FNS such that
∗ is of H-type and a∗a≥ a for all a ∈ [, ]. Let k ∈ (, ) be a number and F : X×X×X →
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X and g : X → X be two mappings such that F has the mixed g-monotone property and

μ
(
F(x, y, z) – F(u, v,w),kt

) ≥ μ(gx – gu, t) ∗ μ(gy – gv, t) ∗ μ(gz – gw, t),

ν
(
F(x, y, z) – F(u, v,w),kt

) ≤ ν(gx – gu, t) � ν(gy – gv, t) � ν(gz – gw, t),

for which gx � gu and gy � gv and gz � gw, where  < k < . Suppose either
(a) F is continuous or
(b) X has the sequential g-monotone property.

If there exist x, y, z ∈ X such that gx � F(x, y, z), gy � F(y,x, y) and gz �
F(z, y,x), then F and g have a tripled coincidence point.

Proof As in Theorem . in []. �

Of course, all the results are valid if X is intuitionistic.
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